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Localization in MR-based Indoor Navigation System using point cloud registration
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Abstract

This paper addresses the pervasive challenge of localization within indoor navigation systems. Many existing systems grapple with
this issue, relying on marker-based methods, Bluetooth beacon localization, and image processing. However, these solutions often
necessitate the placement of predetermined markers within the environment, presenting limitations such as marker deterioration
over time, spatial constraints, and associated costs. In response, we propose a novel point cloud registration-based approach. This
method involves the creation of a comprehensive global point cloud representing the entire indoor environment, effectively serving
as a three-dimensional virtual map. Concurrently, a mixed-reality device is utilized to generate a local point cloud specific to the
device’s current location within the building. By aligning and registering the local cloud with the global counterpart, the device’s
precise location within the virtual map can be determined. This approach enables seamless navigation within indoor environments
without the reliance on physical markers, offering a versatile and cost-effective solution to the challenge of localization in indoor
navigation systems. Finally, an error analysis was also done to test localization accuracy for different illumination conditions,

demonstrating the effectiveness of this method.

1. Introduction

Today, a greater proportion of people spend their time indoors,
and the significance of navigational systems designed specific-
ally for use within buildings is growing. In a variety of loc-
ations, like shopping malls, airports, hospitals, museums, uni-
versity campuses, and factories such systems can be extremely
helpful. Many indoor navigation systems are being developed
and each one uses different methods for final implementation,
but almost all systems use Augmented Reality(AR) as a Human-
Machine Interface. They offer an exciting and innovative ap-
proach to indoor navigation that has the potential to revolution-
ize the way, we navigate complex indoor environments, hence a
Mixed-reality-based device was chosen for this application that
goes one step ahead not only it has the capability of overlaying
instructions on the real-world but also various in-built sensors to
sense its surroundings. To build any navigation system the first
requirement is to find the initial position of the user, this paper
tries a point-cloud-based approach to do the same. This study
introduces a method for locating mixed-reality (MR) devices
within indoor environments, by generating a global point cloud
of the entire indoor space using a Terrestrial Laser Scanner
just like a virtual map. For localization of the user, a local
point cloud is created with depth and RGB cameras on the
MR device, and registration techniques are used to align the
local cloud with the global to determine the device’s location
in the virtual map. An Error analysis is done that validates the
effectiveness of this approach, showcasing its potential to en-
hance navigation using MR devices beyond traditional human-
machine interfaces.

2. Related Work

Many AR-based navigation systems are being developed, in
(Huang et al., 2020) they developed an indoor positioning sys-
tem called ARBIN, the system has an AR interface on the user

level, localization is done using Bluetooth beacon-based way-
points, where constant Bluetooth Low Energy (BLE) messages
are received and position is tracked. This approach involves pla-
cing BLE beacons throughout the indoor environment, which
can be detected by a user’s device to determine their location.
In (Lovdahl, 2020) indoor navigation system was developed
for the MagicLeap headset, the system uses Ax algorithm for
pathfinding, and it uses spatial mesh created by magic leap it-
self to locate its position by using a world anchor placed in the
digital twin of the environment. The AR interface created uses
minimaps like in video games for the user to locate their po-
sition in real world. In (Rehman and Cao, 2017) the indoor
navigation system where pre palced trackables with location
information is palced in real world which can be overlayed on
AR device to aid the navigation process. In (Koch et al., 2014)
they developed a system that can locate the user based on the
natural markers inside the building like the signage. In (Dong
et al., 2019), ViNav was created, which is a more cost-effective
method that creates a 3D model of the environment from photos
and locates users depending on the Wifi-signal and image re-
quested by the user.In most the cases for indoor navigation use
some sort of artificial markers to get the initial location is prom-
inent, though being effective there are some common problems
with such approaches like wear and tear of markers, the ini-
tial cost of placing beacons and scanning the environments with
headsets to place the anchors, one divergence from such meth-
ods is LORAX(Elbaz et al., 2017) a deep learning-based point
cloud registration, to align two point clouds in huge geograph-
ical settings taken from the same initial point cloud. This paper
tries to register two point-clouds taken from different sources.
One will be the huge prescanned cloud of the building, the other
a small local cloud generated by mixed reality device with its
position as the origin. Proper registration of the two-point data
will result in the position of the mixed reality device in the pre-
scanned virtual map.
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3. Point cloud localization

The indoor navigation system will have a pre-scanned virtual
3D map of the building. Point clouds are chosen for the same, as
they are raw 3D data and can further be processed. A Terrestrial
Laser Scanner was used to generate the pre-scanned cloud of
two floors of an indoor environment shown in figure 1. Point
clouds from such a device are more accurate and highly dense,
it is used similarly as people use maps. The aim is to local-
ize the HoloLens2 device in this virtual map. The HoloLens
2 incorporates both a traditional RGB camera and a Time-of-
Flight (ToF) depth camera. The data streams originating from
this device are collected and subsequently utilized for voxeliza-
tion. This information undergoes processing via the Truncated
Signed Distance Function (TSDF)(Curless and Levoy, 2023)
technique to generate a three-dimensional (3D) scene. The res-
ultant scene is then sampled to derive a point cloud representing
the immediate surroundings of the device, as illustrated in Fig-
ure 2, with the device’s location serving as the origin. The next
step involves computing a transformation matrix between two
clouds such that the origin of the pre-scanned cloud gives the
location of the HoloLens2 device. This is done by aligning the
two clouds and the process is called registration. Henceforth,
within the context of this paper, all point clouds generated by
the HoloLens 2 device shall be denoted as “local clouds,” while
the term “’global cloud” shall exclusively refer to point clouds
acquired by Terrestrial Laser Scanning (TLS) technology.

Figure 1. Pre-scanned TLS-based point cloud acting as known
3D map of the building

Figure 2. The HoloLens 2 local cloud is defined relative to the
spatial coordinates of the device, with the location of the device
serving as the origin.

4. Registration

Point cloud registration is the process of aligning two or more
point clouds to share a common coordinate system. The goal
of point cloud registration is to find the rigid transformation
(translation and rotation) that best aligns the points in one cloud
with those in another. There are many methods for the registra-
tion process, but the following methods are used here

41 ICP

The most basic and reliable form of registration is where an ini-
tial correspondence between the point cloud is given manually
at the start. Iterative Closest point (/C'P)(Besl and McKay,
1992) is the most widely used algorithm for point cloud re-
gistration, it requires initial correspondence for convergence.
There are many variations to ICP (Rusinkiewicz and Levoy,
2001), but the basic vanilla algorithm is chosen. In adhering to
the fundamental principles of the Iterative Closest Point (ICP)
algorithm, a basic approach is employed wherein the algorithm
iteratively minimizes the sum of squared distances between two
point clouds. This entails selecting the nearest point in one
cloud as a correspondence for each point in the other cloud, and
iteratively refining these correspondences until convergence is
achieved. To facilitate convergence, it is essential to establish
initial correspondences effectively, a task typically addressed
through computer vision techniques that primarily use feature
extraction and matching.

4.2 Feature Extraction

To ensure real-time functionality in navigation systems, local-
ization processes necessitate faster and simpler features, that
offer reasonable reliability, particularly as only initial corres-
pondences are required for the Iterative Closest Point (ICP) al-
gorithm to converge. In this context, Fast Point Feature His-
tograms (FPFH)(Rusu et al., 2009) have been selected due to
their expedited computation and robust geometric characterist-
ics. FPFH features are known for their ability to incorporate
local neighborhood information efficiently, thus enhancing their
reliability and suitability for near real-time applications in nav-
igation systems.
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Figure 3. Creating the point features frame from two points for
computing the PFH

The FPFH is a variant of Point Feature Histograms(P F H )(Rusu
et al., 2008), where (c, ¢, 0) is computed as shown in figure 3
between each query point (p,) and its neighbours and binned
called Simplified Point Feature Histograms(SPFH).

In a subsequent stage, the k neighbours of each point are once
again identified as shown in figure 4, and the neighbouring SPFH
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Figure 4. FPFH feature estimation for pq, computing PFH for
each point in neighbor- hood of query point and using it weight
PFH of query point

values are then utilised to weight the final histogram of p, (re-
ferred to as the FPFH) as follows:

FPFH(p,) = SPFH(p,) +

Ead e
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4.3 RANSAC with ICP

Feature extraction is conducted on each point of two clouds, us-
ing Fast Point Features, followed by the creation of histogram
descriptors for matching purposes. Following the computation
of features, a series of subsequent steps are undertaken for re-
gistration using the RANSAC algorithm (Fischler and Bolles,
1987). first subsets are randomly sampled from each cloud, and
transformations are computed to map similar features. These
transformations are then applied to all the points. Error is com-
puted using a distance metric between the two clouds, typically
Euclidean distance and inliers are computed using a threshold.
The process continues for a fixed number of iterations, and the
transformation matrix with most inliers is selected achieving
optimal registration between the source and target point clouds.
Consider two point-clouds Ps and P;. We seek a rigid transform
T that aligns Ps and P;. Let F\(Ps) = {F(ps) : ps € Ps} be the
set of features(FPFH) for point cloud Ps, where F'(ps) is some
extracted feature for point p. Analogously, define F/(P,) =
{F(pt) : p+ € P} for point cloud P,. To align these two, a
generic optimization problem can be formulated as:

D

PsEPs,pt€Pt

e(T) | ps — Tpe |I? )

Here, T is the transformation that must be estimated so as to
minimise the sum of squared Euclidean distances between the
corresponding points within both sets Ps and P;. The algorithm
is described as shown at 1.
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Figure 5. The final registered cloud from the RANSAC-based
registration, yellow points from local cloud, and blue is the
TLS-based map.

Algorithm 1: RANSAC-based Point Cloud Registration

Input : Source point cloud P, target point cloud F,
maximum iterations [N, sample size k, distance
threshold d

QOutput: Transformation 7" that maps Ps to P;

Compute features F'(Ps) and F'(P;);

fori =1t N do

S < random sample of £ > 3 points from Ps;

Find correspondences of these points in P; by nearest
neighbour search in F(P;) and F(P;);

Estimate 7" from correspondences

Apply T to P,

Search for inliers between P; and transformed P; by
spatial nearest neighbour search, with max distance
threshold given

if ratio of inliers is too low then
| Skip the iteration

end

Reestimate 7" with the found inlier correspondences.

Compute the error e from equation 2 using estimated 7’
and inliers.

ebest) is the previous lowest error

if ¢ < ¢(best) then

Tbest —-T

ebest

=€
end

end
return 7°°¢%

5. Error Analysis

Automatic registration, facilitated by feature extraction, match-
ing, and outlier rejection has been achieved. However, a crit-
ical inquiry arises regarding its accuracy when compared with
manual registration, which is precise. Furthermore, there is
a need to gauge the performance of this localization method
across diverse lighting conditions. To address these inquiries
systematically, an application-specific error computation method
is proposed. This method will meticulously quantify the dispar-
ities between automated and manual registration outcomes and
assess the robustness of the localization approach under varying
lighting conditions. Through this comprehensive evaluation, in-
sights into the effectiveness and reliability of automated regis-
tration techniques in practical scenarios will be discerned.
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Figure 6. The origin is marked on the TLS cloud after computed
transformations are applied, it gives location of the HoloLens2

5.1 Ground Truth Estimation

The first step is to compute the ground truth data which will
contain a transformation matrix such that when applied to the
global point cloud (T'LSS — based), changing the reference and
its origin and three axes give the location and orientation of the
HoloLens 2 device. This is accomplished in three steps. The
first is to manually register TLS and the HoloLens2 clouds us-
ing point selection giving us the transformation matrix, next
step is to transform the TLS cloud and uniquely mark the origin
and the axes using 4 points, one at the origin and the other three
at the individual axis. This is done by marking the points with
unique colors as shown in figure 7. The final step is to apply
the inverse of manual transformation computed with registra-
tion to the TLS cloud so it gets back to the original coordinate
system. Now we have TLS cloud with the exact location of the
HoloLens2 device embedded in it with the original reference
frame. This will be the ground truth for that particular local
cloud, this process is repeated multiple times for different local
clouds and corresponding global clouds are stored.

5.2 Error Calculation

The ground truth data was created manually by registering and
marking the location and orientation of the device in a pre-
scanned map as discussed. This map is used again to register
with local clouds but using the automatic method, now we have
the location and orientation of the device in the global cloud
with ground truth marked as shown in figure 7, and the follow-
ing four errors are calculated.
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Figure 7. Transformed Ground truth TLS cloud by
RANSAC-based registration with the location of HoloLens2
marked and ground truth points marked for error analysis, shown
in blue box. local cloud shown in figure 2 is used for registration
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Figure 8. Error Computation between ground truth and current
references

O, stands for the origin of the current estimation and Oyt is the
ground truth origin, location-error is simply the Euclidean dis-
tance between two points. The angles are calculated using the
dot product between the axes of both the references as shown
in figure 8. The following tables present error values associated
with five distinct local cloud instances observed under two dis-
tinct lighting conditions, the distances are in meters and angles
are in degrees

Good Light
Distance Alpha Beta | Gamma
(m) ) ©) )
PCD1 | 0.16 0.09 0.09 | 0.03
PCD2 | 0.14 0.01157241 | 0.01 | 0.01
PCD3 | 0.31 0.09 0.08 | 0.06
PCD4 | 0.57 0.034 0.0T | 0.03
PCD5 | 0.19 0.03 0.03 | 0.02

Table 1. Table showing error values for different point clouds
under good lighting conditions

The first three clouds include the geometries of the rooms only,
which tend to have more unique features; hence, registration
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Low light
Distance | Alpha | Beta | Gamma
(m) ©) ) )
PCDI | 0.35 0.10 0.11 0.01
PCD2 | 1.11 0.16 0.01 0.16
PCD3 | 3.92 0.11 0.04 | 0.11
PCD4 | 3.83 2.92 0.012 | 2.92
PCD5 | 0.32 0.04 0.05 | 0.04

Table 2. Table showing error values for different point clouds
under poor lighting conditions

is so precise in this case, with errors in centimeters with only
one exception of PCD3 in table 2, which is in low-light cases.
The other two are point clouds of corridors; also, their size is
small, hence there are less unique features, in low illumination
the algorithm tend to perform poorly. This analysis showcases
the fact that this approach to localization is a viable option for
future navigation systems for indoor environments.

6. Conclusion

In conclusion, this study focuses on advancing localization in
indoor environments through registration methods utilizing data
captured by the Microsoft HoloLens 2. By harnessing the device’s
precise spatial mapping capabilities via depth sensing, we suc-
cessfully generated a comprehensive point cloud representa-
tion of the surrounding environment employing the Truncated
Signed Distance Function (TSDF) integration technique. Our

primary achievement lies in the effective alignment of the HoloLens

2-generated cloud with data acquired from Terrestrial Laser Scan-
ners (TLS), facilitated by an optimized Iterative Closest Point
(ICP) algorithm augmented with a Robust Random Sample Con-
sensus (RANSAC) based feature matching technique. This re-
finement significantly enhances the accuracy and efficiency of
the registration process. Furthermore, this methodology ex-
hibits promising results in localizing local clouds within the
pre-scanned map of the environment. A straightforward yet
robust error analysis method is also implemented that is cap-
able of evaluating localization accuracy across varying lighting
conditions. This study holds profound implications for a mul-
titude of fields, including robotics, autonomous vehicles, and
industrial automation. Despite constituting a modest contribu-
tion, the transformative potential of mixed reality applications
is undeniable, promising significant advancements across di-
verse domains.
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7. Appendix

Some additional results from registration are shown

Figure 9. Registration result for another local cloud

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI11-4-2024-107-2024 | © Author(s) 2024. CC BY 4.0 License. 111



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22—-25 October 2024, Fremantle, Perth, Australia

Figure 10. Registration result for another local cloud

Figure 11. Registration result for another local cloud
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