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Abstract

In this study, bathymetric models were developed in coastal waters of the Mexican Caribbean, using an empirical algorithm and
satellite images from Landsat 9, Sentinel-2 and SuperDove CubeSats. The model used is based on the relationship between the
blue and green spectral bands and was adjusted with depth data taken in situ in the coastal area of Mahahual, Quintana Roo using
linear regression, regularized regression and random forest approaches. The study showed that the model enables the estimation
of depth relatively accurately, up to 20 meters. Sentinel-2 and random forest presented the best performance, with an RMSE error
of 0.79 meters, followed by Landsat (0.88 m) and SuperDove (1.02 m). The most significant errors occurred at shallow depths of
less than 5 m or greater than 20 m. Preprocessing of the images, particularly sunlight correction and spatial filtering, was crucial to
improving the results. Remote sensing offers a very economical alternative for mapping bathymetry in shallow, low-turbid coastal
areas.

1. Introduction

Knowledge of bathymetry is crucial in oceanographic research,
as it provides detailed information about seafloor topography,
which is essential for understanding the dynamics of underwa-
ter processes. Additionally, bathymetric knowledge is crucial
for safe navigation, planning marine infrastructure, and sustain-
able management of aquatic resources. Conventionally, hydro-
graphic survey methods using acoustic systems aboard ships are
employed for bathymetric surveys, but these require high-cost
resources. Space technology has provided a cost-effective al-
ternative for mapping near-coastal bathymetry (Ashphaq et al.,
2021).

Remote sensing is one of the most promising tools for mapping
bathymetry in shallow coastal waters due to its broad coverage,
low cost, and repeatability (Casal et al., 2020; Jagalingam et
al., 2015). In recent years, satellite launches such as Landsat 9,
Sentinel-2, and SuperDove CubeSats have provided high spatial
and spectral resolution imagery, available free of charge.

Analytical algorithms for bathymetric mapping using remote
sensing data can be found in the literature, such as those by Lyz-
enga (1978; 1981), Lyzenga et al. (2006), and Philpot (1989).
However, these analytical methods require input parameters such
as water column properties, atmospheric conditions, and seabed
material, making them difficult to apply. Several empirical al-
gorithms have also been developed (Su et al., 2008; Stumpf
et al., 2003). Compared to analytical methods, empirical ap-
proaches, such as the method described by Stumpf et al. (2003)
later, require fewer parameters and are more straightforward to
implement. In this study, we use a ratio transform algorithm
capable of estimating depths up to 25 m in clear water accord-
ing to Jagalingam et al.2015.

The objective of this study is to evaluate the performance of
an empirical algorithm for estimating depth in a coastal area of
the Mexican Caribbean using Landsat 9, Sentinel-2, and Super-
Dove CubeSat imagery.

2. Materials

Bathymetric data from Merediz-Alonso (2012), available on
CONABIO’s geoportal (http://geoportal.conabio.gob.mx/descar-
gas/ mapas/imagen/96/punbmahdm11gw), were used. These
data report sea depth in the coastal zone of Mahahual, Quintana
Roo, in the Mexican Caribbean (see Figure 1).

Figure 1. Study area. The state of Quintana Roo in the Yucatán
Peninsula, southeastern Mexico, is highlighted in red. The study

area is located 70 km from Chetumal.

To collect these data, the authors used a Lowrance LCX-17M
echosounder connected to an external LGC-2000 GPS antenna.
They conducted perpendicular transects along the coast, record-
ing depth and location. The data were later processed using
Sonar Viewer software and converted into a digital point map
in vector format.
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Tidal prediction tables from the Mexican Navy (available at ht-
tps://oceanografia.semar.gob.mx/estaciones.html) were consul-
ted. Landsat 9, Sentinel-2, and SuperDove CubeSat images
Equipo Planeta (2017), processed to surface reflectance level
after atmospheric correction, were used. The main characterist-
ics of these images are summarised in Table 1.
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Table 1. Characteristics of the images used in the study (spectral
and spatial resolution, time of passage).

Image processing, spatial and statistical analyses, and graph
generation were performed using R version 4.4.1 (R Core Team,
2025).

3. Methods

We selected images with minimal or no cloud cover, no appar-
ent wave features, and clear water from their respective portals:
EarthExplorer for Landsat (https://earthexplorer.usgs.gov), Planet
Explorer for SuperDove (https://www.planet.com), and Coper-
nicus Open Access Hub for Sentinel-2 (https://scihub.copernicus
.eu/dhus).

The general procedure for deriving bathymetry included mask-
ing land and cloud areas, correcting wave glint effects, spatial
filtering, and fitting a linear model to estimate depth. Sub-
sequently, we mapped bathymetry and assessed the algorithm’s
performance by calculating depth estimation error (Figure 2).
The methods used in each step are described in detail in the
following sections.

Figure 2. Flowchart describing the main processing steps for
bathymetry derivation.

3.1 Image Masking and Preprocessing

Land and cloud masks were applied using image quality layers.
For Landsat, the QA band was used to create water and cloud
masks (including dilated clouds, cirrus clouds, and shadows),
retaining only cloud-free water pixels. Digital numbers were
converted to reflectance using gain and offset values. Similar
operations were performed for Sentinel-2 (using the SCL layer)
and SuperDove (using the UMD auxiliary image). Metadata-
derived gain values were used to obtain surface reflectance im-
ages of cloud-free water areas.

3.2 Wave Glint Correction

An optional correction was applied to reduce sun glint effects
caused by waves using Hedley et al.’s (2005) algorithm. This
method corrects visible bands using a near-infrared (NIR) ref-
erence band, assuming water is opaque in the NIR range. A
linear regression between the NIR and visible bands over deep
water areas was used to estimate surface reflectance. A min-
imum NIR value (MinIRC) was specified to exclude glint-free
conditions.

A low-pass spatial filter (3x3 moving average) was then applied
to smooth reflectance values.

3.3 Ratio Transform Algorithm

Stumpf et al. (2003) developed a ratio transform algorithm for
bathymetry estimation, capable of mapping depths beyond 25
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m in clear water and efficiently assessing turbid coastal depths.
The algorithm uses two spectral bands to reduce parameter de-
pendency, leveraging differences in diffuse attenuation coeffi-
cients. The ratio between band reflectances (typically blue and
green) varies with depth, minimising errors from atmospheric
and water column variability. The equation used is:

Z = m0 +m1 · ln
(
n ·Ri

Rj

)
, (1)

where Z = depth
Ri, Rj = reflectances of bands i and j
Xn = constant ensuring positive logarithm
m0,m1 = empirical coefficients

In addition to linear regression, we employed two machine learn-
ing approaches: regularized regression and random forest. In
the context of univariate regression, both methods offer distinct
advantages over conventional linear regression. Regularized re-
gression, when extended to accommodate polynomial terms,
applies constraint-based regularization to mitigate overfitting in
polynomial models. By incorporating L1 (Lasso) or L2 (Ridge)
penalties, or a composite penalty, this approach automatically
shrinks higher-order polynomial coefficients toward zero, ef-
fectively balancing model complexity against predictive per-
formance through cross-validated hyperparameter tuning. In
contrast, random forest represents a fundamentally different ma-
chine learning paradigm that constructs an ensemble of decision
trees through bootstrap aggregation and feature randomization.
This non-parametric method inherently captures complex non-
linear patterns and interaction effects without requiring explicit
specification of functional forms, making it particularly valu-
able when the underlying relationship between variables devi-
ates from simple polynomial approximations. Both techniques
provide robust alternatives to standard linear regression, with
regularized polynomial regression offering controlled flexibil-
ity within the familiar linear model framework. At the same
time, random forest delivers greater adaptability to complex
data structures through its ensemble-based architecture.

Outliers (top/bottom 1% of ratio values) were removed to ex-
clude non-water pixels. Coefficients m0 and m1 were determ-
ined via linear regression with in situ bathymetry. Iterative
models were fitted, adjusting maximum depth thresholds to identify
linearity limits. Models with/without glint correction and filter-
ing were compared.

Tidal corrections were omitted due to uncertainty in original
data processing. Tide tables for Mahahual (MAHA1703) indic-
ated minimal sea level differences (4–5 cm) during image ac-
quisition, implying any systematic error would not affect inter-
image comparisons.

4. Model Evaluation

Depth estimation accuracy was assessed using root mean square
error (RMSE) and the mean absolute error (MAE):

RMSE =

√√√√ 1

N

N∑
i=1

(Oi − Pi)2, (2)

MAE =
1

N

N∑
i=1

|Oi − Pi|, (3)

where RMSE = root mean square error
MAE = mean absolute error
Oi = observed depths at point i
Pi = predicted depths at point i

Both metrics provide complementary assessments of predic-
tion error magnitude. RMSE emphasizes larger errors due to
its squaring of residuals, while MAE offers a more robust in-
terpretation, representing the average absolute prediction er-
ror. These metrics are widely accepted in statistical practice
for quantifying model accuracy and facilitate direct comparison
between different modeling approaches on the same scale as the
response variable. RMSE and MAE were computed for each
image type and method, and residual spatial distribution was
visualized.

5. Results

The Mahahual bathymetry dataset comprised 2,844 points, with
255 shoreline points (zero depth) removed. The remaining 2,589
points, distributed across 20 east-west transects, reported depths
of 0.5–198 m (Figure 3).

Figure 3. Distribution of in situ bathymetry points.

Landsat 9 (15/01/2023), SuperDove (17/01/2023), and Sentinel-
2 (20/07/2022) images were selected, masked, and processed
with n=10,000 and blue-green band ratios (Bands 2 and 4 for
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Landsat/Sentinel; Bands 2 and 4 for SuperDove). Outliers (out-
side 1st–99th percentiles) were excluded. Figure 4 shows ra-
tio values along a transect, with darker tones indicating greater
depth. Spatial resolution differences among sensors are evident
(see Table 1).

Figure 4. Sample ratio images derived from Landsat, Sentinel,
and SuperDove data. According to Stumpf et al. (2003), these

ratio values exhibit a linear relationship with depth up to 25 m in
clear waters.

Figure 5 displays adjusted R2 values for linear regression mod-
els (with/without glint correction and filtering) across depth ranges
(10–35 m). Landsat 9 performed best without glint correction
but with filtering (peak R2 at 10–24 m). Sentinel-2 and Su-
perDove achieved optimal fits with both corrections, though
Sentinel-2’s R2 declined rapidly with depth. Final models used
depths of 0.5–24 m (Landsat/SuperDove) and 0.5–21 m (Sen-
tinel).

Figure 6 illustrates nonlinearity beyond specific depths, with
shallow points (depth < 5 m) also deviating from the model,
explaining R2 trends in Figure 5. Regularized regression and
random forest models allow obtaining a better fit (see Fig. 7 for
Landsat).

Figure 5. Variation of correlation coefficients between ratio
values and depth obtained using: (a) different maximum depth
thresholds, and (b) different preprocessing approaches (glint

correction and filtering).

Table 2 shows the RMSE and MAE values obtained for each
type of image and each modeling method. For the linear re-
gression approach, RMSE values were 2.03 m (Landsat), 3.02
m (Sentinel), and 2.55 m (SuperDove). The regularized regres-
sion, and even more so, the random forest models allow for
a significant reduction in the quantity of error, resulting in an
RMSE error lower than one meter in the case of Landsat and
Sentinel images. Figure 8 shows residuals concentrated near
-5 m and -20 m, consistent with Figure 6. Figure 9 confirms
residual correlation with depth and across models.
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Figure 6. Scatter plot of ratio values versus depth. Blue circles
represent data points included in the linear regression model,
while triangles indicate depths beyond the reliable estimation
range. The red line shows the regression fit, and the horizontal

line marks the depth threshold separating modeled and excluded
data.

6. Discussion

This study evaluated Stumpf et al.’s (2003) empirical ratio trans-
form algorithm for bathymetric mapping in the Mexican Carib-
bean using Landsat 9, Sentinel-2, and SuperDove imagery, as
well as different modeling approaches, including linear regres-

Figure 7. Scatter plot of ratio values versus depth (Landsat data).
Blue circles represent data points, while the fitted models (linear

regression, regularized polynomial regression, and random
forest) are represented in red.

sion, regularized regression, and random forest. Results con-
firm its effectiveness for depths up to 20–24 m, with limitations
in deeper and very shallow zones. Preprocessing (glint correc-
tion, filtering) significantly improved accuracy.

Glint correction was unnecessary for Landsat, likely due to its
lower spatial resolution (30 m vs. Sentinel-2’s 10 m and Su-
perDove’s 3 m), which inherently smooths wave effects. Filter-
ing (3x3 window) enhanced results by removing spectral out-
liers, but reduced spatial resolution, which can be problematic
in areas with abrupt depth changes (e.g., reefs).

The models used in the present study allow for predicting depth
with similar errors to those reported in other studies carried out
in different parts of the world (Table 3).

Sensor Fitting method RMSE MAE

Landsat
Linear Regression 2.03 1.48
Regularized Regression 1.87 1.28
Random Forest 0.88 0.56

Sentinel
Linear Regression 3.02 2.42
Regularized Regression 3.01 2.41
Random Forest 0.79 0.45

SuperDove
Linear Regression 2.55 1.90
Regularized Regression 2.54 1.88
Random Forest 1.02 0.60

Table 2. RMSE and MAE values of the models using different
types of images and models.
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Figure 8. Sample bathymetric maps derived from Landsat,
Sentinel, and SuperDove imagery (linear regression). Circle

colors represent residual values (difference between predicted
and observed depths) in the case of the linear regression.

Figure 9. Correlation between: (a) residuals from all three
bathymetric models, and (b) residuals versus depth

measurements.

The study highlights the importance of assessing attenuation
effects on maximum penetrable depth to define model limits.
Vanderstraete et al. (2003) similarly recommend pre-mapping
penetration depth before bathymetric estimation.

Performance was moderate across all sensors, with Landsat 9
achieving the lowest RMSE (2.03 m) using the linear regres-
sion and Sentinel (RMSE = 0.79m) with random forest. More
flexible models based on machine learning enable us to obtain
a better fit because the relationship between the depth and the
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Table 3. RMSE errors reported in different studies using
empirical methods and multispectral images.

ratio is not a perfect linear relation. Discrepancies in the results
between images may stem from differing acquisition dates and
conditions (waves, water clarity). For instance, Hedley et al.
(2018) found no greater dispersion in Sentinel-2 versus Land-
sat 8, contrary to our results.

Residuals were highest in very shallow waters (0–5 m), pos-
sibly due to seabed variability or high bottom reflectance (Gao,
2009). These errors minimally impacted deeper estimates.

Future studies could explore alternative atmospheric corrections,
hybrid empirical-analytical algorithms, and applications in mon-
itoring systems (Ariza and Ramı́rez, 2014; Pacheco et al., 2015)
or inland waters (Jawak and Luis, 2015; Yang et al., 2022).

7. Conclusions

This study demonstrates the utility of multispectral satellite data
and Stumpf et al.’s (2003) ratio transform method for estimat-
ing bathymetry in shallow coastal waters. The methodology
provides reasonably accurate depth estimates (up to 20 m) in
clear water, with precision heavily dependent on image pre-
processing (masking, glint correction, and filtering) and the ap-
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proach used to fit the model. The random forest method enables
more precise results.

Further research should investigate alternative atmospheric cor-
rections, hybrid algorithms, and applications in seabed change
detection and inland water bodies.
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