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Abstract

Building change detection (BCD) from multi-temporal remote sensing imagery plays a vital role in urban monitoring and land
management. However, existing deep learning-based methods still suffer from insufficient semantic differentiation, weak multi-scale
consistency, and limited global context modeling. To address these issues, we propose TriCDNet, a multi-scale tri-stream interaction
network for accurate and robust building change detection. The network integrates three complementary feature streams—bi-
temporal features and their normalized difference map—and performs stage-wise feature interaction through a multi-layer
Difference-guided Cross-temporal Interaction Module (DCIM). A top-down Feature Pyramid Network (FPN) is employed to
aggregate multi-scale information, while a lightweight Transformer-based decoder captures long-range spatial-temporal
dependencies for global reasoning. Experiments on three public datasets (LEVIR-CD, WHU-CD, and SYSU-CD) demonstrate that
TriCDNet achieves superior accuracy and structural consistency, with IoU of 85.2%, 86.91%, and 71.54%, respectively. The results
confirm that each component contributes positively to performance, and the proposed tri-stream framework effectively balances local
detail preservation and global semantic coherence, showing strong generalization capability in complex urban scenes.

1. Introduction

With the rapid development of remote sensing technologies,
multi-temporal ~ high-resolution  imagery has  become
increasingly accessible, providing strong data support for
dynamic surface monitoring and change analysis. Change
detection (CD) aims to identify differences within the same area
across images captured at different times and has been widely
applied in disaster assessment (Zheng et al., 2021),
environmental monitoring (Wu et al., 2020), and land
management (Lv et al., 2021). However, achieving efficient and
accurate CD in complex scenarios remains a major challenge.

Early change detection methods primarily relied on
handcrafted feature differencing and threshold-based techniques
(He et al., 2014) or principal component analysis (Munyati,
2004), which achieved limited performance in complex scenes.
Although these approaches are simple to implement and can
yield reasonable results in specific cases, they often fail to
handle complex backgrounds and fine-grained targets. With the
rise of deep learning, convolutional neural networks (CNNs)
have become the dominant paradigm in change detection, owing
to their strong feature extraction capability. Built upon encoder—
decoder architectures, CNN-based methods effectively learn
hierarchical representations from bi-temporal images. In
particular, Siamese networks have been widely adopted as the
prevailing framework for modeling bi-temporal relationships.
Within this paradigm, various backbone architectures have been
explored: early studies commonly used classical convolutional
networks such as VGG (Simonyan and Zisserman, 2014) and
ResNet (He et al.,2016); encoder—decoder structures like U-Net
(Ronneberger et al., 2015) and its variants have been widely
employed for dense prediction tasks; Transformer-based
backbones such as the Vision Transformer (ViT) (Dosovitskiy,
2020)and Swin Transformer(Liu et al., 2021) have been
introduced to enhance global modeling capacity; and
lightweight models such as EfficientNet (Tan and Le, 2019)
have attracted attention for their balance between accuracy and
efficiency, making them suitable for large-scale applications.

Building upon these architectural evolutions, researchers have
developed a series of Siamese-based models that further refine
bi-temporal representation and fusion strategies.Daudt et al.
(2018) were the first to apply Siamese networks to remote
sensing change detection, introducing two fully convolutional
models—FC-Siam-conc and FC-Siam-diff, which perform
change modeling via feature concatenation and differencing,
respectively. These models marked the early use of CNN
architectures in this field. Building on this foundation,
subsequent studies explored more advanced feature fusion
strategies across multiple branches. Fang et al. (2023) enhanced
bi-temporal feature alignment and fusion by incorporating a
feature interaction layer and a Flow Dual Alignment Fusion
(FDAF) module within the Meta Changer framework,
demonstrating the importance of feature interaction in
improving detection accuracy. Han et al. (2023) proposed CG-
Net, which derives change maps from semantically rich deep
features and uses them as priors to guide multi-scale fusion.
Nevertheless, due to the inherently limited receptive field of
convolutional networks, these methods struggle to capture long-
range contextual dependencies. To mitigate this, Chen et al.
(2022) introduced Transformer modules into the change
detection pipeline, boosting global modeling capacity and
enhancing the representation of semantic changes. Bandara and
Patel (2022) proposed a Transformer-based Siamese change
detection network (ChangeFormer), which combines a
Transformer encoder with multilayer perceptrons in a Siamese
architecture to effectively capture multi-scale long-range details
for improved accuracy. Although prior studies have introduced
feature interaction and global modeling mechanisms, they still
fall short in semantic differencing, multi-scale structural
consistency, and contextual information integration. To address
the above challenges, this paper proposes a multi-scale tri-
stream interaction framework for building change detection. A
normalized difference stream highlights semantic variations
between bi-temporal features, and the three streams are fused
through a Difference-guided Cross-temporal Interaction Module
(DCIM) that performs bidirectional interaction and gated fusion
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across multiple scales. Aggregated features are refined by a
Feature Pyramid Network (FPN) for semantic consistency, and
a Bi-temporal Transformer (BIT) models long-range spatial—
temporal dependencies. Experiments on multiple public datasets
demonstrate the effectiveness and robustness of the proposed
framework. The main contributions of this work are
summarized as follows:

(1) A tri-stream feature interaction mechanism based on the
proposed DCIM for fine-grained temporal correspondence.

(2) Multi-scale feature aggregation via FPN to maintain
semantic and structural consistency.

(3) Global modeling with BIT to capture long-range
dependencies and enhance semantic representations.

2. Methodology
2.1 Overall Architecture

In this paper, we have designed a novel change detection
network featuring a tri-stream interaction architecture, as

illustrated in Figure 1. The model comprises four main

R F,

(Pre-change Encoder \:

| Image Backbone ]

: )

: i

I 1

I L

i ] L .

: ! Fi

: i

I 1

: i

: ]

: i

I | L

I H L L

I

: i

I 1

I

: i

! i

1 :—’

- Fg

N / L=
___________________ - - Fyi

(@bCIM =TT
Conv2d

layerNorm

"""""
(Comvaa ]

Conv2d

cocodbooo

components: a shared-weight feature extraction backbone based
on EfficientNet-BS, a multi-level Difference-guided Cross-
temporal Interaction Module (DCIM), a Feature Pyramid
Network (FPN), and a Transformer-based decoder (BIT). The
backbone is responsible for extracting hierarchical
representations from bi-temporal input images. To enhance the
model’s sensitivity to changed regions, a third feature stream is
introduced, which is generated through normalized differencing
between the bi-temporal feature maps. At each feature level, the
three streams are fed into the corresponding DCIM module to
strengthen cross-temporal feature interaction. The interacted
features are then aggregated by the FPN to achieve multi-scale
fusion. The fused multi-scale features are transformed into
tokens and passed into a Transformer encoder—decoder structure
to model long-range spatial dependencies. Finally, the model
computes the absolute difference between the decoded features
and fuses it with the difference-guided branch features,
followed by a convolutional classifier to generate the final
change mask.

§ .

Upsampling
Classifier
Fe

§ .

T s T S

(b) FPN

Figure 1. The architecture of the proposed TriCDNet.

2.2 EfficientNet-B5

In this study, we adopt EfficientNet-B5 as the feature
extraction backbone of the change detection network. The
EfficientNet series is designed based on the compound scaling
strategy, which jointly scales network depth, width, and input
resolution to enhance feature representation while maintaining a
lightweight architecture. Unlike conventional convolutional
neural networks that expand along a single dimension, the
compound scaling mechanism enables EfficientNet to achieve
superior performance with fewer parameters.

For remote sensing change detection tasks that focus on local
structural differences, EfficientNet-BS provides a favourable
balance between high-resolution spatial perception and strong
global modeling capability, effectively capturing fine-grained

change features in the imagery. Therefore, EfficientNet-BS5 is
employed as the feature extractor to provide high-quality
semantic representations for subsequent multi-scale feature
interaction.

2.3 Tri-stream Feature Interaction

To effectively capture change information between bi-
temporal remote sensing images and enhance the model’s
sensitivity to subtle local differences, we design a multi-layer
Difference-guided Cross-temporal Interaction Module (DCIM)
to enable multi-scale tri-stream feature interaction. The module
integrates the first-temporal features, second-temporal features,
and their similarity-guided difference features, reinforcing
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cross-temporal collaborative representation while preserving the
discriminative capacity of each feature stream.

2.3.1 Input Design: At each stage, the backbone network
outputs bi-temporal feature maps F' and F* . To highlight
potential change regions, a difference prior feature F" is
introduced and computed as follows:

FA:1-+. (1)

This normalized differencing suppresses noise and enhances
sensitivity to subtle structural variations. Consequently, each

DCIM receives three input streams: {E", E*, F*} .

2.3.2 Cross-temporal Interaction = Mechanism: To
effectively exploit the complementary information between bi-
temporal features and improve the model’s sensitivity to subtle
structural variations, we design a Difference-guided Cross-
temporal Interaction Module (DCIM) inspired by the Bilateral
Information Exchange (BIE) mechanism (Huang et al., 2023).
While the original BIE was developed for event stream super-
resolution and implemented an attention-based bilateral
information propagation, our DCIM extends this concept to a
convolution-driven tri-stream framework for remote sensing
change detection. It introduces an additional difference-guided
stream to explicitly encode potential change priors and
strengthen cross-temporal consistency.First, the temporal

features F' and F'* are refined through residual convolutional

blocks to strengthen semantic representation and spatial
consistency. Then, the difference prior " is concatenated with

each temporal feature and compressed via lightweight 1x1
convolutions and normalization, forming a difference-guided
joint feature space for subsequent interaction.Following the
conceptual design of BIE, we compute cross-correlations
between the two temporal branches through batch matrix
multiplication, which acts as a lightweight attention-style
operator that enables bidirectional semantic information
exchange under the guidance of the difference stream.

To adaptively integrate the enhanced and original features, a
gated fusion mechanism is employed. Each temporal feature
passes through a 1x1 convolution and a sigmoid activation to
generate a gating map, which dynamically balances the
contributions of change-sensitive and stable components:

G' =o(Conv,, (F" +F"), @
Ez]’ :G[ll @E”*+(1—G[“)OF;H. (3)

This gating mechanism adaptively balances change-sensitive
and stable components, enabling the model to emphasize
meaningful structural variations while suppressing background
noise. Finally, contextual information is aggregated by
concatenating the temporal representations and integrating them
with the difference feature through a residual connection,
yielding a comprehensive difference-guided representation F* .
Through this progressive attention and fusion process, DCIM
effectively strengthens cross-temporal dependency modeling
and enhances the network’s capability to capture localized
building changes.

2.3.3 Learnable Reweighting and Multi-level Embedding:
To further improve adaptability, learnable scalar parameters
a; and f,; (initialized to 0.5) are introduced to balance
interaction and contextual information during training. The
reweighted features are computed as follows:

F;” :aiF;tl’ +(17ai)F;A"ﬁ;zz :ﬂiEfZ' +(17ﬁ,‘)F;‘A'- (4)

This reweighting mechanism enables the network to
dynamically control the trade-off between cross-temporal
interaction and contextual consistency. As a result, it maintains
semantic alignment while enhancing change sensitivity. DCIM
modules are embedded at five stage of the backbone
(i=0,1,2,3,4), forming a progressive, multi-level interaction
pathway. Each level outputs three updated features
{F",E™ F*} , which are subsequently aggregated by the
Feature Pyramid Network (FPN) for cross-scale fusion. The
fused multi-scale representations are further refined through a
Transformer-based decoder to model global dependencies and
generate the final pixel-level change map.

2.4 Global Context Modeling and Prediction Head

While the DCIM modules focus on local feature interaction
and difference enhancement, the subsequent components aim to
capture global dependencies and generate the final change
map. This stage consists of three submodules: a multi-scale
fusion network (FPN), a Transformer-based interaction decoder
(BIT), and a change prediction head. Together, they form the
high-level semantic reasoning and output stage of the proposed
model.

2.4.1 Feature Pyramid Network (FPN): To effectively
aggregate the multi-scale features generated by the DCIM
modules, we employ a modified Feature Pyramid Network
(FPN) as the neck structure. Each DCIM block outputs three
feature streams—pre-change temporal, post-change temporal,
and difference-guided—denoted as {F", £, F*} . These
features are extracted from five hierarchical stages of the
backbone corresponding to spatial resolutions of 1/2, 1/4, 1/8,
1/16, and 1/32 of the 256x256 input image. The feature maps
have sizes of 128x128, 64x64, 32x32, 16x16, and 8x8, with
channel dimensions of [24, 40, 64, 176, 512].

All features are first projected to 128 channels using lateral
1x1 convolutions to ensure consistent dimensionality across
scales before multi-level fusion. The FPN constructs a top-down
pathway with lateral skip connections, progressively
upsampling and merging high-level semantic representations
with low-level spatial details. After fusion, three aggregated
feature maps are obtained, corresponding to the two temporal
streams and the difference-guided stream. Specifically, the
processed features have spatial dimensions as:
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The two temporal features retain semantic consistency from
the DCIM, while the difference-guided stream preserves local
change sensitivity. This multi-stream fusion strategy effectively
bridges fine-grained spatial details and high-level semantics,
providing comprehensive multi-scale representations for
subsequent global reasoning in the Transformer decoder.
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2.4.2 Bitemporal Image Transformer (BIT): After multi-
scale fusion, the semantically enhanced features are fed into the
BIT [Chen et al., 2022], which serves as a high-level decoder
for global context reasoning and cross-temporal interaction.
Unlike convolutional operations that are inherently local, BIT
utilizes Transformer-based self- and cross-attention to capture
long-range dependencies between the two temporal streams,
allowing bidirectional semantic communication across time. In
our implementation, we deploy BIT as an external decoder
operating on the FPN outputs . These features are first tokenized
through an attention-based pooling mechanism to obtain
compact semantic tokens that encode essential contextual
information. The tokens from both temporal branches are
concatenated and passed into the Transformer encoder to model
global correlations, which are then decoded back into the spatial

domain to generate semantically enhanced feature
representations.
2.4.3 Change Prediction Head: After Transformer decoding,

the bi-temporal features are differenced and fused with the
difference-guided stream to generate the final change prediction.
Specifically, the outputs of BIT are first differenced to highlight
potential change regions, while the difference-guided feature
from the FPN is downsampled to obtain a compact local
representation. These two features are then concatenated along
the channel dimension, combining global semantic context from
the Transformer decoder with locally guided difference cues.
The fused representation is upsampled to recover spatial
resolution and further refined by a lightweight doubleconv
block, followed by a 1x1 convolution and sigmoid activation to
produce the binary change map. This design effectively
integrates global reasoning and local detail enhancement,
improving both the accuracy and spatial precision of the
detected changes.

3. Experiment
3.1 Dataset

We evaluate our method on three publicly available change
detection datasets: LEVIR-CD, WHU-CD, and SYSU-CD.

LEVIR-CD (Chen and Shi, 2020a) is a large-scale dataset
specifically curated for building change detection tasks. It
comprises 637 pairs of high-resolution (0.5 meters/pixel)
satellite images obtained from Google Earth, each with spatial
dimensions of 1024x1024 pixels. Every image pair is annotated
to accurately distinguish between changed and unchanged

imgA im; GroundTruth SiamUNet concSiamUNet_diff

(a)d

building regions, encompassing more than 31,000 individual
change instances. Following the standard data split protocol, we
use 445, 64, and 128 image pairs for training, validation, and
testing, respectively. To facilitate training and reduce
computational overhead, all images are cropped into non-
overlapping 256%256 patches without any padding. This
preprocessing step results in 7,120 training, 1,024 validation,
and 2,048 testing patches.

WHU-CD (Ji et al.,, 2018) is a high-resolution building
change detection dataset constructed from a pair of ultra-large
aerial images captured in Christchurch, New Zealand, before
and after a major earthquake in February 2011. These images,
with a spatial resolution of 0.075 meters/pixel, span an area
exceeding 30,000 x 15,000 pixels, and collectively contain
approximately 21.4 million changed pixels and 481.9 million
unchanged pixels. We follow the official data split provided on
the project website, using 1,260 image pairs for training and
690 for testing. The original images are further divided into
non-overlapping 256%256 patches for model input. A validation
set is constructed by randomly selecting 10% of the training
data, yielding 4,536 training, 504 validation, and 2,760 testing
patches.

SYSU-CD (Shi et al., 2021) is a large-scale, category-
agnostic change detection dataset that includes 20,000 pairs of
aerial image patches with a spatial resolution of 0.5 meters/pixel
and patch size of 256x256 pixels. Collected in Hong Kong
between 2007 and 2014, the dataset captures a diverse range of
change scenarios, such as urban development, suburban sprawl,
groundwork operations, vegetation dynamics, road extensions,
and coastal construction. The dataset is split according to a
fixed 6:2:2 ratio, resulting in 12,000 training, 4,000 validation,
and 4,000 testing pairs. Its diversity and large scale make it an
effective benchmark for evaluating both general-purpose and
structure-sensitive CD methods.

3.2 Implementation Details

All models are implemented using the PyTorch framework
based on the MM Segmentation library. Experiments are
conducted on an Ubuntu system with a single NVIDIA RTX
4090 GPU. The AdamW optimizer is adopted with an initial
learning rate of 0.0003 and weight decay of 0.01. The learning
rate follows a linear warm-up for 1,500 iterations and
polynomial decay thereafter until 30,000 iterations. The batch
size is 12, and data augmentation includes random rotation,
flipping, and photometric distortion. Model selection is based
on the best mloU on the validation set.

ChangeFormer BAN HCGMNet

CGNet OURS

Figure 2. Visual comparison of change detection results on the LEVIR-CD. White, black, green, and red pixels denote true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN), respectively.
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3.3 Metrics

We evaluate the model performance using four standard
metrics: Intersection over Union (IoU), F1-score, Precision, and
Recall. All metrics are computed at the pixel level based on
binary change masks, where the scores correspond to the change
(foreground) class rather than the mean across classes. Their
calculation formula is as follows:

imgA imgB SNUNet
= — =

(a)
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Us————, (6)
TP+ FN + FP
' Recall + Precision "’ )
.. TP
Precision = ——, ®)
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Figure 3. Visualization results of different methods on the WHU-CD dataset.
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3.4 Comparative Experiments

To comprehensively demonstrate the effectiveness of the
proposed Tri-CD framework, we conducted both qualitative and
quantitative comparisons with several state-of-the-art change
detection (CD) methods. Specifically, the compared methods
include Fully Convolutional Siamese-Concatenation (FC-Siam-
conc) (Daudt et al, 2018), Fully Convolutional Siamese-
Difference (FC-Siam-diff) (Daudt et al., 2018), Siamese
NestedUNet (SNUNet) (Chen et al., 2022a), Bitemporal Image
Transformer (BIT) (Chen et al., 2021), ChangeFormer (Bandara
and Patel, 2022, Hierarchical Cross-Guided Multi-scale
Network (HCGMNet) (Han et al., 2023b) ), Change Guiding
Network (CGNet) (Han et al., 2023a), and Bi-Temporal Adapter
Network (BAN) (Li et al., 2024b).

Table 1. Quantitative comparison of different methods on the
LEVIR-CD dataset.

LEVIR-CD
Model .
ToU Recall F1 Precision

FC-Siam-conc 82.13 88.67 90.19 91.76
FC-Siam-diff 82.16 88.56 90.21 91.92
SNUNet 82.26 88.08 90.27 92.57
BIT 83.47 88.83 90.99 93.27
ChangeFormer 8398 89.92 9129 92.71
BAN 84.19 89.94 9141 92.93
HCGMNet 84.79 90.61 91.77 92.96
CGNet 85.21 90.9 92.01 93.15
OURS 85.2 91.13 92.01 92.91

on three publicly available datasets: LEVIR-CD, WHU-CD, and
SYSU-CD. Since this is a binary change detection task, the
Intersection over Union (IoU) of the change (foreground) class
was adopted as the primary evaluation metric.

On the LEVIR-CD dataset (Table 1), our model achieved
outstanding performance with an IoU of 85.20% and an F1-

score of 92.01%, performing on par with and slightly surpassing
the best-performing CGNet. It also significantly outperformed
classical models such as the FC-Siam series and BIT,
demonstrating its strong capability in fine-grained building
change recognition.

Table 2. Quantitative comparison of different methods on the
WHU-CD dataset.

Model WHU-CD —
IoU Recall F1 Precision

FC-Siam-conc 82.83 89.14  90.61 92.13
FC-Siam-diff 82.86 88.74  90.62 92.6
SNUNet 81.93 89.48 90.07 90.66
BIT 83.97 88.08 91.29 94.74
ChangeFormer 84.49 89.28 91.6 94.04
BAN 85.22 88.72 92.02 95.57
HCGMNet 85.33 90.31 92.08 93.93
CGNet 86.21 90.79 92.59 94.47
OURS 86.91 90.39 93 95.77

On the WHU-CD dataset (Table 2), our model further
exhibited excellent cross-domain generalization, achieving an
IoU of 86.91% and an Fl-score of 93.00%, outperforming
recent methods such as CGNet and BAN across all evaluation
metrics. In particular, it achieved a Precision of 95.77%,
indicating a clear advantage in reducing false positives.

On the SYSU-CD dataset (Table 3), TriCDNet continued to
maintain superior performance, reaching an IoU of 71.54% and
an Fl-score of 83.41%, which represents an improvement of
approximately 2.4 percentage points in IoU over the second-
best method, BAN. These results demonstrate that the proposed
network maintains strong robustness in complex multi-class
change detection scenarios and performs particularly well in
urban environments and fine-grained target recognition.

To further validate the model’s performance across different
scenes, we conducted visual comparisons on representative
samples from the three datasets (Figs. 1-3). In the visualizations,
white pixels denote true positives (TP), black pixels true
negatives (TN), green pixels false positives (FP), and
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red pixels false negatives (FN). As shown in the results, our
method better preserves structural integrity along object
boundaries and effectively suppresses both false alarms and
missed detections.
Table 3. Quantitative comparison of different methods on the
SYSU-CD dataset.

SYSU-CD
Model —
IoU Recall F1 Precision
FC-Siam-conc 65.39 75.39 79.07 83.14
FC-Siam-diff 65.74 75.2 79.33 83.94
SNUNet 65.49 75.11 79.14 83.63
BIT 65.35 74.52 79.04 84.14
ChangeFormer 67.87 77.4 80.86 84.65
BAN 68.08 79.05 81.01 83.06
HCGMNet 66.33 74.15 79.76 86.28
CGNet 66.55 74.37 79.92 86.37
OURS 71.54 80 83.41 87.13

SNUNet
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Figure 4. Visualization results of different methods on the SYSU-CD dataset.
3.5 Ablation Studies

To verify the effectiveness of each component in the proposed
TriCDNet framework, we conducted a series of ablation
experiments on the LEVIR-CD, WHU-CD, and SYSU-CD
datasets. The baseline model adopts only the EfficientNet-B5
backbone and BIT decoder, while the other modules are
incrementally added for comparison. Specifically, BS denotes
the backbone used for feature extraction; DCIM refers to the
Difference-guided Cross-temporal Interaction Module; FPN
represents the Feature Pyramid Network for multi-scale feature
aggregation; and BIT indicates the Bitemporal Image
Transformer for global reasoning.

As presented in Table 4, adding DCIM leads to consistent
performance improvements across all datasets, confirming its
effectiveness in enhancing cross-temporal interaction and
reducing false detections. The introduction of FPN further
increases both IoU and F1 scores, highlighting the importance
of multi-scale feature fusion for detailed change representation.
When the BIT decoder is integrated, the model benefits from
global context reasoning, yielding the highest

Table 4. Ablation study of the proposed TriCDNet framework on three datasets. The best results are highlighted in bold. A
represents the EfficientNet-B5 and B, C, D represent DCIM, FPN, and BIT, respectively.

Setting LEVIR-CD WHU-CD SYSU-CD

A B C D IoU Recall F1 Precision IoU  Recall F1 Precision IoU  Recall F1 Precision
v 8347 8883 90.99 93.27 83.97 88.08 91.29 94.74 65.35 7452  79.04 84.14

v v 83.64 89.18 91.09 93.09 82.36  87.02 90.33 93.9 6234 7321 76.8 80.77

v v Vv 8444 8943 91.56 93.81 82.42 8551 9036 95.8 679 75.86 80.88 86.62

v v Y 84.8 89.7 91.78 93.95 87.17 90.36 93.15 96.1 70.77 83.68 82.88 82.1

v v 84.94 9021 91.86 93.57 84.65 88 91.68 95.68 67.04 73.82 80.27 87.96

v v Vv Vv 852 9113 92.01 9291 86.91 90.39 93 95.77 71.54 80 83.41 87.13

scores overall. The complete TriCDNet model achieves IoU =
85.2% and F1 = 92.0% on LEVIR-CD, IoU = 86.9% and F1 =
93.0% on WHU-CD, and IoU = 71.5% and F1 = 83.4% on
SYSU-CD, outperforming all intermediate variants.

These quantitative results demonstrate that each module
contributes positively to the final performance, and the
combined architecture effectively balances local detail
preservation and global semantic consistency.

Although TriCD achieves clear improvements over baseline
variants, slight performance variations remain across datasets,
likely due to the reliance on backbone capacity and the
sensitivity of Transformer modules to scale differences. Future
work will focus on developing more efficient interaction
mechanisms and adaptive normalization strategies to further
enhance generalization.

4. Conclusion

In this paper, we proposed TriCD, a multi-scale tri-stream
interaction network for building change detection from multi-
temporal remote sensing imagery. The framework introduces a
Difference-guided Cross-temporal Interaction Module (DCIM)
for stage-wise feature fusion, a Feature Pyramid Network (FPN)
for multi-scale aggregation, and a Transformer-based decoder
for global context reasoning. Extensive experiments on three
benchmark datasets (LEVIR-CD, WHU-CD, and SYSU-CD)
demonstrate that TriCD achieves superior accuracy and
structural consistency compared to existing methods.

While the proposed model effectively enhances both local
and global representations, its performance remains constrained
by the backbone capacity and the current design of feature
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interaction. Future research will explore stronger and more
flexible interaction modules, adaptive difference feature
modeling, and the extension of the framework to larger-scale
and multi-class change detection applications.
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