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ABSTRACT: 

Accurate information on cropland changes is critical for monitoring arable land minimum, ensuring national food security, and 
grasping the situation of agricultural production and supply. The change detection using remote sensing images is one of the main 
methods for quickly extracting cropland changes. However, existing methods were highly susceptible to seasonal differences due to 
the high heterogeneity of cultivated land. In this study, an integrated framework was proposed to perform change detection by 
incorporating phenological patterns and multi-source  remote sensing images.There were two improvements in this proposed 
cropland change detection method: 1) the multi-source remote sensing images were utilized to fill the missing data within a time-
series image stack by considering phenological patterns of cropland and 2) the Seq2Seq model considering phenological patterns was 
developed to extract changes in cropland directly. Compared to the traditional change detection methods, the proposed strategy was 
able to detect change process. Experiments demonstrated that the proposed method can significantly improved change detection 
accuracies, given a limited number of labeled samples. 

1. Introduction

Cropland is the basic resource and condition of human existence, 
and its quantity and quality are an important basis for ensuring 
global food production security. Cropland areas are also among 
the main driving factors of global environmental changes, 
which can have wide-ranging and far-reaching impacts on 
biogeochemical cycles, hydro geochemistry, global warming, 
ecosystem function, and human health (Gomez et al. 2016). 
However, worldwide cropland changes have occurred during 
the past decades due to urban expansion, land desertification, 
and reforestation. Therefore, timely, accurate, and cost-effective 
cropland change detection is critical for agricultural and 
environmental sustainability,greenhouse gas emissions, 
effective policy management, and decision-making  

Remote sensing has been widely used for measuring the spatial 
distribution and change analysis of large-scale cropland due to 
its advantages of macroscopic, efficient, and 
convenient(Tewkesbury et al., 2015; Hussain et al.,2013; 
Kumar et al., 2021). In the past few decades, scholars both 
domestically and internationally have proposed various change 
detection methods, such as direct comparison method, change 
vector analysis method, and post classification comparison 
method (Lu et al., 2016; Song et al., 2016; Gong et al., 2015). 
However, these traditional methods were highly susceptible to 
random interference factors and seasonal differences, resulting 
in pseudo changes in cropland. These pseudo changes include 
changes in the growth status of cropland, changes in coverage, 
and other internal characteristic structure changes. The 
monitoring of dynamic changes in cropland has become 
possible due to the accumulation of massive historical remote 
sensing data. In recent years, time series change detection 
methods such as disturbance anomaly detection and continuous 
change detection have been proposed one after another 
(Kennedy, et al.,2010; Amitrano et al., 2021; Kulkarni et 
al.,2020). Although these methods have achieved good change 
detection results in specific research areas, their detection 
accuracy and efficiency were greatly limited when it comes to 
detecting changes in farmland use at the large scale and land 

parcel level. The main reason was that the characteristics of 
cropland in remote sensing images are highly heterogeneous in 
space and highly dynamic in time. Furthermore, currently these 
methods only utilized spectral spatio-temporal features and did 
not take into account the characteristics of the cropland itself. 
Therefore, pseudo changes in cropland still existed, especially 
in mountainous or hilly areas with high heterogeneity and 
fragmentation. 

In fact, there is rich phenological information hidden in the time 
series images of cropland. In the temporal space, the phenology 
of cropland shows a trend of single or multiple peaks 
distribution within the year (short-term) and periodic changes 
between years (long-term). The phenological characteristics of 
cropland can provided rich prior knowledge for eliminating 
pseudo changes (Pan et al., 2015; Xiao et al., 2009). However, 
high spatio-temporal remote sensing datasets are a necessary 
foundation for finely constructing the phenological trajectory of 
cultivated land. A single (optical) data source was highly 
susceptible to the influence of clouds and rainy weather, 
resulting in the absence of satellite coverage during critical 
periods of crop detection. Fortunately, with the rapid 
development of aerospace technology, remote sensing data of 
different spatial and temporal resolutions are experiencing 
explosive growth. These massive, multi-source remote sensing 
data not only enable continuous observation of the same area, 
but also provide detailed records of the spatio-temporal dynamic 
changes of various land features on the surface (Gim et al., 2020; 
Wulder et al., 2019; Gao et al., 2021; Gao et al., 2020).  
Meanwile, deep learning has shown its advantages in feature 
extraction and image classification, it can auto matically learn 
robust representations which could be helpful for change type 
identification (Gong et al., 2015; Kumar et al.,2021 ). The end-
to-end structure of deep learning networks allows us to directly 
obtain change detection results from multi-source remote 
sensing images without setting change thresholds. In particular, 
the Sequence to Sequence (Seq2Seq) have great potential in 
detecting cropland changes and can handle input and output 
sequences of any length.  
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However, existing deep learning network models typically 
labeled different changes as discrete change categories, such as 
cropland becoming built-up areas or water bodies. Then, there 
will be different growth states within a time series cycle, and the 
cropland states at different time nodes are mutually influential. 
The corresponding output should be a sequence that can 
represent the changes in the cropland state. For example, during 
the process of transforming cropland into built-up areas, there 
will be a bare land state (cultivated land → bare land → built-up 
areas). How to directly extract this state change from remote 
sensing image time series will be of great significance for fine-
grained dynamic monitoring of cropland. 
 
In this letter, we proposed an integrated strategy to identify 
cropland changes, regardless of the impact of variations caused 
by crop phenologies. Specifically, in order to filled the 
observation gaps for time-series data sets, multi-source remote 
sensing  images were introduced to capture the phenology 
formulation and estimates the missing values. Then, a cropland 
change detection sequence to sequence model (CropS2S) was 
proposed to generate change area according to change types. 
And, lastly, the enriched training samples can be used to feed 
the CropS2S for change process identification. 
 
The innovation of this paper includes the following three 
aspects. Firstly, due to the different imaging mechanisms and 
signal expressions, there were significant differences in the 
response positions, amplitude sizes, and temporal trajectories of 
similar ground objects in multi-source data on temporal signals, 
making it difficult to achieve deep coupling of time series to 
time series. This article used deep convolutional transformation 
networks to construct multi-source temporal signal mapping 
relationships, fully considering spatio-temporal contextual 
information, and mining the correspondence between multi-
source "sequence to sequence" to achieve the construction of 
high spatio-temporal dense datasets. 

Secondly, the time series images of cropland contained rich 
phenological information, which was the temporal feature that 
distinguishes cropland from other land types. The Seq2Seq 
model lacked attention to phenological features. In order to 
highlight the difference between changing and invariant features, 
attention mechanisms were introduced to increase the weight of 
phenological features. On this basis, constructed a "sequence to 
sequence" Seq2Seq model can effectively avoid the occurrence 
of pseudo changes. 

Finally, the pixels of changes in cropland types were very 
limited, and cropland types were particularly complex, making 
it difficult to select an ideal and sufficient number of change 
sequence samples through visual interpretation. This article 
expanded the training samples by truncating and recombining 
the sequence of cropland changes and generating adversarial 
networks. Meanwhile, unlike other change detection methods, 
this sequence model can outputed the dynamic change process 
of cropland within a certain time period, that is, the final output 
represented the dynamic change information of cropland within 
a certain time period. 

The remainder of this paper was organized as follows. Section 2 
introduceed the representation learning of cropland 
phenological and the CropS2S model in detail. Section 3 
summarized the experimental results. Finally, the conclusion 
was detailed in Section 4. 
 

 

2. Methodology 

The basic idea of the change detection was based on time-series 
trend analysis to identify changes in spectral-temporal space. 
The framework of this approach was shown in Figure 1. First, 
change indicators time series were extracted from SAR image 
and Operational Land Imager (OLI) time series. Second, we 
applied the multi harmonic model to describe the tendency and 
temporal patterns of cropland over time because the second 
harmonics was sensitive to seasonal variability and intra-annual 
change. Then, CropS2S were established as the difference 
image, and change areas were detected using trained models, as 
detailed in Sections 2.1–2.2. 
 
Firstly, based on the characteristics of high spatial heterogeneity 
and temporal dynamics of cultivated land, this project used 
principal component analysis to extract the optimal index 
sequence. Then, deep transformation networks were used to 
couple multi-source temporal data to form a high spatiotemporal 
density temporal dataset, minied temporal context information, 
and generated fine cropland phenological trajectories based on a 
multi harmonic model. Then, based on the aforementioned 
phenological trajectories, the attention mechanism was used to 
embed phenological features and complete the design and 
construction of the Seq2Seq model. Meanwhile, the network 
model loss function for phenological characteristics was 
optimized. Finally, to address the issue of sparse change 
samples in automatic extraction of change information, 
truncated amplification was used to construct change sequences, 
and adversarial networks were generated for sample 
amplification. Then, based on the constructed network model, 
extract information on changes in cropland. The input of the 
model was the change sequence in the phenological trajectory, 
and the output was a sequence of cropland change states with a 
length of T, such as the process of cropland → built-up area 
change. The size of the T value was related to the time span of 
the input sequence, the number of images included, and the 
cropland target. Determining the appropriate length of the 
output sequence was crucial for extracting information on 
cultivated land changes. 
 

 
Figure 1. Flowchart of the proposed method. 
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2.1 Multi-source Remote Sensing Images For  

Phenological Trajectory 

The temporal trajectories of vegetation indices (VI), such as the 
normalized difference vegetation index (NDVI), enhanced 
vegetation index (EVI), and land surface water index (LSWI), 
are of great significance in identifying vegetation changes or 
phenological monitoring. NDVI time series can accurately 
reflect the changes of seasonal characteristics and human 
activities and is considered to be an effective index to capture 
information changes of vegetation phenology. Therefore, we 
defined ‘phenological trajectory’ as the fitted curve through 
the NDVI time series of one year. 

Multi-temporal remote sensing imagery has been regarded as an 
effective tool to monitor phenological trajectory. But optical 
sensors often missed key stages for crop growth because of 
clouds, which poses challenges to many studies. The synergistic 
of SAR and optical data was expected to lift this problem, 
especially in areas with persistent cloud cover. However, due to 
the different characteristics of optical and SAR sensors, it is 
difficult to build a relationship between the two with most 
existing methods, let alone construct the long-time correlations 
to fill optic observation gaps using SAR data. Inspired by deep 
learning, this study presents a novel strategy to learn the 
relationship between optical and SAR time series based on the 
sequence of contextual information. To be specific, we extended 
the conventional RNN to build Multi-CNN-Sequence to 
Sequence model, and formulate the correlation between the 
optic and SAR time series sequences. Therefore, high 
spatiotemporal datasets were obtained through deep 
convolutional network models. The method as shows in Fig.2. 

 

 
Figure 2.Multi-source Remote Sensing Images for   

Phenological trajectory 
Then, to better represent the intraannual change patterns of 
cropland, the NDVI with higher sensitivity on dense vegetation 
was utilized to trace time-series signals. Numerous models have 
been applied to fill time series for land cover change analysis, 
such as the Gaussian and logistic function. However, Gaussian 
and logistic are unable to accurately fill different waveforms 
and capture growing season variations since they are always 
adapted to the upper envelope of the time series. Actually, 
cropland always owns a more complex phenology cycle, such as 
double- or triple-crop patterns within a year. Therefore, the 
harmonic model was more suitable to capture abrupt changes 
that occurred within a year. To fit vegetation index time-series 
xi,i ∈ (1,... t) and retrieve cyclic phenological dynamics, we 
have the following formulation: 

 xi = µ + Rcos( f t + d) + et                    (1) 
 
where µ was the mean of the time-series, R was the amplitude 
of variation. f was the frequency of periodic variation, d was the 
phase or horizontal offset, t mean the time period number, and 
et was the random error. Since cos( f t + d) = cos( f t) cos(d) −
sin( f t)sin(d), this model can be rewritten as 

xi = µ + a cos( f t) + b sin( f t) + et          (2) 

where a = R cos(d) and b = −R sin(d). For a time-series signal, 
we have the k multiperiodic terms with different frequencies. 
 

2.2 CropS2S Model Building 

In remote sensing temporal data, cropland contains rich 
phenological information, which is not fully and deeply applied 
in current algorithms. At the same time, cropland will have 
different states within a time series cycle, and the land use status 
at different time nodes is mutually influential. The 
corresponding output should be a sequence that can represent 
the changes in land use status. Based on this, a sequence to 
sequence (Seq2Seq) model was proposed, using attention 
mechanism to improve attention to phenological features and 
achieve output of cultivated land change status. 
 
The model was built on the basis of the Seq2Seq model and 
introduced an attention mechanism to solve the problem of 
insufficient attention to the trajectory characteristics of cropland 
phenology. This project intended to adopt a model structure as 
shown in the figure. The encoder  and decoder were composed 
of three layers of LSTM, respectively. The encoder received the 
phenological trajectory time series of pixels and extracted the 
land information contained therein. The decoder obtained a 
fixed length sequence of cultivated land change status based on 
the dynamic encoding vector ct. The LSTM used a bidirectional 
LSTM with 240 hidden layer units. In order to maintain the 
simplicity of the graph, only the "forward" LSTM was drawn. 
In addition, the design of LSTM loop feedback enabled it to 
handle any length of time series. At the same time, research was 
conducted on the network structure and number of network 
layers for automated determination of joint feature extraction of 
spatial spectral and phenological information.                   
 

3. Experiment 

3.1 Study Areas and Data Preparation 

The study area was located in the the Taihu Lake  basin, 
covering an area of 36900 square kilometers. It belongs to 
Jiangsu, Zhejiang, Shanghai and Anhui provinces (cities). It is 
the most densely populated area of large and medium-sized 
cities with the most dynamic economy in China. 

The Taihu Lake Lake basin is a dish shaped terrain with high 
surrounding, low middle, high west and low east. The western 
part of the basin is mountainous, accounting for about 20% of 
the basin area. The central and eastern parts are plain river 
networks and depressions and lakes centered on the Taihu Lake 
Lake. The north, east and south sides are affected by the 
sediment accumulation of the Yangtze River and Hangzhou Bay. 
The terrain is high, forming a dished edge. The central and 
eastern parts account for about 80% of the basin area. The the 
Taihu Lake Lake basin belongs to the subtropical monsoon 
climate zone, with four distinct seasons and abundant rainfall. 
The average annual precipitation in the basin is 1206 mm, and 
the average annual natural runoff is 18.82 billion cubic meters. 

The Landsat image of the research area in 2009 has a regional 
range of 4695 x 5052 pixels and a coverage area of 
approximately 141km x 151km. Between 2009 and 2017, due to 
the accelerated urbanization process, the built-up area of the 
research area continued to expand and the cultivated land area 
significantly decreased. To verify the effectiveness of the 
continuous change detection method, a total of 20 Landsat 
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interannual time series data and 10 SAR image from 2009 to 
2017 were collected in the study area for continuous dynamic 
monitoring of cropland. 

Remote sensing images required a certain degree of 
preprocessing before processing, in order to achieve better 
radiometry uses the Sentinel series data processing software 
SNAP  product data, there was still a large amount of thermal 
noise in GRD products that required multiple repeated 
processing. Except for image cropping using ENVI 5.3 
software, all other operations were performed using SNAP 
software. 

  
Figure 3. Study areas located in Taihu Lake 

 
3.2 Experimental Results and Discussion 

The proposed method can provided change information and 
classify image images as new images were acquired. The 
change image and classification image of the research area were 
shown in the figure. In order to highlight the continuous change 
information each year, this article used different colors to mark 
the change areas each year. From the entire change image, it can 
be seen that the study area experienced the most changes from 
2010 to 2011 (in the green area), with a significant reduction in 
arable land coverage; The second time range with significant 
changes is from 2014 to 2015 (magenta). In order to visualize 
the experimental results more clearly, this article selects two sub 
regions A and B at different positions in the study area for 
zooming in display. The timing and types of changes in 
cropland vary in different regions. 
 
Figure 5 shows the detailed change information of sub region A, 
with the first row displayed images from different years and 
Google Earth images; The second row was a change image. 
From the image, it can be seen that this area has been 
transformed from farmland to bare land since 2011 and then 
rapidly into water in 2012, with the entire transformation 
process occurring between 2011 and 2012. The blue area in the 
change image was the result of continuous change detection. At 
the same time, it can be clearly seen that the pixels in this area 
showed a periodic trend of cultivated land change from 2009 to 
2011. After the change occurred in 2011, the pixel value rapidly 
decreased, and between 2012 and 2017, it showed a trend of 
changes in the built-up area. Therefore, the proposed method 
accurately detects the time, range, and intensity of changes in 
cultivated land. 
 

 

 
Figure 4. cropland change areas from 2009-2017 

 

 

 

 
Figure 5. Region A: cropland change areas from 2009-2017  

 

Figure 6 showed the change information of sub region B, where 
Landsat images and corresponding change images were 
collected every two years. From the graph, it can be seen that 
although the types of pixel changes were from cropland to built-
up areas, the time of change was not entirely consistent. The 
cropland in region 1 has already undergone changes since 2011, 
the cropland in region 2 has been changing since 2013, and the 
cultivated land in region 3 only began to change in 2015. The 
corresponding change images show the changes from 2009 to 
2011, 2009 to 2013, 2009 to 2015, and 2009 to 2017, 
respectively. The cropland in different regions gradually 
changes at different times. In addition, the specific time and 
intensity of pixel changes in the three regions were also 
displayed on the EVI temporal trajectory. Region 1 mainly 
underwent changes in the second half of 2010, and the 
numerical range rapidly decreased from 0.4 cropland in Region 
3 only began to change in mid-2015, and the EVI time series 
trajectory fluctuated around 0 values. 

A       

B       
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Figure 6. Region B: cropland change areas from 2009-2017  

 

3.3 Accuracy Evaluation 

Due to the use of long-term data to detect changes in cropland 
in this article, it was extremely difficult to find historical 
reference data that can fully evaluated the detection accuracy. In 
the time range of 2009-2017, there were almost no data with 
higher spatial and temporal resolutions than Landsat data. In 
order to obtain the time and location of surface cover changes, 
the main source of reference data can only be Landsat data 
itself. High spatial resolution Google Earth imagery was 
beneficial for manually interpreting land cover types. Even 
though it was difficult to obtain annual Google Earth historical 
images, relatively high spatial resolution was still beneficial for 
identifying information on land cover changes. In order to 
quantitatively evaluated the accuracy of continuous change 
detection methods, this paper adopted the random box 
proportion method to evaluate the accuracy of change detection. 
Within the 30 divided grids, randomly selected 1000 training 
samples, including 500 unchanged training samples and 500 
changed training samples; Then calculated the confusion matrix 
between manual interpretation and change detection results. The 
results were shown in Table 22.  

 
Table 1. Classification results of land cover data  

From the table, it can be seen that the method proposed in this 
article achieved an overall accuracy of 93.30% and a Kappa 
coefficient of 0.87. The high leakage error of changing pixels 
may be caused by two factors. Firstly, due to the relatively 
small amplitude of some changing pixels, the continuous 
change detection method ignores these changing pixels; The 
second reason was that the pixels have changed during the 
process of building the model. At the initial modeling stage, it 
was often assumed that the pixels involved in the modeling have 
not changed. Therefore, the changing pixels involved in 
modeling are also to some extent overlooked. The occurrence of 
misclassification rate was mainly due to overfitting of the time 

series model. Overfitting can amplify the magnitude of changes 
to a certain extent, leading to misclassification of invariant 
pixels. If the data disappeared within a specific time due to 
clouds or cloud shadows, the multi harmonic model was likely 
to exhibit overfitting. 

4. CONCLUSION 

We evaluated our proposed method on a High resolution remote 
sense dataset of land cover data. The experimental resulted 
show that our proposed method outperforms traditional methods 
and achieved high accuracy in identifying cropland change. In 
addition, we conducted a sensitivity analysis to evaluate the 
impact of different factors on the performance of our method. 
The results showed that our method was robust to changes in 
the input data and the network architecture. 
 
The major contributions of this paper were summarized as 
follows: (1) our approach integrated information from multiple 
sources time-series data into a high spatiotemporal dataset, 
enabling effective fusion and mining of multi-source data. (2) In 
order to eliminate pseudo changes in cropland, the phenological 
features of cropland were introduced into deep learning models 
to improve the attention weights of features. The proposed 
method has several advantages over traditional methods. First, it 
was automated and did not require manual surveys, which can 
save time and cost. Second, it could provide a more 
comprehensive and accurate understanding of the spatial 
distribution of change. In future work, we planed to explore the 
use of additional data sources, such as INSAR data and 
Hyperspectral data, to further improve the accuracy of our 
method. Overall, our proposed method provided a promising 
approach for exploring cropland based on multi-source remote 
sensing images and cross-modal networks. 
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