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Abstract 

 

Building change detection (BCD) from multi-temporal remote sensing imagery plays a vital role in urban monitoring and land 

management. However, existing deep learning-based methods still suffer from insufficient semantic differentiation, weak multi-scale 

consistency, and limited global context modeling. To address these issues, we propose TriCDNet, a multi-scale tri-stream interaction 

network for accurate and robust building change detection. The network integrates three complementary feature streams—bi-

temporal features and their normalized difference map—and performs stage-wise feature interaction through a multi-layer 

Difference-guided Cross-temporal Interaction Module (DCIM). A top-down Feature Pyramid Network (FPN) is employed to 

aggregate multi-scale information, while a lightweight Transformer-based decoder captures long-range spatial–temporal 

dependencies for global reasoning. Experiments on three public datasets (LEVIR-CD, WHU-CD, and SYSU-CD) demonstrate that 

TriCDNet achieves superior accuracy and structural consistency, with IoU of 85.2%, 86.91%, and 71.54%, respectively. The results 

confirm that each component contributes positively to performance, and the proposed tri-stream framework effectively balances local 

detail preservation and global semantic coherence, showing strong generalization capability in complex urban scenes. 

 

 

1. Introduction 

With the rapid development of remote sensing technologies, 

multi-temporal high-resolution imagery has become 

increasingly accessible, providing strong data support for 

dynamic surface monitoring and change analysis. Change 

detection (CD) aims to identify differences within the same area 

across images captured at different times and has been widely 

applied in disaster assessment (Zheng et al., 2021), 

environmental monitoring (Wu et al., 2020), and land 

management (Lv et al., 2021). However, achieving efficient and 

accurate CD in complex scenarios remains a major challenge. 

Early change detection methods primarily relied on 

handcrafted feature differencing and threshold-based techniques 

(He et al., 2014) or principal component analysis (Munyati, 

2004), which achieved limited performance in complex scenes. 

Although these approaches are simple to implement and can 

yield reasonable results in specific cases, they often fail to 

handle complex backgrounds and fine-grained targets. With the 

rise of deep learning, convolutional neural networks (CNNs) 

have become the dominant paradigm in change detection, owing 

to their strong feature extraction capability. Built upon encoder–

decoder architectures, CNN-based methods effectively learn 

hierarchical representations from bi-temporal images. In 

particular, Siamese networks have been widely adopted as the 

prevailing framework for modeling bi-temporal relationships. 

Within this paradigm, various backbone architectures have been 

explored: early studies commonly used classical convolutional 

networks such as VGG (Simonyan and Zisserman, 2014) and 

ResNet (He et al.,2016); encoder–decoder structures like U-Net 

(Ronneberger et al., 2015) and its variants have been widely 

employed for dense prediction tasks; Transformer-based 

backbones such as the Vision Transformer (ViT) (Dosovitskiy, 

2020)and Swin Transformer(Liu et al., 2021) have been 

introduced to enhance global modeling capacity; and 

lightweight models such as EfficientNet (Tan and Le, 2019) 

have attracted attention for their balance between accuracy and 

efficiency, making them suitable for large-scale applications. 

Building upon these architectural evolutions, researchers have 

developed a series of Siamese-based models that further refine 

bi-temporal representation and fusion strategies.Daudt et al. 

(2018) were the first to apply Siamese networks to remote 

sensing change detection, introducing two fully convolutional 

models—FC-Siam-conc and FC-Siam-diff, which perform 

change modeling via feature concatenation and differencing, 

respectively. These models marked the early use of CNN 

architectures in this field. Building on this foundation, 

subsequent studies explored more advanced feature fusion 

strategies across multiple branches. Fang et al. (2023) enhanced 

bi-temporal feature alignment and fusion by incorporating a 

feature interaction layer and a Flow Dual Alignment Fusion 

(FDAF) module within the Meta Changer framework, 

demonstrating the importance of feature interaction in 

improving detection accuracy. Han et al. (2023) proposed CG-

Net, which derives change maps from semantically rich deep 

features and uses them as priors to guide multi-scale fusion. 

Nevertheless, due to the inherently limited receptive field of 

convolutional networks, these methods struggle to capture long-

range contextual dependencies. To mitigate this, Chen et al. 

(2022) introduced Transformer modules into the change 

detection pipeline, boosting global modeling capacity and 

enhancing the representation of semantic changes. Bandara and 

Patel (2022) proposed a Transformer-based Siamese change 

detection network (ChangeFormer), which combines a 

Transformer encoder with multilayer perceptrons in a Siamese 

architecture to effectively capture multi-scale long-range details 

for improved accuracy. Although prior studies have introduced 

feature interaction and global modeling mechanisms, they still 

fall short in semantic differencing, multi-scale structural 

consistency, and contextual information integration. To address 

the above challenges, this paper proposes a multi-scale tri-

stream interaction framework for building change detection. A 

normalized difference stream highlights semantic variations 

between bi-temporal features, and the three streams are fused 

through a Difference-guided Cross-temporal Interaction Module 

(DCIM) that performs bidirectional interaction and gated fusion 
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across multiple scales. Aggregated features are refined by a 

Feature Pyramid Network (FPN) for semantic consistency, and 

a Bi-temporal Transformer (BIT) models long-range spatial–

temporal dependencies. Experiments on multiple public datasets 

demonstrate the effectiveness and robustness of the proposed 

framework. The main contributions of this work are 

summarized as follows: 

(1) A tri-stream feature interaction mechanism based on the 

proposed DCIM for fine-grained temporal correspondence. 

(2) Multi-scale feature aggregation via FPN to maintain 

semantic and structural consistency. 

(3) Global modeling with BIT to capture long-range 

dependencies and enhance semantic representations. 

 

2. Methodology 

2.1 Overall Architecture 

In this paper, we have designed a novel change detection 

network featuring a tri-stream interaction architecture, as 

illustrated in Figure 1. The model comprises four main 

components: a shared-weight feature extraction backbone based 

on EfficientNet-B5, a multi-level Difference-guided Cross-

temporal Interaction Module (DCIM), a Feature Pyramid 

Network (FPN), and a Transformer-based decoder (BIT). The 

backbone is responsible for extracting hierarchical 

representations from bi-temporal input images. To enhance the 

model’s sensitivity to changed regions, a third feature stream is 

introduced, which is generated through normalized differencing 

between the bi-temporal feature maps. At each feature level, the 

three streams are fed into the corresponding DCIM module to 

strengthen cross-temporal feature interaction. The interacted 

features are then aggregated by the FPN to achieve multi-scale 

fusion. The fused multi-scale features are transformed into 

tokens and passed into a Transformer encoder–decoder structure 

to model long-range spatial dependencies. Finally, the model 

computes the absolute difference between the decoded features 

and fuses it with the difference-guided branch features, 

followed by a convolutional classifier to generate the final 

change mask. 
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Figure 1. The architecture of the proposed TriCDNet. 

 

2.2 EfficientNet-B5 

In this study, we adopt EfficientNet-B5 as the feature 

extraction backbone of the change detection network. The 

EfficientNet series is designed based on the compound scaling 

strategy, which jointly scales network depth, width, and input 

resolution to enhance feature representation while maintaining a 

lightweight architecture. Unlike conventional convolutional 

neural networks that expand along a single dimension, the 

compound scaling mechanism enables EfficientNet to achieve 

superior performance with fewer parameters. 

For remote sensing change detection tasks that focus on local 

structural differences, EfficientNet-B5 provides a favourable 

balance between high-resolution spatial perception and strong 

global modeling capability, effectively capturing fine-grained 

change features in the imagery. Therefore, EfficientNet-B5 is 

employed as the feature extractor to provide high-quality 

semantic representations for subsequent multi-scale feature 

interaction. 

 

2.3 Tri-stream Feature Interaction 

To effectively capture change information between bi-

temporal remote sensing images and enhance the model’s 

sensitivity to subtle local differences, we design a multi-layer 

Difference-guided Cross-temporal Interaction Module (DCIM) 

to enable multi-scale tri-stream feature interaction. The module 

integrates the first-temporal features, second-temporal features, 

and their similarity-guided difference features, reinforcing 
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cross-temporal collaborative representation while preserving the 

discriminative capacity of each feature stream. 

2.3.1 Input Design: At each stage, the backbone network 

outputs bi-temporal feature maps 1t

iF and 2t

iF . To highlight 

potential change regions, a difference prior feature
iF is 

introduced and computed as follows: 

 
1 2 2

1 2 2

( - )
1- .

1 ( - )

t t

i i
i t t

i i

F F
F

F F

 =
+

 (1) 

 

This normalized differencing suppresses noise and enhances 

sensitivity to subtle structural variations. Consequently, each 

DCIM receives three input streams: t1 t2 Δ

i i i{F , F , F } . 

 

2.3.2 Cross-temporal Interaction Mechanism: To 

effectively exploit the complementary information between bi-

temporal features and improve the model’s sensitivity to subtle 

structural variations, we design a Difference-guided Cross-

temporal Interaction Module (DCIM) inspired by the Bilateral 

Information Exchange (BIE) mechanism (Huang et al., 2023). 

While the original BIE was developed for event stream super-

resolution and implemented an attention-based bilateral 

information propagation, our DCIM extends this concept to a 

convolution-driven tri-stream framework for remote sensing 

change detection. It introduces an additional difference-guided 

stream to explicitly encode potential change priors and 

strengthen cross-temporal consistency.First, the temporal 

features 1t

iF and 2t

iF are refined through residual convolutional 

blocks to strengthen semantic representation and spatial 

consistency. Then, the difference prior
iF is concatenated with 

each temporal feature and compressed via lightweight 1×1 

convolutions and normalization, forming a difference-guided 

joint feature space for subsequent interaction.Following the 

conceptual design of BIE, we compute cross-correlations 

between the two temporal branches through batch matrix 

multiplication, which acts as a lightweight attention-style 

operator that enables bidirectional semantic information 

exchange under the guidance of the difference stream. 

To adaptively integrate the enhanced and original features, a 

gated fusion mechanism is employed. Each temporal feature 

passes through a 1×1 convolution and a sigmoid activation to 

generate a gating map, which dynamically balances the 

contributions of change-sensitive and stable components: 

 
1 1* 1

1 1(Conv ( )),t t t

i i iG F F = +  (2) 

 
1 1 1* 1 1.(1 )t t t t t

i i i i iF G F G F

= + −  (3) 

 

This gating mechanism adaptively balances change-sensitive 

and stable components, enabling the model to emphasize 

meaningful structural variations while suppressing background 

noise. Finally, contextual information is aggregated by 

concatenating the temporal representations and integrating them 

with the difference feature through a residual connection, 

yielding a comprehensive difference-guided representation
iF
 . 

Through this progressive attention and fusion process, DCIM 

effectively strengthens cross-temporal dependency modeling 

and enhances the network’s capability to capture localized 

building changes. 

2.3.3 Learnable Reweighting and Multi-level Embedding: 

To further improve adaptability, learnable scalar parameters 

i and i (initialized to 0.5) are introduced to balance 

interaction and contextual information during training. The 

reweighted features are computed as follows: 

 
1 1 2 2, .(1 ) (1 )t t t t

i i i i i i i i i iF F F F F F       = + − = + −  (4) 

 

This reweighting mechanism enables the network to 

dynamically control the trade-off between cross-temporal 

interaction and contextual consistency. As a result, it maintains 

semantic alignment while enhancing change sensitivity. DCIM 

modules are embedded at five stage of the backbone 

( 0,1,2,3,4)i = , forming a progressive, multi-level interaction 

pathway. Each level outputs three updated features 
1 2{ , , }t t

i i iF F F  , which are subsequently aggregated by the 

Feature Pyramid Network (FPN) for cross-scale fusion. The 

fused multi-scale representations are further refined through a 

Transformer-based decoder to model global dependencies and 

generate the final pixel-level change map. 

 

2.4 Global Context Modeling and Prediction Head 

While the DCIM modules focus on local feature interaction 

and difference enhancement, the subsequent components aim to 

capture global dependencies and generate the final change 

map.  This stage consists of three submodules: a multi-scale 

fusion network (FPN), a Transformer-based interaction decoder 

(BIT), and a change prediction head.  Together, they form the 

high-level semantic reasoning and output stage of the proposed 

model.  

 

2.4.1  Feature Pyramid Network (FPN): To effectively 

aggregate the multi-scale features generated by the DCIM 

modules, we employ a modified Feature Pyramid Network 

(FPN) as the neck structure. Each DCIM block outputs three 

feature streams—pre-change temporal, post-change temporal, 

and difference-guided—denoted as 1 2{ , , }t t

i i iF F F  . These 

features are extracted from five hierarchical stages of the 

backbone corresponding to spatial resolutions of 1/2, 1/4, 1/8, 

1/16, and 1/32 of the 256×256 input image. The feature maps 

have sizes of 128×128, 64×64, 32×32, 16×16, and 8×8, with 

channel dimensions of [24, 40, 64, 176, 512]. 

All features are first projected to 128 channels using lateral   

1×1 convolutions to ensure consistent dimensionality across 

scales before multi-level fusion. The FPN constructs a top-down 

pathway with lateral skip connections, progressively 

upsampling and merging high-level semantic representations 

with low-level spatial details. After fusion, three aggregated 

feature maps are obtained, corresponding to the two temporal 

streams and the difference-guided stream. Specifically, the 

processed features have spatial dimensions as: 

 
1 128 64 64 2 128 64 64 128 128 128

FPN FPN FPN, , .t tF F F          (5) 

 

The two temporal features retain semantic consistency from 

the DCIM, while the difference-guided stream preserves local 

change sensitivity. This multi-stream fusion strategy effectively 

bridges fine-grained spatial details and high-level semantics, 

providing comprehensive multi-scale representations for 

subsequent global reasoning in the Transformer decoder. 
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2.4.2 Bitemporal Image Transformer (BIT): After multi-

scale fusion, the semantically enhanced features are fed into the 

BIT [Chen et al., 2022], which serves as a high-level decoder 

for global context reasoning and cross-temporal interaction. 

Unlike convolutional operations that are inherently local, BIT 

utilizes Transformer-based self- and cross-attention to capture 

long-range dependencies between the two temporal streams, 

allowing bidirectional semantic communication across time. In 

our implementation, we deploy BIT as an external decoder 

operating on the FPN outputs . These features are first tokenized 

through an attention-based pooling mechanism to obtain 

compact semantic tokens that encode essential contextual 

information. The tokens from both temporal branches are 

concatenated and passed into the Transformer encoder to model 

global correlations, which are then decoded back into the spatial 

domain to generate semantically enhanced feature 

representations. 

 

2.4.3 Change Prediction Head: After Transformer decoding, 

the bi-temporal features are differenced and fused with the 

difference-guided stream to generate the final change prediction. 

Specifically, the outputs of BIT are first differenced to highlight 

potential change regions, while the difference-guided feature 

from the FPN is downsampled to obtain a compact local 

representation. These two features are then concatenated along 

the channel dimension, combining global semantic context from 

the Transformer decoder with locally guided difference cues. 

The fused representation is upsampled to recover spatial 

resolution and further refined by a lightweight doubleconv 

block, followed by a 1×1 convolution and sigmoid activation to 

produce the binary change map. This design effectively 

integrates global reasoning and local detail enhancement, 

improving both the accuracy and spatial precision of the 

detected changes. 

 

3. Experiment 

3.1 Dataset 

We evaluate our method on three publicly available change 

detection datasets: LEVIR-CD, WHU-CD, and SYSU-CD. 

LEVIR-CD (Chen and Shi, 2020a) is a large-scale dataset 

specifically curated for building change detection tasks. It 

comprises 637 pairs of high-resolution (0.5 meters/pixel) 

satellite images obtained from Google Earth, each with spatial 

dimensions of 1024×1024 pixels. Every image pair is annotated 

to accurately distinguish between changed and unchanged 

building regions, encompassing more than 31,000 individual 

change instances. Following the standard data split protocol, we 

use 445, 64, and 128 image pairs for training, validation, and 

testing, respectively. To facilitate training and reduce 

computational overhead, all images are cropped into non-

overlapping 256×256 patches without any padding. This 

preprocessing step results in 7,120 training, 1,024 validation, 

and 2,048 testing patches. 

WHU-CD (Ji et al., 2018) is a high-resolution building 

change detection dataset constructed from a pair of ultra-large 

aerial images captured in Christchurch, New Zealand, before 

and after a major earthquake in February 2011. These images, 

with a spatial resolution of 0.075 meters/pixel, span an area 

exceeding 30,000 × 15,000 pixels, and collectively contain 

approximately 21.4 million changed pixels and 481.9 million 

unchanged pixels. We follow the official data split provided on 

the project website, using 1,260 image pairs for training and 

690 for testing. The original images are further divided into 

non-overlapping 256×256 patches for model input. A validation 

set is constructed by randomly selecting 10% of the training 

data, yielding 4,536 training, 504 validation, and 2,760 testing 

patches. 

SYSU-CD (Shi et al., 2021) is a large-scale, category-

agnostic change detection dataset that includes 20,000 pairs of 

aerial image patches with a spatial resolution of 0.5 meters/pixel 

and patch size of 256×256 pixels. Collected in Hong Kong 

between 2007 and 2014, the dataset captures a diverse range of 

change scenarios, such as urban development, suburban sprawl, 

groundwork operations, vegetation dynamics, road extensions, 

and coastal construction. The dataset is split according to a 

fixed 6:2:2 ratio, resulting in 12,000 training, 4,000 validation, 

and 4,000 testing pairs. Its diversity and large scale make it an 

effective benchmark for evaluating both general-purpose and 

structure-sensitive CD methods. 

 

3.2 Implementation Details 

All models are implemented using the PyTorch framework 

based on the MM Segmentation library. Experiments are 

conducted on an Ubuntu system with a single NVIDIA RTX 

4090 GPU. The AdamW optimizer is adopted with an initial 

learning rate of 0.0003 and weight decay of 0.01. The learning 

rate follows a linear warm-up for 1,500 iterations and 

polynomial decay thereafter until 30,000 iterations. The batch 

size is 12, and data augmentation includes random rotation, 

flipping, and photometric distortion. Model selection is based 

on the best mIoU on the validation set. 

 

Figure 2. Visual comparison of change detection results on the LEVIR-CD. White, black, green, and red pixels denote true positives 

(TP), true negatives (TN), false positives (FP), and false negatives (FN), respectively. 
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3.3 Metrics 

We evaluate the model performance using four standard 

metrics: Intersection over Union (IoU), F1-score, Precision, and 

Recall. All metrics are computed at the pixel level based on 

binary change masks, where the scores correspond to the change 

(foreground) class rather than the mean across classes. Their 

calculation formula is as follows: 

 

,
TP

IoU
TP FN FP

=
+ +

 (6) 

 

1 1 1

2
,

Recall Precision
F

− −
=

+
 (7) 

 

Precision ,
TP

TP FP
=

+
 (8) 

 

Figure 3. Visualization results of different methods on the WHU-CD dataset. 

Recall .
TP

TP FN
=

+
 (9) 

 

3.4 Comparative Experiments  

To comprehensively demonstrate the effectiveness of the 

proposed Tri-CD framework, we conducted both qualitative and 

quantitative comparisons with several state-of-the-art change 

detection (CD) methods. Specifically, the compared methods 

include Fully Convolutional Siamese-Concatenation (FC-Siam-

conc) (Daudt et al., 2018), Fully Convolutional Siamese-

Difference (FC-Siam-diff) (Daudt et al., 2018), Siamese 

NestedUNet (SNUNet) (Chen et al., 2022a), Bitemporal Image 

Transformer (BIT) (Chen et al., 2021), ChangeFormer (Bandara 

and Patel, 2022, Hierarchical Cross-Guided Multi-scale 

Network (HCGMNet) (Han et al., 2023b) ), Change Guiding 

Network (CGNet) (Han et al., 2023a), and Bi-Temporal Adapter 

Network (BAN) (Li et al., 2024b). 

Table 1. Quantitative comparison of different methods on the 

LEVIR-CD dataset. 

Model 
LEVIR-CD 

IoU Recall F1 Precision 

FC-Siam-conc 82.13 88.67 90.19 91.76 

FC-Siam-diff 82.16 88.56 90.21 91.92 

SNUNet 82.26 88.08 90.27 92.57 

BIT 83.47 88.83 90.99 93.27 

ChangeFormer 83.98 89.92 91.29 92.71 

BAN 84.19 89.94 91.41 92.93 

HCGMNet 84.79 90.61 91.77 92.96 

CGNet 85.21 90.9 92.01 93.15 

OURS 85.2 91.13 92.01 92.91 

on three publicly available datasets: LEVIR-CD, WHU-CD, and 

SYSU-CD. Since this is a binary change detection task, the 

Intersection over Union (IoU) of the change (foreground) class 

was adopted as the primary evaluation metric. 

On the LEVIR-CD dataset (Table 1), our model achieved 

outstanding performance with an IoU of 85.20% and an F1-

score of 92.01%, performing on par with and slightly surpassing 

the best-performing CGNet. It also significantly outperformed 

classical models such as the FC-Siam series and BIT, 

demonstrating its strong capability in fine-grained building 

change recognition.  

Table 2. Quantitative comparison of different methods on the 

WHU-CD dataset. 

On the WHU-CD dataset (Table 2), our model further 

exhibited excellent cross-domain generalization, achieving an 

IoU of 86.91% and an F1-score of 93.00%, outperforming 

recent methods such as CGNet and BAN across all evaluation 

metrics. In particular, it achieved a Precision of 95.77%, 

indicating a clear advantage in reducing false positives. 

On the SYSU-CD dataset (Table 3), TriCDNet continued to 

maintain superior performance, reaching an IoU of 71.54% and 

an F1-score of 83.41%, which represents an improvement of 

approximately 2.4 percentage points in IoU over the second-

best method, BAN. These results demonstrate that the proposed 

network maintains strong robustness in complex multi-class 

change detection scenarios and performs particularly well in 

urban environments and fine-grained target recognition.  

To further validate the model’s performance across different 

scenes, we conducted visual comparisons on representative 

samples from the three datasets (Figs. 1–3). In the visualizations, 

white pixels denote true positives (TP), black pixels true 

negatives (TN), green pixels false positives (FP), and 

Model 
WHU-CD 

IoU Recall F1 Precision 

FC-Siam-conc 82.83 89.14 90.61 92.13 

FC-Siam-diff 82.86 88.74 90.62 92.6 

SNUNet 81.93 89.48 90.07 90.66 

BIT 83.97 88.08 91.29 94.74 

ChangeFormer 84.49 89.28 91.6 94.04 

BAN 85.22 88.72 92.02 95.57 

HCGMNet 85.33 90.31 92.08 93.93 

CGNet 86.21 90.79 92.59 94.47 

OURS 86.91 90.39 93 95.77 
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Figure 4. Visualization results of different methods on the SYSU-CD dataset. 

red pixels false negatives (FN). As shown in the results, our 

method better preserves structural integrity along object 

boundaries and effectively suppresses both false alarms and 

missed detections.  

Table 3. Quantitative comparison of different methods on the 

SYSU-CD dataset. 

Model 
SYSU-CD 

IoU Recall F1 Precision 

FC-Siam-conc 65.39 75.39 79.07 83.14 

FC-Siam-diff 65.74 75.2 79.33 83.94 

SNUNet 65.49 75.11 79.14 83.63 

BIT 65.35 74.52 79.04 84.14 

ChangeFormer 67.87 77.4 80.86 84.65 

BAN 68.08 79.05 81.01 83.06 

HCGMNet 66.33 74.15 79.76 86.28 

CGNet 66.55 74.37 79.92 86.37 

OURS 71.54 80 83.41 87.13 

3.5 Ablation Studies 

To verify the effectiveness of each component in the proposed 

TriCDNet framework, we conducted a series of ablation 

experiments on the LEVIR-CD, WHU-CD, and SYSU-CD 

datasets. The baseline model adopts only the EfficientNet-B5 

backbone and BIT decoder, while the other modules are

incrementally added for comparison. Specifically, B5 denotes 

the backbone used for feature extraction; DCIM refers to the

Difference-guided Cross-temporal Interaction Module; FPN 

represents the Feature Pyramid Network for multi-scale feature 

aggregation; and BIT indicates the Bitemporal Image 

Transformer for global reasoning. 

As presented in Table 4, adding DCIM leads to consistent 

performance improvements across all datasets, confirming its 

effectiveness in enhancing cross-temporal interaction and 

reducing false detections. The introduction of FPN further 

increases both IoU and F1 scores, highlighting the importance 

of multi-scale feature fusion for detailed change representation. 

When the BIT decoder is integrated, the model benefits from 

global context reasoning, yielding the highest  

Table 4. Ablation study of the proposed TriCDNet framework on three datasets. The best results are highlighted in bold. A 

represents the EfficientNet-B5 and B, C, D represent DCIM, FPN, and BIT, respectively. 

Setting LEVIR-CD WHU-CD SYSU-CD 

A B C D IoU Recall F1 Precision IoU Recall F1 Precision IoU Recall F1 Precision 

✓ 83.47 88.83 90.99 93.27 83.97 88.08 91.29 94.74 65.35 74.52 79.04 84.14 

✓ ✓ 83.64 89.18 91.09 93.09 82.36 87.02 90.33 93.9 62.34 73.21 76.8 80.77 

✓ ✓ ✓ 84.44 89.43 91.56 93.81 82.42 85.51 90.36 95.8 67.9 75.86 80.88 86.62 

✓ ✓ ✓ 84.8 89.7 91.78 93.95 87.17 90.36 93.15 96.1 70.77 83.68 82.88 82.1 

✓ ✓ 84.94 90.21 91.86 93.57 84.65 88 91.68 95.68 67.04 73.82 80.27 87.96 

✓ ✓ ✓ ✓ 85.2 91.13 92.01 92.91 86.91 90.39 93 95.77 71.54 80 83.41 87.13 

scores overall. The complete TriCDNet model achieves IoU = 

85.2% and F1 = 92.0% on LEVIR-CD, IoU = 86.9% and F1 = 

93.0% on WHU-CD, and IoU = 71.5% and F1 = 83.4% on 

SYSU-CD, outperforming all intermediate variants. 

These quantitative results demonstrate that each module 

contributes positively to the final performance, and the 

combined architecture effectively balances local detail 

preservation and global semantic consistency. 

Although TriCD achieves clear improvements over baseline 

variants, slight performance variations remain across datasets, 

likely due to the reliance on backbone capacity and the 

sensitivity of Transformer modules to scale differences. Future 

work will focus on developing more efficient interaction 

mechanisms and adaptive normalization strategies to further 

enhance generalization. 

4. Conclusion

In this paper, we proposed TriCD, a multi-scale tri-stream 

interaction network for building change detection from multi-

temporal remote sensing imagery. The framework introduces a 

Difference-guided Cross-temporal Interaction Module (DCIM) 

for stage-wise feature fusion, a Feature Pyramid Network (FPN) 

for multi-scale aggregation, and a Transformer-based decoder 

for global context reasoning. Extensive experiments on three 

benchmark datasets (LEVIR-CD, WHU-CD, and SYSU-CD) 

demonstrate that TriCD achieves superior accuracy and 

structural consistency compared to existing methods. 

While the proposed model effectively enhances both local 

and global representations, its performance remains constrained 

by the backbone capacity and the current design of feature 
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interaction. Future research will explore stronger and more 

flexible interaction modules, adaptive difference feature 

modeling, and the extension of the framework to larger-scale 

and multi-class change detection applications. 
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