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Abstract 

Monitoring water quality in inland water bodies is critical for environmental management, yet traditional sampling methods are 

costly and spatially limited. Remote sensing offers a viable alternative by enabling large-scale assessment of water quality para- 

meters such as chlorophyll-a (Chl-a) concentrations through empirical models linking spectral indices to in situ measurements. 

However, the accuracy of these models depends on representative sampling strategies that capture spatial and temporal variability. 

This study evaluates a clustering-based approach to optimize sampling site selection in the Solís Dam, Mexico, using Sentinel-2 

imagery. We analyzed a one-year time series of Sentinel-2 data to compute spectral indices related to Chl-a and turbidity. Unsuper- 

vised K-means clustering was applied to stratify the reservoir into zones of distinct water quality variability, guiding the placement 

of 20 sampling sites. Field campaigns during dry and wet seasons (2024) provided Chl-a measurements, which were correlated 

with spectral indices. The Gi033BDA index showed the strongest correlation (R2 > 0.7, p < 0.01) and was used to develop a 

linear regression model for Chl-a estimation. Results confirmed that clustering-derived sampling points effectively represented 

spatial variability, though temporal mismatches (1-day lag) and samples location inaccuracies introduced minor errors. The method 

demonstrates how pre-stratification using remote sensing can enhance sampling efficiency while maintaining model accuracy. This 

approach is particularly valuable for large-scale monitoring, reducing reliance on exhaustive field campaigns. Future work should 

address temporal dynamics and sensor resolution trade-offs for broader applicability. 

1. Introduction

The assessment of water quality parameters such as chlorophyll 

concentration and turbidity in inland water bodies can be car- 

ried out using empirical models, combining field samples with 

multispectral imagery. Empirical models are based on statistical 

relationships between in situ data (e.g., chlorophyll or turbidity 

measurements) and spectral bands or indices derived from satel- 

lite or drone imagery (such as Sentinel-2, Landsat, or multis- 

pectral cameras). For example, linear or nonlinear regressions 

between reflectance in the visible and infrared bands and spec- 

tral indices such as the Normalized Difference Chlorophyll In- 

dex (NDCI) are used to estimate chlorophyll. Spectral 

water quality indices use specific combinations of spectral 

bands to assess water quality parameters such as turbidity, 

chlorophyll concentration, or dissolved organic matter (Beck 

et al., 2019; Chawla et al., 2020; Kallio, 2000). They are 

often focused on the detection of harmful algal blooms that 

can affect human health (Anderson et al., 2000; Linkov et 

al., 2009). It is also important to mention that free remote 

sensing data with high spatial and temporal resolution are 

currently available. There- fore, remote sensing is considered 

a viable and low-cost alternative for water quality monitoring 

(Chawla et al., 2020; Ritchie et al., 2003). 

These methods allow efficient water quality monitoring, espe- 

cially over large areas, reducing reliance on costly traditional 

sampling. However, they require validation with in situ data 

to ensure acceptable accuracy. To achieve this, an adequate 

sample size is essential. For example, Håkanson et al. (2007) 

highlights that typical monitoring or experimental programs 

may not collect sufficient data to reliably capture high 

variability, 

leading to unreliable results. Furthermore, a principle of re- 

gression analysis is that models should not be used to extra- 

polate beyond the data range from which they were construc- 

ted. It is therefore important to optimize sampling to ensure 

that sampling sites are able to represent all the variability of the 

parameter studied in the study area. 

Atkinson et al. (2010) observed that random sampling is in- 

efficient when data are spatially dependent. Spatial depend- 

ence means that observations that are close in space are more 

similar than those that are farther apart: they are related by a 

statistical correlation that generally decreases with increasing 

separation distance. Geostatistics can be used to analyze spa- 

tial data, explicitly accounting for spatial dependence. In par- 

ticular, spatial correlation analysis, clustering, and kriging can 

be used to determine the required number of ground-based ob- 

servations and the distance between them. For example, Di et 

al. (1989) used semivariograms to determine the number of 

samples and the appropriate sampling intervals to achieve de- 

sired levels of accuracy. Hawbaker et al. (2009) estimated 

forest vegetation structure and biomass using LiDAR data as 

a predictor and compared a random field sampling design with 

a stratified sampling design using LiDAR data as prior inform- 

ation. In the stratified sampling approach, they used aggregated 

LiDAR height measurements as prior information to stratify po- 

tential field sampling locations in our study area based on the 

mean and standard deviation of the LiDAR height. They found 

that the prediction errors of models built with a random sample 

were up to 68% higher than those of models built with a strati- 

fied sample. 

Samples in remote sensing image classification are primarily 
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Table 1. Spectral bands of the multi-spectral sensor (MSI) 

(Sentinel-2). The indices were calculated using the first nine 

bands. 

Sentinel-2 Bands Wavelength (µm) Res (m) 
Band 1 - Coastal aerosol 0.443 60 
Band 2 - Blue 0.49 10 
Band 3 - Green 0.56 10 
Band 4 - Red 0.665 10 
Band 5 - Red Edge 0.705 20 

Figure 1. Location map of the Solís Dam in the state of 

Guanajuato. Source: Prepared by the authors. 

3. Materials

Multispectral imagery from the Sentinel-2 satellite constella- 

tion was used. These images feature 12 bands from the visible 

and infrared with a spatial resolution of 10, 20, and 60 m de- 

pending on the spectral band (Table 1) and a temporal resolu- 

tion of five days (less so from July 2024 when the calibration 

phase of Sentinel-2C, the third satellite in the Sentinel-2 con- 

stellation, ended). Pre-processed surface reflectance level (level 

2A) images were obtained from the Copernicus Data Space 

Ecosystem (https://dataspace.copernicus.eu). Image processing 

and statistical analyses were performed using R software (R 

Core Team, 2025), specifically the CDSE packages (Karaman, 

2025) for image acquisition, terra (Hijmans, 2025) for image 

preprocessing, waterquality (Johansen et al., 2023) for comput- 

ing spectral water quality indices, and tmap (Tennekes, 2018) 

for mapping. 

During field sampling, an HQ40D multiparameter probe and 

a 3-liter Van Dorn bottle were used. The samples were trans- 

ported cold to the Soil and Water Analysis Laboratory at CIGA 

UNAM in Morelia. In the laboratory, a Metrohm 827 pH lab po- 

tentiometer, an OAKTON CON Series 510 conductivity meter, 

a Metrohm 848 Tritino plus titrator, a 2100N turbidimeter, and 

a UV-Visible spectrometer were used. 

4. Methods

In a first stage, satellite images were analyzed prior to fieldwork 

to determine the optimal location of the sampling points. Water 

samples were then collected and analyzed, and spectral indices 

were calculated based on the satellite images. The correlation 

between the values of different indices and chlorophyll concen- 

tration was analyzed, allowing the selection of the spectral in- 

dices that best represent this parameter. Finally, the represent- 

ativeness of the sampling sites was evaluated, and sources of 

error such as spatial and temporal heterogeneity were identified 

(see Figure 2). 

Figure 2. Flowchart of the main methodological steps 

It is important that sampling best represents the spatiotemporal 

variability in water quality, i.e., some areas with high concen- 

trations of chlorophyll and suspended solids, while others have 

low concentrations. However, in many cases, pre-sampling in- 

formation is scarce, and the proposal here is to use remote sens- 

ing data to produce an a priori assessment of chlorophyll con- 

centration distribution, allowing for stratification of sampling. 

Band 6 - Red Edge 
Band 7 - Red Edge 

0.74 
0.783 

20 
20 

Band 8 - NIR 0.842 10 
Band 8A - Red Edge 0.865 20 
Band 9 - Water vapour 0.945 60 
Band 10 - SWIR - Cirrus 1.375 60 
Band 11 - SWIR 1.61 20 
Band 12 - SWIR 2.19 20 

 

 

used as training data for classification models. Millard et al. 

(2015) analyzed the effects of input data characteristics on the 

Random Forest classification algorithm. Their results showed 

that the algorithm was highly sensitive to the training dataset. 

Lv et al. (2021) proposed a clustering-based sample selection 

method that applies histogram analysis to select more distinct- 

ive samples. 

The objective of this study is to evaluate a sampling site selec- 

tion method for fitting an empirical model relating field-measured 
chlorophyll concentration to spectral indices derived from multis- 

pectral images. 

2. Study area

The Solís Dam is the largest reservoir in the state of Guanajuato, 

in central Mexico (Figure 1) and belongs to the Lerma-Toluca 

sub-basin. This sub-basin is among the most polluted in Mex- 

ico, a result of intense industrial and agricultural activities, as 

well as the presence of more than 3.5 million inhabitants (Cotler- 

Avalos et al., 2006). 
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To this end, we sought to identify the areas with the greatest 

spectral variability, and possibly environmental variability, in 

relation to water quality parameters. To this end, all Sentinel-2 

images with less than 40% cloud cover over the reservoir were 

selected for a one-year period prior to the field trips (May 1, 

2023 to April 21, 2024), available in the Copernicus Data Space 

Ecosystem. The images were obtained using the R package 

CDSE and the monthly image with the least cloud cover over 

the water mirror was selected using the SCL (scene classifica- 

tion map) and QA layers. 

For each monthly image, a spectral index related to chloro- 

phyll concentration was calculated using the tri-band model 

of Dall’Olmo et al. (2003) modified by Sòria-Perpinyà et al. 

(2019), which can be calculated, in the case of Sentinel-2, us- 

ing equations 1 and 2. 

Gi033BDA = b × ( 
1 
− 

1 
), (3) 

b4 b5 

where    Gi033BDA = spectral index 

bi = reflectance of band i of Sentinel-2 

Pearson’s correlation coefficients and their statistical signific- 

ance were then calculated between each spectral index and the 

chlorophyll concentration obtained from the samples for the 

corresponding dates. A linear regression model was then fit- 

ted between chlorophyll concentration and the most correlated 

spectral indices, allowing chlorophyll concentration to be es- 

timated from the satellite images. Once the spectral index(es) 

that best correlate with chlorophyll concentration were identi- 

fied, we sought to evaluate whether the 20 sampling points were 

1 
TBDO = b6 × ( 

b4 

— 
1 

), (1) 
b5 

capable of representing the variability found in the images from 

dates close to the sampling dates. 

Another way to evaluate the sampling point selection process 

is to perform a cluster analysis based on the spectral index(es) 

[Chl − a] = 104.1 × TBDO2 + 221.1 × TBDO + 2  (2)

where TBDO = tri-band model 

bi = reflectance of band i of Sentinel-2 

[Chl − a] = estimate of the chlorophyll 

concentration in µg/L 

Band 5 (red edge) was selected to represent turbidity, given its 

high degree of sensitivity to reflectance caused by material sus- 

pended in the water (Toming et al., 2016; Ogashawara et al., 

2017). A stack of the 24 monthly images (12 related to turbid- 

ity and 12 to chlorophyll concentration) was created and unsu- 

pervised classification was applied using the K-means method 

(maximum number of iterations = 500, Lloyd’s algorithm). The 

K-means method is a clustering algorithm that organizes data

into K groups, assigning each point (here each pixel) to the

group whose center (mean) is closest, iteratively adjusting the

centers until they stabilize. It seeks to minimize the dispersion

within each group, allowing the identification, in the present

case, of areas with a similar spatiotemporal pattern in terms of

chlorophyll concentration and turbidity. Twenty sampling sites

were located to represent the different clusters.

4.1 Field Sampling and Analysis of Water Quality Para- 

meters 

Two field trips were conducted to sample the sites selected in 

the previous section during the dry and rainy seasons. The 

field samples were used to evaluate chlorophyll concentration 

(µg/L), turbidity (TNU), total suspended solids (mg/L), pH, elec- 

trical conductivity (µS), hardness (mg/L), alkalinity (mg/L), tem- 

perature, dissolved oxygen, and Secchi depth. Only the first 

parameter was used in this study. 

4.2 Calculation and Selection of Spectral Indices 

Based on Sentinel-2 images from the dates closest to sampling, 

the 22 water quality spectral indices available for Sentinel-2 

were calculated in the R package waterquality. Additionally, 

the chlorophyll concentration index was calculated using the 

Dall-Olmo tri-band model (equation 1). One index of partic- 

ular interest is Gi033BDA (Gitelson et al., 2003)(see equation 

4), which is equivalent to TBDO (equation 1). 

that were most correlated with the two water quality parameters 

and compare the cluster map with the one obtained with the two 

spectral indexes selected a priori. 

Finally, we sought to evaluate two sources of error that could 

undermine the strength of the relationship between spectral in- 

dexes and chlorophyll concentration. The first is related to the 

uncertainty in the location of the sampling points and could lead 

to comparing a water sample taken at a certain point with the 

spectral information extracted from the image at different co- 

ordinates. This error could be due to errors in the GPS reading 

or to vessel movement during water sampling. To assess the 

possible effect of these spatial offsets, the estimated value of 

chlorophyll concentration in one image cell was compared with 

neighboring cells using special 3x3 and 5x5 kernel filters, eval- 

uating offsets of approximately 20 and 40 m (M3×3 and M5×5). 


1/8  1/8  1/8



M3×3 =  1/8 0 1/8 
1/8  1/8  1/8 

1/16  1/16  1/16  1/16  1/16 
1/16 0 0 0 1/16 

M5×5 =  1/16 0 0 0 1/16 
1/16 0 0 0 1/16 
1/16  1/16  1/16  1/16  1/16 

The second source of error evaluated relates to temporal het- 

erogeneity due to the dynamics of the water body. It is not 

always possible to obtain a cloud-free image on the same date 

as the water sampling, and changes in water quality parameters 

have been documented over short periods of time (Hunter et al., 

2008; Deng et al., 2016; Xue et al., 2023). To assess the effect 

of these time lags, the difference between water concentration 

values estimated from pairs of images with collection dates that 

differ from several time periods was calculated. 

5. Results

A clustering analysis (unsupervised classification) was carried 

out on ten clusters of the monthly images of the two spectral 
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indices related to chlorophyll concentration and turbidity, se- 

lected a priori. Twenty sites were selected to represent the di- 

versity of values for the chlorophyll and sediment concentra- 

tion indices represented by the different clusters (Fig. 3). To 

meet this requirement, these sites were distributed throughout 

the main body and arms of the reservoir, forming a type of tran- 

sect from the reservoir inlet to the dam curtain. Figure 4 shows 

the area of each cluster and the number of points corresponding 

to each cluster. No sampling points were assigned to cluster 8, 

which corresponds to areas close to the shore which are out of 

water when the dam level is not at its maximum. 

Figure 3. Distribution of the clusters and the sampling points. 

Figure 4. Area of each cluster of number of corresponding 

samples 

Two sampling sessions were conducted on June 3 (dry sea- 

son) and September 21, 2024 (end of the rainy season). Two 

Sentinel-2 images were obtained, taken on June 2 and Septem- 

ber 20, 2024. The sampling and image collection dates do not 

coincide perfectly; there is a one-day time lag between them. 

The correlation between the spectral indices obtained from the 

Sentinel-2 images and the water quality parameters obtained 

from the water samples was evaluated. 

The spectral index with the highest correlation with chlorophyll 

concentration is Gi033BDA (above 0.7 with a p-value < 0.01). 

The spectral indices used to create the cluster map show a lower 

correlation than Gi033BDA (Table 2). A linear regression was 

fitted between chlorophyll concentration and Gi033BDA, al- 

lowing chlorophyll concentration to be estimated from satellite 

images. 

Next, we sought to evaluate whether the 20 sampling points 

selected based on the cluster map represented the variability 

Parameter Spectral indices 

in situ [Chla] 
Gi033BDA 

0.75 *** 
[Chl-a] 
0.74*** 

b5 

0.33 

Table 2. Correlation between the spectral indices obtained from 

the Sentinel-2 images and in situ chlorophyll concentration. The 

number of stars corresponds to the power of evidence against the 

null hypothesis, *** p < 0.001, ** p < 0.01, * p < 0.05, no 

star p >= 0.05 

found in the Gi033BDA index value derived from the images 

that coincided with the sampling. As can be seen in Figures 

5 and 6, the Gi033BDA index values for the sampling points 

correctly represent the variability found in the dam image set 

for both dates, with the exception of the most extreme outlier 

values. 

Figure 5. Gi033BDA index values in the Sentinel-2 image dated 

02/06/2024 and at the sampling points (red circles) 

To evaluate the sampling point selection process, a cluster ana- 

lysis was performed using the Gi033BDA index. As can be seen 

in Figure 7, the overall distribution of the clusters is similar, al- 

though the overlap between the clusters in the two maps is only 

60%. However, the distribution of the clusters along the dam 

and its branches would lead to a similar selection of sampling 

points. 

Figure 8 represents the estimated chlorophyll concentration value 

calculated from the 02/06/2024 image. Significant spatial changes 

in values can be observed due to the presence of algal blooms. 

Spatial filtering enables us to calculate, for each cell in the raster 

of Chlorophyll concentration, the difference between the value 

at a cell and the average value at a lag distance. The calcula- 

tion allows us to evaluate the consequences of a shift between 

the sample location and the location used to extract the spectral 

value in the image. The 3x3 and 5x5 correspond approximately 

with lag distances of 20 and 40 m. Figures 9 and 10 illustrate 

the effect of uncertainty in the location of the sampling points, 

considering offsets of 20 and 40 m, respectively. 
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Figure 6. Gi033BDA index values in the Sentinel-2 image dated 

20/09/2024 and at the sampling points (red circles) 

Figure 7. Distribution of the clusters based on Gi033BDA index 

and the sampling points. 

Figure 8. Chlorophyll concentration estimated from the 

Sentinel-2 image dated 02/06/2024. 

Figure 9. Assessment of the error in chlorophyll concentration 

associated with a 20-meter lag. 

Figure 10. Assessment of the error in chlorophyll concentration 

associated with a 40-meter lag. 

We computed the concentration of Chlorophyll from 163 

Sentinel- 2 images taken from January 2023 to August 2025. 

Then we compared pairs of images, computing the absolute value 

of the cell-by-cell difference in chlorophyll concentration, and we 

cal- culated the mean value of the difference image. The boxplot 

(Figure 12) illustrated the mean value of the difference for 

the lag time between the dates of acquisition of the two compared 

images. For a lag of two days, the difference in chlorophyll 

concentration is generally around 20 µg/l . However, these val- 

ues are averaged for the entire water body and can be higher at 

specific locations. 

Figure 11. Effect of temporal lag in mean value of chlorophyll 

concentration. 

For instance, Figure 12 shows the difference in chlorophyll con- 

centration between 19th and 21st March 2025, a two-day lag 

time. We can observe that during these 48 hours, certain areas 

present an increase of more than 20 µg/l and others a decrease 

reaching 60 µg/l, these drastic changes are related to the chan- 

ging patterns of algae blooms. 
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Figure 12. Difference in chlorophyll concentration between the 

19th and 21st March 2025 

6. Discussion

The significant fluctuations in chlorophyll concentration 

observed in the time series of satellite images and field data 

demonstrate the merit of stratifying the water body to 

optimize sampling. The 20 sampling sites selected based on 

unsupervised classi- fication (clustering) of a time series of 

images prior to sample collection adequately represented the 

dam’s variability, allow- ing for a satisfactory fit of the linear 

regression model. 

We did not find a similar approach in the literature for select- 

ing sampling points in a water body; however, we saw several 

articles that describe different strategies for selecting sampling 

points at a regional level. For instance, Hedger et al. 2001 

used Landsat imagery to compute a chlorophyll index, reflect- 

ing variations in chlorophyll a concentration, and compared two 

sampling strategies: a random sampling, which ignores spatial 

dependence between observations, and a systematic sampling, 

which exploits spatial dependence. They found that, for a given 

sample size, the systematic scheme provokes less error than the 

random sampling; and for a given error, the systematic scheme 

required smaller sample sizes than the random one. Cather- 

ine et al. 2008 proposed a method for selecting representat- 

ive waterbodies to conduct a regional assessment of cyanobac- 

teria distribution in the Île-de-France region (France). They 

applied a stratified sampling strategy to waterbodies based on 

ten groups of hydrographical zones, defined by their anthropo- 

genic and geomorphological characteristics. Alilou et al. 2018; 

2019 conducted a multi-criteria evaluation that incorporated the 

analytic network process, land use/change modeling, and a po- 

tential pollution assessment to prioritize sampling points and 

rationalize the water quality monitoring network in the Khoy 

watershed in northwest Iran. 

The availability and characteristics of the Sentinel-2 data are 

particularly attractive for developing a water quality monitor- 

ing system for the Solís Dam: they are free, easily accessible 

online, and have a temporal resolution that allows for precise 

temporal monitoring (6 images per month, although during the 

rainy season the number of reusable images may be consider- 

ably lower). The spatial resolution, between 10 and 20 m for the 

bands used in this type of study, allows for the precise identific- 

ation of localized phenomena such as algal blooms. Given the 

presence of highly localized chlorophyll concentration patterns 

(algal blooms), a high correlation between in situ measurements 

and spectral information depends on high spatial resolution and 

the simultaneity between field data collection and image acquis- 

ition. However, a model based on lower spatial and higher tem- 

poral resolution data, such as MODIS, can be of great interest, 

as the level of detail associated with high spatial resolution is 

not required for relatively large reservoirs. For example, Hu et 

al. (2010) and Shi et al. (2016) utilized MODIS to monitor cy- 

anobacteria blooms in Lake Taihu, China, which has a surface 

area exceeding 2,000 km2. Blix et al. 2018 used the Ocean and 

Land Color Instrument (OLCI) sensor onboard Sentinel-3 satel- 

lite (300 m spatial resolution) to estimate chlorophyll-a concen- 

tration, colored dissolved organic matter, and Total Suspended 

Matter, on Lake Balaton, whose surface area is 596 km2. Long 

et al. 2025 utilized an unmanned aerial vehicle (UAV) to eval- 

uate the water quality in Zhangshan Reservoir, a small inland 

reservoir (0.34 km2) located in Chuzhou, Anhui, China. 

The stratification strategy we proposed in the present study can 

be applied using any remotely sensed data, including multis- 

pectral satellite and UAV imagery. In the case of UAV images, 

data can be limited to a sufficient number of flight lines over the 

water body, eliminating the need for full coverage. 

Other sources of error were identified that could lower the fit 

between in situ measurements and satellite image information. 

The first is the spatial lag between the location of in situ data 

collection and the extraction of spectral information. This 

source of error can be significant when there are highly localized 

high concentration patterns, such as bloom areas. The second is 

the concentration changes that can occur between in situ 

sampling and imaging. These changes can affect studies based 

on sampling and imaging dates that are different by one day, as 

in our case, but also by temporal differences of a few hours. 

Xue et al. (2023) show how wind and sunlight affect, in a very 

short time, the vertical movements of colonies of 

Microcystis, the dom- inant genus of cyanobacteria in 

eutrophic lakes. During field trips, it was observed how the 

wind that generally rises in the afternoon changed the 

distribution of the algae. 

7. Conclusions

Field data collection requires a considerable amount of effort, 

time, and money. This collection is subject to inaccuracy due 

to human, instrument, or laboratory analysis errors. Using re- 

mote sensing and spatial statistical models, sampling effort can 

be significantly reduced. Mapping and assessing water qual- 

ity parameters requires the integration of field, GIS, and re- 

mote sensing data using the most appropriate statistical meth- 

ods. This work demonstrates that it is possible to reduce field 

data collection and to optimize data used in empirical models 

while maintaining accurate estimates of chlorophyll concentra- 

tions in inland water bodies. 

In future research, we will address the spatiotemporal dynamics 

of water bodies and their analysis through sensors of different 

temporal and spatial resolutions. 
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