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Abstract

Monitoring water quality in inland water bodies is critical for environmental management, yet traditional sampling methods are
costly and spatially limited. Remote sensing offers a viable alternative by enabling large-scale assessment of water quality para-
meters such as chlorophyll-a (Chl-a) concentrations through empirical models linking spectral indices to in situ measurements.
However, the accuracy of these models depends on representative sampling strategies that capture spatial and temporal variability.
This study evaluates a clustering-based approach to optimize sampling site selection in the Solis Dam, Mexico, using Sentinel-2
imagery. We analyzed a one-year time series of Sentinel-2 data to compute spectral indices related to Chl-a and turbidity. Unsuper-
vised K-means clustering was applied to stratify the reservoir into zones of distinct water quality variability, guiding the placement
of 20 sampling sites. Field campaigns during dry and wet seasons (2024) provided Chl-a measurements, which were correlated
with spectral indices. The Gi033BDA index showed the strongest correlation (R2 > 0.7, p < 0.01) and was used to develop a
linear regression model for Chl-a estimation. Results confirmed that clustering-derived sampling points effectively represented
spatial variability, though temporal mismatches (1-day lag) and samples location inaccuracies introduced minor errors. The method
demonstrates how pre-stratification using remote sensing can enhance sampling efficiency while maintaining model accuracy. This
approach is particularly valuable for large-scale monitoring, reducing reliance on exhaustive field campaigns. Future work should

address temporal dynamics and sensor resolution trade-offs for broader applicability.

1. Introduction

The assessment of water quality parameters such as chlorophyll
concentration and turbidity in inland water bodies can be car-
ried out using empirical models, combining field samples with
multispectral imagery. Empirical models are based on statistical
relationships between in situ data (e.g., chlorophyll or turbidity
measurements) and spectral bands or indices derived from satel-
lite or drone imagery (such as Sentinel-2, Landsat, or multis-
pectral cameras). For example, linear or nonlinear regressions
between reflectance in the visible and infrared bands and spec-
tral indices such as the Normalized Difference Chlorophyll In-
dex (NDCI) are used to estimate chlorophyll. Spectral
water quality indices use specific combinations of spectral
bands to assess water quality parameters such as turbidity,
chlorophyll concentration, or dissolved organic matter (Beck
et al., 2019; Chawla et al., 2020; Kallio, 2000). They are
often focused on the detection of harmful algal blooms that
can affect human health (Anderson et al., 2000; Linkov et
al., 2009). It is also important to mention that free remote
sensing data with high spatial and temporal resolution are
currently available. There- fore, remote sensing is considered
a viable and low-cost alternative for water quality monitoring
(Chawla et al., 2020; Ritchie et al., 2003).

These methods allow efficient water quality monitoring, espe-
cially over large areas, reducing reliance on costly traditional
sampling. However, they require validation with in sifu data
to ensure acceptable accuracy. To achieve this, an adequate
sample size is essential. For example, Hékanson et al. (2007)
highlights that typical monitoring or experimental programs
may not collect sufficient data to reliably capture high
variability,

leading to unreliable results. Furthermore, a principle of re-
gression analysis is that models should not be used to extra-
polate beyond the data range from which they were construc-
ted. It is therefore important to optimize sampling to ensure
that sampling sites are able to represent all the variability of the
parameter studied in the study area.

Atkinson et al. (2010) observed that random sampling is in-
efficient when data are spatially dependent. Spatial depend-
ence means that observations that are close in space are more
similar than those that are farther apart: they are related by a
statistical correlation that generally decreases with increasing
separation distance. Geostatistics can be used to analyze spa-
tial data, explicitly accounting for spatial dependence. In par-
ticular, spatial correlation analysis, clustering, and kriging can
be used to determine the required number of ground-based ob-
servations and the distance between them. For example, Di et
al. (1989) used semivariograms to determine the number of
samples and the appropriate sampling intervals to achieve de-
sired levels of accuracy. Hawbaker et al. (2009) estimated
forest vegetation structure and biomass using LiDAR data as
a predictor and compared a random field sampling design with
a stratified sampling design using LiDAR data as prior inform-
ation. In the stratified sampling approach, they used aggregated
LiDAR height measurements as prior information to stratify po-
tential field sampling locations in our study area based on the
mean and standard deviation of the LiDAR height. They found
that the prediction errors of models built with a random sample
were up to 68% higher than those of models built with a strati-
fied sample.

Samples in remote sensing image classification are primarily
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used as training data for classification models. Millard et al.
(2015) analyzed the effects of input data characteristics on the
Random Forest classification algorithm. Their results showed
that the algorithm was highly sensitive to the training dataset.
Lv et al. (2021) proposed a clustering-based sample selection
method that applies histogram analysis to select more distinct-
ive samples.

The objective of this study is to evaluate a sampling site selec-
tion method for fitting an empirical model relating field-measured
chlorophyll concentration to spectral indices derived from multis-
pectral images.

2. Study area

The Solis Dam is the largest reservoir in the state of Guanajuato,
in central Mexico (Figure 1) and belongs to the Lerma-Toluca
sub-basin. This sub-basin is among the most polluted in Mex-
ico, a result of intense industrial and agricultural activities, as
well as the presence of more than 3.5 million inhabitants (Cotler-
Avalos et al., 20006).

Solis Dam
Guanajuato municipalities e

Figure 1. Location map of the Solis Dam in the state of
Guanajuato. Source: Prepared by the authors.

3. Materials

Multispectral imagery from the Sentinel-2 satellite constella-
tion was used. These images feature 12 bands from the visible
and infrared with a spatial resolution of 10, 20, and 60 m de-
pending on the spectral band (Table 1) and a temporal resolu-
tion of five days (less so from July 2024 when the calibration
phase of Sentinel-2C, the third satellite in the Sentinel-2 con-
stellation, ended). Pre-processed surface reflectance level (level
2A) images were obtained from the Copernicus Data Space
Ecosystem (https://dataspace.copernicus.eu). Image processing
and statistical analyses were performed using R software (R
Core Team, 2025), specifically the CDSE packages (Karaman,
2025) for image acquisition, terra (Hijmans, 2025) for image
preprocessing, waterquality (Johansen et al., 2023) for comput-
ing spectral water quality indices, and tmap (Tennekes, 2018)
for mapping.

During field sampling, an HQ40D multiparameter probe and
a 3-liter Van Dorn bottle were used. The samples were trans-
ported cold to the Soil and Water Analysis Laboratory at CIGA
UNAM in Morelia. In the laboratory, a Metrohm 827 pH lab po-
tentiometer, an OAKTON CON Series 510 conductivity meter,

Table 1. Spectral bands of the multi-spectral sensor (MSI)
(Sentinel-2). The indices were calculated using the first nine

bands.
Sentinel-2 Bands Wavelength (um) Res (m)
Band 1 - Coastal acrosol ~ 0.443 60
Band 2 - Blue 0.49 10
Band 3 - Green 0.56 10
Band 4 - Red 0.665 10
Band 5 - Red Edge 0.705 20
Band 6 - Red Edge 0.74 20
Band 7 - Red Edge 0.783 20
Band § - NIR 0.842 10
Band 8A - Red Edge 0.865 20
Band 9 - Water vapour 0.945 60
an - - Cirrus .
Band 1T - SWIR 1.61 20
Band 12-SWIR 219 20

a Metrohm 848 Tritino plus titrator, a 2100N turbidimeter, and
a UV-Visible spectrometer were used.

4. Methods

In a first stage, satellite images were analyzed prior to fieldwork
to determine the optimal location of the sampling points. Water
samples were then collected and analyzed, and spectral indices
were calculated based on the satellite images. The correlation
between the values of different indices and chlorophyll concen-
tration was analyzed, allowing the selection of the spectral in-
dices that best represent this parameter. Finally, the represent-
ativeness of the sampling sites was evaluated, and sources of
error such as spatial and temporal heterogeneity were identified
(see Figure 2).

Images from previous year

Calculation of 2 spectral indices

&

Cluster analysis

A

Optimal location of sampling sites Images from sampling dates

Sample collection Spectral indices calculation
Sample analysis Extraction of index values for sampling sites

e

Correlation analysis
Selection of the spectral indices with the highest correlation
Images from the monitoring period

Sampling representativeness evaluation

iyl

Clustering with selected indices

| SAMPLING ASSESSSMENT || EVALUATION OF SPECTRAL INDICES”SELECTION SAMPLING S\TESl

Sources of error assessment

Figure 2. Flowchart of the main methodological steps

It is important that sampling best represents the spatiotemporal
variability in water quality, i.e., some areas with high concen-
trations of chlorophyll and suspended solids, while others have
low concentrations. However, in many cases, pre-sampling in-
formation is scarce, and the proposal here is to use remote sens-
ing data to produce an a priori assessment of chlorophyll con-
centration distribution, allowing for stratification of sampling.
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To this end, we sought to identify the areas with the greatest
spectral variability, and possibly environmental variability, in
relation to water quality parameters. To this end, all Sentinel-2
images with less than 40% cloud cover over the reservoir were
selected for a one-year period prior to the field trips (May 1,
2023 to April 21, 2024), available in the Copernicus Data Space
Ecosystem. The images were obtained using the R package
CDSE and the monthly image with the least cloud cover over
the water mirror was selected using the SCL (scene classifica-
tion map) and QA layers.

For each monthly image, a spectral index related to chloro-
phyll concentration was calculated using the tri-band model
of Dall’Olmo et al. (2003) modified by Soria-Perpinya et al.
(2019), which can be calculated, in the case of Sentinel-2, us-
ing equations 1 and 2.

TBDO = bg X (i—i), M

ba bs

[Chl — a] = 104.1 X TBDO? +221.1 X TBDO +2 (2)

TBDO = tri-band model

b; =reflectance of band i of Sentinel-2
[Chl — a] = estimate of the chlorophyll
concentration in ug/L

where

Band 5 (red edge) was selected to represent turbidity, given its
high degree of sensitivity to reflectance caused by material sus-
pended in the water (Toming et al., 2016; Ogashawara et al.,
2017). A stack of the 24 monthly images (12 related to turbid-
ity and 12 to chlorophyll concentration) was created and unsu-
pervised classification was applied using the K-means method
(maximum number of iterations = 500, Lloyd’s algorithm). The
K-means method is a clustering algorithm that organizes data
into K groups, assigning each point (here each pixel) to the
group whose center (mean) is closest, iteratively adjusting the
centers until they stabilize. It seeks to minimize the dispersion
within each group, allowing the identification, in the present
case, of areas with a similar spatiotemporal pattern in terms of
chlorophyll concentration and turbidity. Twenty sampling sites
were located to represent the different clusters.

4.1 Field Sampling and Analysis of Water Quality Para-
meters

Two field trips were conducted to sample the sites selected in
the previous section during the dry and rainy seasons. The
field samples were used to evaluate chlorophyll concentration
(ng/L), turbidity (TNU), total suspended solids (mg/L), pH, elec-
trical conductivity (uS), hardness (mg/L), alkalinity (mg/L), tem-
perature, dissolved oxygen, and Secchi depth. Only the first
parameter was used in this study.

4.2 Calculation and Selection of Spectral Indices

Based on Sentinel-2 images from the dates closest to sampling,
the 22 water quality spectral indices available for Sentinel-2
were calculated in the R package waterquality. Additionally,
the chlorophyll concentration index was calculated using the
Dall-Olmo tri-band model (equation 1). One index of partic-
ular interest is Gi033BDA (Gitelson et al., 2003)(see equation
4), which is equivalent to TBDO (equation 1).

1 1
Gi033BDA=b X (__ — "), 3
6
bs  bs

where Gi033BDA = spectral index

b; =reflectance of band i of Sentinel-2

Pearson’s correlation coefficients and their statistical signific-
ance were then calculated between each spectral index and the
chlorophyll concentration obtained from the samples for the
corresponding dates. A linear regression model was then fit-
ted between chlorophyll concentration and the most correlated
spectral indices, allowing chlorophyll concentration to be es-
timated from the satellite images. Once the spectral index(es)
that best correlate with chlorophyll concentration were identi-
fied, we sought to evaluate whether the 20 sampling points were
capable of representing the variability found in the images from
dates close to the sampling dates.

Another way to evaluate the sampling point selection process
is to perform a cluster analysis based on the spectral index(es)
that were most correlated with the two water quality parameters
and compare the cluster map with the one obtained with the two
spectral indexes selected a priori.

Finally, we sought to evaluate two sources of error that could
undermine the strength of the relationship between spectral in-
dexes and chlorophyll concentration. The first is related to the
uncertainty in the location of the sampling points and could lead
to comparing a water sample taken at a certain point with the
spectral information extracted from the image at different co-
ordinates. This error could be due to errors in the GPS reading
or to vessel movement during water sampling. To assess the
possible effect of these spatial offsets, the estimated value of
chlorophyll concentration in one image cell was compared with
neighboring cells using special 3x3 and 5x5 kernel filters, eval-
uating offsets of approximately 20 and 40 m (M3x3 and Msxs5).

O a
/8 1/8 1/8

Mix3z=U1/8 0 1/8Y

1/8 1/8 1/8
0 a
1/16 1/16 1/16 1/16 1/16
1/16 0 0 0 1/16
M5x5=Hl/16 0 0 0 1/16-
1/16 0 0 0 1/16"
1/16 1/16 1/16 1/16 1/16

The second source of error evaluated relates to temporal het-
erogeneity due to the dynamics of the water body. It is not
always possible to obtain a cloud-free image on the same date
as the water sampling, and changes in water quality parameters
have been documented over short periods of time (Hunter et al.,
2008; Deng et al., 2016; Xue et al., 2023). To assess the effect
of these time lags, the difference between water concentration
values estimated from pairs of images with collection dates that
differ from several time periods was calculated.

5. Results

A clustering analysis (unsupervised classification) was carried
out on ten clusters of the monthly images of the two spectral
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indices related to chlorophyll concentration and turbidity, se-
lected a priori. Twenty sites were selected to represent the di-
versity of values for the chlorophyll and sediment concentra-
tion indices represented by the different clusters (Fig. 3). To
meet this requirement, these sites were distributed throughout
the main body and arms of the reservoir, forming a type of tran-
sect from the reservoir inlet to the dam curtain. Figure 4 shows
the area of each cluster and the number of points corresponding
to each cluster. No sampling points were assigned to cluster 8,
which corresponds to areas close to the shore which are out of
water when the dam level is not at its maximum.

Figure 3. Distribution of the clusters and the sampling points.
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Figure 4. Area of each cluster of number of corresponding
samples

Two sampling sessions were conducted on June 3 (dry sea-
son) and September 21, 2024 (end of the rainy season). Two
Sentinel-2 images were obtained, taken on June 2 and Septem-
ber 20, 2024. The sampling and image collection dates do not
coincide perfectly; there is a one-day time lag between them.
The correlation between the spectral indices obtained from the
Sentinel-2 images and the water quality parameters obtained
from the water samples was evaluated.

The spectral index with the highest correlation with chlorophyll
concentration is Gi033BDA (above 0.7 with a p-value < 0.01).
The spectral indices used to create the cluster map show a lower
correlation than Gi033BDA (Table 2). A linear regression was
fitted between chlorophyll concentration and Gi033BDA, al-
lowing chlorophyll concentration to be estimated from satellite
images.

Next, we sought to evaluate whether the 20 sampling points
selected based on the cluster map represented the variability

Parameter Spectral indices
Gi033BDA | [Chl-a] bs
in situ [Chla] 0.75 *** 0.74*** | 0.33

Table 2. Correlation between the spectral indices obtained from
the Sentinel-2 images and in situ chlorophyll concentration. The
number of stars corresponds to the power of evidence against the
null hypothesis, *** p < 0.001, ** p < 0.01, * p < 0.05, no
star p >= 0.05

found in the Gi033BDA index value derived from the images
that coincided with the sampling. As can be seen in Figures
5 and 6, the Gi033BDA index values for the sampling points
correctly represent the variability found in the dam image set
for both dates, with the exception of the most extreme outlier
values.
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Figure 5. Gi033BDA index values in the Sentinel-2 image dated
02/06/2024 and at the sampling points (red circles)

To evaluate the sampling point selection process, a cluster ana-
lysis was performed using the Gi033BDA index. As can be seen
in Figure 7, the overall distribution of the clusters is similar, al-
though the overlap between the clusters in the two maps is only
60%. However, the distribution of the clusters along the dam
and its branches would lead to a similar selection of sampling
points.

Figure 8 represents the estimated chlorophyll concentration value
calculated from the 02/06/2024 image. Significant spatial changes
in values can be observed due to the presence of algal blooms.

Spatial filtering enables us to calculate, for each cell in the raster
of Chlorophyll concentration, the difference between the value
at a cell and the average value at a lag distance. The calcula-
tion allows us to evaluate the consequences of a shift between
the sample location and the location used to extract the spectral
value in the image. The 3x3 and 5x5 correspond approximately
with lag distances of 20 and 40 m. Figures 9 and 10 illustrate
the effect of uncertainty in the location of the sampling points,
considering offsets of 20 and 40 m, respectively.
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Figure 9. Assessment of the error in chlorophyll concentration
associated with a 20-meter lag.
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Figure 6. Gi033BDA index values in the Sentinel-2 image dated
20/09/2024 and at the sampling points (red circles)

Figure 7. Distribution of the clusters based on Gi033BDA index
and the sampling points.
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Figure 8. Chlorophyll concentration estimated from the
Sentinel-2 image dated 02/06/2024.
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Figure 10. Assessment of the error in chlorophyll concentration
associated with a 40-meter lag.

We computed the concentration of Chlorophyll from 163
Sentinel- 2 images taken from January 2023 to August 2025.
Then we compared pairs of images, computing the absolute value
of the cell-by-cell difference in chlorophyll concentration, and we
cal- culated the mean value of the difference image. The boxplot
(Figure 12) illustrated the mean value of the difference for
the lag time between the dates of acquisition of the two compared
images. For a lag of two days, the difference in chlorophyll
concentration is generally around 20 pg/l . However, these val-
ues are averaged for the entire water body and can be higher at
specific locations.
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Figure 11. Effect of temporal lag in mean value of chlorophyll
concentration.

For instance, Figure 12 shows the difference in chlorophyll con-
centration between 19th and 21st March 2025, a two-day lag
time. We can observe that during these 48 hours, certain areas
present an increase of more than 20 pg/l and others a decrease
reaching 60 pg/l, these drastic changes are related to the chan-
ging patterns of algae blooms.
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Figure 12. Difference in chlorophyll concentration between the
19th and 21st March 2025

6. Discussion

The significant fluctuations in chlorophyll concentration
observed in the time series of satellite images and field data
demonstrate the merit of stratifying the water body to
optimize sampling. The 20 sampling sites selected based on
unsupervised classi- fication (clustering) of a time series of
images prior to sample collection adequately represented the
dam’s variability, allow- ing for a satisfactory fit of the linear
regression model.

We did not find a similar approach in the literature for select-
ing sampling points in a water body; however, we saw several
articles that describe different strategies for selecting sampling
points at a regional level. For instance, Hedger et al. 2001
used Landsat imagery to compute a chlorophyll index, reflect-
ing variations in chlorophyll a concentration, and compared two
sampling strategies: a random sampling, which ignores spatial
dependence between observations, and a systematic sampling,
which exploits spatial dependence. They found that, for a given
sample size, the systematic scheme provokes less error than the
random sampling; and for a given error, the systematic scheme
required smaller sample sizes than the random one. Cather-
ine et al. 2008 proposed a method for selecting representat-
ive waterbodies to conduct a regional assessment of cyanobac-
teria distribution in the ile-de-France region (France). They
applied a stratified sampling strategy to waterbodies based on
ten groups of hydrographical zones, defined by their anthropo-
genic and geomorphological characteristics. Alilou et al. 2018;
2019 conducted a multi-criteria evaluation that incorporated the
analytic network process, land use/change modeling, and a po-
tential pollution assessment to prioritize sampling points and
rationalize the water quality monitoring network in the Khoy
watershed in northwest Iran.

The availability and characteristics of the Sentinel-2 data are
particularly attractive for developing a water quality monitor-
ing system for the Solis Dam: they are free, easily accessible
online, and have a temporal resolution that allows for precise
temporal monitoring (6 images per month, although during the
rainy season the number of reusable images may be consider-
ably lower). The spatial resolution, between 10 and 20 m for the
bands used in this type of study, allows for the precise identific-
ation of localized phenomena such as algal blooms. Given the
presence of highly localized chlorophyll concentration patterns
(algal blooms), a high correlation between in sifu measurements
and spectral information depends on high spatial resolution and

the simultaneity between field data collection and image acquis-
ition. However, a model based on lower spatial and higher tem-
poral resolution data, such as MODIS, can be of great interest,
as the level of detail associated with high spatial resolution is
not required for relatively large reservoirs. For example, Hu et
al. (2010) and Shi et al. (2016) utilized MODIS to monitor cy-
anobacteria blooms in Lake Taihu, China, which has a surface
area exceeding 2,000 km?. Blix et al. 2018 used the Ocean and
Land Color Instrument (OLCI) sensor onboard Sentinel-3 satel-
lite (300 m spatial resolution) to estimate chlorophyll-a concen-
tration, colored dissolved organic matter, and Total Suspended
Matter, on Lake Balaton, whose surface area is 596 km?. Long
et al. 2025 utilized an unmanned aerial vehicle (UAV) to eval-
uate the water quality in Zhangshan Reservoir, a small inland
reservoir (0.34 km?) located in Chuzhou, Anhui, China.

The stratification strategy we proposed in the present study can
be applied using any remotely sensed data, including multis-
pectral satellite and UAV imagery. In the case of UAV images,
data can be limited to a sufficient number of flight lines over the
water body, eliminating the need for full coverage.

Other sources of error were identified that could lower the fit
between in situ measurements and satellite image information.
The first is the spatial lag between the location of in sifu data
collection and the extraction of spectral information. This
source of error can be significant when there are highly localized
high concentration patterns, such as bloom areas. The second is
the concentration changes that can occur between in situ
sampling and imaging. These changes can affect studies based
on sampling and imaging dates that are different by one day, as
in our case, but also by temporal differences of a few hours.
Xue et al. (2023) show how wind and sunlight affect, in a very
short time, the vertical movements of colonies of
Microcystis, the dom- inant genus of cyanobacteria in
eutrophic lakes. During field trips, it was observed how the
wind that generally rises in the afternoon changed the
distribution of the algae.

7. Conclusions

Field data collection requires a considerable amount of effort,
time, and money. This collection is subject to inaccuracy due
to human, instrument, or laboratory analysis errors. Using re-
mote sensing and spatial statistical models, sampling effort can
be significantly reduced. Mapping and assessing water qual-
ity parameters requires the integration of field, GIS, and re-
mote sensing data using the most appropriate statistical meth-
ods. This work demonstrates that it is possible to reduce field
data collection and to optimize data used in empirical models
while maintaining accurate estimates of chlorophyll concentra-
tions in inland water bodies.

In future research, we will address the spatiotemporal dynamics
of water bodies and their analysis through sensors of different
temporal and spatial resolutions.
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