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Abstract 
 

Addressing the challenges posed by climate change and meeting urban energy demands is of utmost importance in today's world. 

Building Integrated Photovoltaics (BIPV) emerges as a crucial solution for energy conservation and carbon emissions reduction in 

urban environments. However, traditional methods of assessing solar radiation on buildings using physical models are often computa-

tionally intensive and time-consuming. This paper introduces a novel hybrid approach that integrates physical model-based solar radi-

ation calculation with machine learning techniques to analyze Solar Radiation Potential (SRP) across city-wide building infrastructure. 

The proposed approach precisely evaluates the SRP of representative blocks by leveraging computing-intensive physical models inte-

grated with 3D building data. Subsequently, two machine learning models are developed to effectively predict the SRP of building 

roofs and facades across the entire city. To validate the efficacy of this approach, an experiment was conducted in Shenzhen, China, 

yielding insightful results. The findings reveal that Shenzhen has a huge potential for BIPV solar power generation, with mean annual 

total building roof and facade solar radiation values of 9.22 ∗ 107𝑘𝑤ℎ and 2.47 ∗ 108𝑘𝑤ℎ, respectively. It can be further observed 

that relying solely on rooftop installations is insufficient to meet electricity demand. This study not only provides an innovative alter-

native for city-wide SRP estimation by combining physical modeling and machine learning but also offers valuable insights for foster-

ing low-carbon urban environments and informing data-driven and model-driven urban planning and management strategies. 

 

 

1. Introduction 

Global warming, energy shortages, and air pollution in cities 

have profound implications for human society. Consequently, hu-

mans have reached the consensus that reducing fuel-based energy 

consumption and carbon emissions and shifting to low-carbon 

sustainable development. Solar energy, which is characterized by 

low-cost, zero-pollution, and renew-ability, has become a neces-

sity. For example, coupling with solar clean energy, electric ve-

hicles can dramatically cut transportation emissions (Tu et al., 

2019). Building Integrated Photovoltaic (BIPV) provides an al-

ternative approach towards solar cities (Ji et al., 2024; Zhu et al., 

2020). Quantifying city-wide solar radiation potential (SRP) is an 

essential task, given diverse building types and building distribu-

tion. 

 

Traditional methods for estimating SRP on earth surfaces typi-

cally utilize ray tracing or sky models. These physically-based 

models take into account solar characteristics and atmospheric 

effects to provide accurate results. Various solar radiation tools 

have been developed for estimating building SRP. For instance, 

Peronato et al. (2018) utilized the Daysim tool to analyze solar 

radiation in a high-density urban area, showing promising results. 

It was shown that the absolute time for the simulation of the tile 

at a resolution of 0.5 m (over 16 hours) is great for large-scale 

applications. These tools significantly advance solar energy re-

search but are computationally expensive for complex urban en-

vironments. 

 

Recently, there has been a shift from traditional physical model-

ling to data-driven approaches to quantification (Cao et al., 2022), 

such as solar radiation from urban buildings (Vartholomaios, 

2019). Walch et al. (2020) identified Random Forest (RF) as the 

most accurate among five popular Machine Learning (ML) mod-

els in predicting urban solar potential. Their study demonstrated 

the ability of ML-based SRP estimation. However, models 

trained with only tens of buildings exhibit poor generalization. 

They are not suitable for city-wide SRP estimation scenarios.  

 

Light detection and ranging (LiDAR) and Oblique photogram-

metry enable the acquisition of high-precision 3D urban models, 

enhancing the integration of digital and physical cities in plan-

ning and construction (Gruen, 2013). These models have been 

extensively utilized in urban energy simulation, facilitating 

highly accurate SRP analysis (Fang et al., 2021; Schrotter & 

Hürzeler, 2020). However, city-wide SRP calculations face prac-

tical challenges, especially the intensive-computing effort of 

physical models. How to couple 3D urban models, physical mod-

els, and ML for city-wide SRP should be further investigated. 

 

To fill the above gaps, this study presents a hybrid methodology 

integrating 3D buildings, a physical model, and ML. We leverage 

a physical model for high-fidelity SRP computation on repre-

sentative blocks. ML then efficiently estimates city-wide build-

ing SRP, balancing accuracy and efficiency. A city-wide experi-

ment conducted in Shenzhen, China demonstrates the perfor-

mance of the presented hybrid approach. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-119-2024 | © Author(s) 2024. CC BY 4.0 License.

 
119



 

2. Study area and data 

2.1 Study area 

The research was carried out in Shenzhen, Guangdong Province, 

China, located at approximately N22°27'～22°52', E113°46'～

114°37'. Shenzhen boasts a typical subtropical maritime mon-

soon climate, characterized by mild temperatures, ample rainfall, 

and extended sunshine. With an average of 1853 hours of sun-

shine annually, and it's noted that the daily average horizontal so-

lar radiation peaks in July at around 4.96 𝑘𝑤ℎ/𝑚2. These favor-

able natural conditions provide a robust basis for solar energy ex-

ploitation in Shenzhen. The city has set ambitious targets, aiming 

to achieve 10 million kilowatts of installed solar power capacity 

by 2025, with renewable energy accounting for 10% of its total 

energy consumption, as stated by the Shenzhen Municipal Peo-

ple’s Government. 

 

2.2 Study data 

To analyse city-wide SRP, three datasets were employed: 3D 

building data, comprehensive meteorological data, and road net-

works. The building dataset details the 3D information of 

644,307 buildings, covering the whole Shenzhen. The meteoro-

logical dataset spans from 1980 to 2018, including information 

such as temperature, humidity, wind speed, direct radiation, and 

rainfall. It offers comprehensive meteorological information af-

fecting Shenzhen’s solar radiation conditions. Additionally, road 

data was obtained using the Baidu Maps Open Platform API, in-

cluding main roads, highways, and expressways. These road data 

underwent topological processing to ensure the integrity and ac-

curacy of the road network.  

 

3. Methodology 

This study aims to assess and analyse the buildings’ SRP across 

the whole city by combining a physical model and ML with 3D 

urban models. It includes four main steps, as shown in Figure 1. 

Firstly, the whole city is divided into blocks using road network 

data. The morphology indicators for each block in terms of four 

aspects - height, area, volume and density - are calculated. Then, 

the buildings’ SRP of representative blocks is precisely calculated 

with the computing-intensive physical model. Thirdly, ML mod-

els are trained and the best models are selected to estimate the 

remained blocks. Finally, city-wide SRP is analysed based on the 

trained ML model. Details are described as follows. 

 

 

Figure 1. Overview of methodology. 

 

3.1 Physical model-based buildings solar radiation potential 
calculation 

Physical models account for various factors like direct sunlight, 

diffuse radiation, and ground reflection for accurate solar energy 

assessments. They employ standard atmospheric models, the Pe-

rez model (Perez et al., 1990) can be used to determine absorption 

coefficients and diffuse radiation components, and ray tracing al-

gorithms to calculate building shading effects. 

 

By combining the contributions from direct 𝐷𝑖𝑟(𝑥, 𝑦, 𝑧)  and 

diffuse 𝐷𝐻𝐼(𝑥, 𝑦, 𝑧) radiation, the total solar radiation at each 

point (x, y, z) is calculated as Eq (1). 

  

𝐺(x, y, z) = 𝐷𝑖𝑟(x, y, z) + 𝐷𝐻𝐼(x, y, z) (1) 

 

Direct solar radiation is computed as Eq (2). It considers atmos-

pheric transmittance, absorption coefficients, building shading 

effects, and solar incidence angle.  

 

 𝐷𝑖𝑟(𝑥, 𝑦, 𝑧) = 𝐺0 ∗ 𝐾𝑇 ∗ 𝐾𝑎 ∗ 𝐹𝑠ℎ𝑎𝑑𝑜𝑤(𝑥, 𝑦, 𝑧)
∗ 𝑐𝑜𝑠(𝜃(𝑥, 𝑦, 𝑧)) 

(2) 

 

where 𝐷𝑖𝑟(𝑥, 𝑦, 𝑧)= direct solar radiation 

𝐺0 = top-of-atmosphere solar radiation 

𝐾𝑇 = atmospheric transmittance coefficient 

𝐾𝑎 = absorption coefficient 

𝐹𝑠ℎ𝑎𝑑𝑜𝑤 = building shadow factor 

θ = solar incidence angle 

 

Diffuse radiationrefers to sunlight that has been scattered by the 

atmosphere, clouds, and surfaces. 

 

 𝐷𝐻𝐼(𝑥, 𝑦, 𝑧) = 𝐷𝐻𝐼𝑐𝑙𝑒𝑎𝑟 ∗ 𝐶𝑑𝑖𝑓𝑓𝑢𝑠𝑒 ∗ 𝐶𝑐𝑙𝑜𝑢𝑑 ∙ (1

− 𝑐𝑜𝑠3(𝑍(x, y, z)))
∗ 𝐹𝑠ℎ𝑎𝑑𝑜𝑤(x, y, z)
+ 𝐺refl(x, y, z) 

(3) 

 

where 𝐷𝐻𝐼𝑐𝑙𝑒𝑎𝑟 = clear sky diffuses 

 𝐶diffuse = atmospheric diffuse coefficient 

 𝐶cloud = cloud cover factor 

 Z = solar elevation angle 

 𝐹𝑠ℎ𝑎𝑑𝑜𝑤 = building shading factor 

 𝐺refl = ground reflection 

 

Given the representation of the urban landscape in Shenzhen, 

blocks in Futian and Longhua district are selected for training. 

These districts represent the spectrum of urban landscapes, from 

high-rise commercial centers to mixed-use suburban areas, re-

flecting Shenzhen's rapid urbanization and socioeconomic diver-

sity. Therefore, using these districts allows for capturing a broad 

range of urban morphologies and characteristics. The urban sur-

face was discretized into 2m x 2m grids to obtain 6.25 million 

building roof points and 1.67 billion building facade points across 

5613 buildings in 369 selected blocks. Solar radiation was calcu-

lated for each point considering weather data, surrounding struc-

tures, and 3D building, and finally be aggregated to the block 

level. 

 

3.2 Machine learning-based buildings SRP estimation 

Machine Learning (ML) is employed to capture the non-linear 

relationship between the morphological indicators of urban 

blocks and their overall SRP values as calculated by a physical 

model. Specifically, four features of building form—height, area, 

volume, and density—are considered. Fourteen indicators are se-

lected to quantitatively characterize each urban block, serving as 

the independent variable x. The details of these indicators are pro-

vided in Table 1. The total annual solar radiation values for all 

discrete points on building roofs and facades within a block are 

aggregated to form the dependent variable y in two separate mod-

els. Several typical ML models, including K-Nearest Neighbour, 

Support Vector Regression, Decision Tree, and Random Forest 

(RF), are trained. By comparing their accuracies, we determined 

that the RF model is the most effective for further training. This 

approach aims to estimate the overall SRP value of a block based 
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on its comprehensive morphological indicators, rather than link-

ing each SRP grid point directly to its morphological indicators. 

 

Group Variables Calculating expression 

Height 

Total Height ∑ℎi

n

i=1

 

Average Height 
1

n
∑ℎi

n

i=1

 

Height Standard 

Deviation 
√
∑ (ℎi − AVH)2n
i=1

n
 

Area 

Total Building 

Roof Area 
∑si

n

i=1

 

Total Surface 

Area 
TBRA +∑ℎli ∗

n

i=1

lli 

Roof Area Ratio 
TBRA

TSA
 

Vol-

ume 

Total Volume ∑ℎi ∗ si

n

i=1

 

Average Volume 
1

n
∑ℎi ∗ si

n

i=1

 

Surface Area 

Density 

TSA

TVV
 

Den-

sity 

Building Surface 

Fraction 

∑ si
n
i=1

Stotal
 

Building Count 

Density 

n

Stotal
 

Floor Area Ratio 
TFA

Stotal
 

Aspect ratio 
W =

∑ NAk(Bi, Bj)
Cn
2

k=1

Cn
2  

AVH

W
 

Sky View Factor 

Ω = 2π [1 −
∑ sin γj
m
i=1

m
] 

svfj

= 1 −
∑ sin γj
m
i=1

m

1

k
∑svfj

k

j=1

 

Table 1. Urban morphology indicators for machine learning-

based building solar radiation potential calculation. 

 

Note: 𝑛 represents the number of buildings in the Local Climate 

Zone, 𝑆𝑡𝑜𝑡𝑎𝑙  represents the total area of the block, ℎ𝑖 denotes 

the height of building 𝑖, 𝑠𝑖 indicates the footprint area of build-

ing 𝑖, 𝑙𝑖 signifies the perimeter of building 𝑖, and 𝑓𝑖 stands for 

the number of floors in building 𝑖. 
 

The data (Urban morphology in Table 1 and physical model SRP 

at a block level) was standardized and split for training (80%) and 

testing (20%). The model was trained on standardized data split 

8:2 for training and testing. Hyperparameters were tuned using 

10-fold cross-validation to optimize the final ML model. The co-

efficient of determination (𝑅2) and the Mean Absolute Percent-

age Error (MAPE) were used to assess the model performance. 

 

Finally, the trained ML model is used to predicate the SRP of 

building roofs and facades across the whole city. The obtained 

annual SRP can then be mapped city-wide. It facilitates the eval-

uation of renewable energy potential across different blocks and 

the associate carbon emission benefits. 

 

4. Results and Analysis 

4.1 Results of physical model-based solar radiation 
potentials 

The SRP of 369 blocks in Futian and Longhua districts were cal-

culated with a physical solar radiation model. The computation 

time of one block was approximately 10 minutes on a computer 

with an Intel Core i7-10750H processor and 16 GB of RAM. 

Consequently, evaluating the SRP for all 1671 blocks in Shen-

zhen would require around 15 days, which is impractical for 

timely decision-making. 

 

Figure 2 illustrates the building solar radiation in Futian District. 

Panel (a) presents the 3D building data of Futian, while panels (b) 

and (c) display the simulation results of solar radiation on the 

roofs and facades of buildings in selected blocks, respectively. 

Similarly, Figure 3 depicts the building solar radiation in Long-

hua District. Panel (a) shows the 3D building data of Longhua, 

with panels (b) and (c) illustrating the simulation results of solar 

radiation on the roofs and facades of buildings in certain blocks, 

respectively. Overall, blocks with significant SRP on their roofs 

also have substantial SRP potential on their facades. However, 

the total SRP of roofs is rarely greater than that of facades. 

 

In statistical terms, the average SRP values for building roofs in 

Futian and Longhua districts are around 8.61 × 107 kwh and 

8.38 × 107  kwh, respectively. Likewise, the average annual 

SRP values for building facades in Futian and Longhua are ap-

proximately 1.48 × 108kwh and 9.20 × 107kwh, respectively. 

When considering both roofs and facades together, the total SRP 

is approximately 2.34 × 108kwh for Futian, slightly exceeding 

Longhua District's total of 1.76 × 108kwh. 

 

 

Figure 2. Building solar radiation in Futian District. (a) 3D 

building data of Futian, (b) Simulation results of solar radiation 

on roofs of buildings in some blocks, (c) Simulation results of 

solar radiation on facades of buildings in some blocks. 
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Figure 3. Building solar radiation in Longhua District. (a) 3D 

building data of Longhua, (b) Simulation results of solar radia-

tion on roofs of buildings in some blocks, (c) Simulation results 

of solar radiation on facades of buildings in some blocks. 

 

4.2 Results of city-wide solar radiation potential 

For building roof SRP, the trained RF achieved an 𝑅2 of 0.80 on 

the test set (MAPE: 0.06) and 0.85 on cross-validation (MAPE: 

0.18). For building facade SRP, the RF yielded an 𝑅2 of 0.75 on 

the test set (MAPE: 0.13) and 0.70 on cross-validation (MAPE: 

0.21). These models demonstrated strong performance and are 

suitable for estimating city-wide building SRP.  

 

Using the trained model for calculating the total solar radiation 

potential of building roofs, the total value of solar radiation from 

building roofs within the city of Shenzhen was calculated. 

Figures 4 and 5 reflect the spatial distribution of the size and 

statistics of the solar radiation received by building roofs in 

different blocks, respectively. As can be seen from the figures, 

building roofs in most areas of Shenzhen have a high solar 

radiation potential, with an average value of  9.22 ∗ 107𝑘𝑤ℎ. 

The total solar radiation potential of building roofs in Yantian, 

Bao'an, Pingshan, and Longgang districts is at a higher level, and 

the total solar radiation potential of building roofs in most of the 

local climatic zones is higher than that of the whole city. total 

rooftop solar radiation potential is higher than the citywide 

average, while Nanshan, Futian and Luohu districts are relatively 

low. 

 

 

Figure 4. Spatial distribution of building roof SRP in Shenzhen. 

 

 

Figure 5. Statistical analysis of building roof solar potential by 

districts in Shenzhen. (a) Histogram of annual solar radiation 

potential of roofs in block scale. (b) District comparison of 

mean annual solar radiation potential of roofs in blocks. 

 

Using the model for calculating the total solar radiation potential 

of building facades, the total solar radiation value of building fa-

cades within the city of Shenzhen was calculated, and Figures 6 

and 7 reflect the spatial distribution of the magnitude and statis-

tics of the solar radiation received by building facades across the 

city, respectively. From the figures, it can be seen that building 

facades in most areas of Shenzhen have high solar radiation po-

tential, with an average value of  2.47 ∗ 108𝑘𝑤ℎ. The total solar 

radiation potential of building facades in Guangming and Dapeng 

New Districts is lower, and the total solar radiation potential of 

building facades in most of the blocks is lower than the citywide 

average level. 

 

 

Figure 6. Spatial distribution of building facade SRP in Shen-

zhen. 

 

 

Figure 7. Statistical analysis of building facade SRP by districts 

in Shenzhen. (a) Histogram of annual solar radiation potential of 

roofs in block scale. (b) District comparison of mean annual so-

lar radiation potential of facades in blocks. 

 

5. Discussion 

5.1 Advancing Solar Potential Assessment through 
Integrated Physical Models and Machine Learning 

This study represents a significant advancement in solar potential 
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assessment by harnessing the synergies between physical models 

and ML algorithms. Physical models excel in accurately simulat-

ing solar illumination within urban environments, providing pre-

cise insights into SRP. However, the computational demands of 

these models can be prohibitive, particularly when applied to 

large and complex datasets encompassing entire cities. In con-

trast, ML techniques offer a rapid and efficient means of as-

sessing SRP for city-wide buildings, enabling expedited deci-

sion-making processes for urban planners, architects, and gov-

ernmental agencies. By integrating physical and ML models, this 

approach capitalizes on the strengths of each method, ensuring 

both accuracy and speed in city-wide SRP analysis. This integra-

tion not only enhances the efficiency of urban planning processes 

but also enables more informed decision-making regarding solar 

energy utilization and infrastructure development. 

 

Moreover, the combination of physical and ML models addresses 

the challenge of incomplete data coverage in urban contexts. 

Physical models typically require high-precision input data, 

which may be challenging to obtain in areas with limited archi-

tectural details. ML algorithms offer a solution by partially com-

pensating for data gaps, allowing for SRP calculations even in 

regions with incomplete data coverage. In this study, ML models 

were trained using simulated solar radiation results from existing 

3D buildings, enabling assessments in areas where data was pre-

viously unavailable. 

 

Furthermore, the hybrid approach demonstrated in this study sug-

gests the potential for model generalization, implying that similar 

methods could be effectively applied to analogous urban settings. 

This not only simplifies the assessment of solar potential in di-

verse urban contexts but also enhances the scalability and ap-

plicability of solar energy planning strategies. 

 

5.2 Analysis of the rate of satisfaction of electricity demand 
in buildings 

To evaluate the photovoltaic power supply rate in Shenzhen, this 

study calculated the electricity consumption in various blocks of 

the city. The 2019 electricity consumption data used in this study 

was collected from Chen et al.'s research (2022), which calcu-

lated the actual GDP and electricity consumption within a global 

one-kilometer grid based on calibrated nighttime light data from 

1992 to 2019. The data can be accessed at 

https://doi.org/10.6084/m9.figshare.17004523.v1. This study as-

sumes a 20% conversion rate of solar energy to electricity for 

photovoltaic equipment. The electricity supply rate is represented 

by the ratio of the total solar radiation potential on building sur-

faces to the electricity demand. 

 

Figures 8 and 9 show the distribution of electricity demand satis-

faction when photovoltaic equipment is installed only on roof-

tops and facades, respectively. It can be observed that relying 

solely on rooftop installations is insufficient to meet electricity 

demand. Installing photovoltaic equipment on building facades 

can significantly improve the electricity supply rate. Promoting 

the use of building facades for photovoltaics can effectively en-

hance the utilization of renewable energy. In Dapeng New Dis-

trict and Guangming District, the supply rate is relatively low. 

Therefore, other sustainable energy generation methods, such as 

wind power, should be considered. 

 

 

Figure 8. Distribution of electricity demand satisfaction with 

photovoltaic equipment installed only on rooftops. 

 

 

Figure 9. Distribution of electricity demand satisfaction with 

photovoltaic equipment installed only on facades. 

 

5.3  Limitation and future work 

While this study had made strides in analyzing urban building 

SRP, limitations persist. Though our study has made significant 

progress in analyzing urban building SRP, we only considered 

building morphological indicator based on the available data. In-

corporating finer details, including information on building and 

road materials, could enhance the accuracy and applicability of 

the model. The inclusion of building and road material data can 

provide valuable insights into the interaction between surface 

properties and solar radiation absorption, thereby enriching our 

understanding of SRP distribution within urban areas. Further-

more, there is an opportunity to enhance the adaptability of the 

ML model across diverse environmental conditions. Expanding 

the dataset to include a broader range of climate and geographic 

regions would improve the model's robustness and generalizabil-

ity, facilitating more accurate predictions of SRP in various urban 

contexts. By addressing these limitations and incorporating finer 

data resolution, we aim to advance our understanding of urban 

SRP dynamics and contribute to more effective strategies for sus-

tainable urban development. 

 

6. Conclusion 

This study offers a novel hybrid method combining physical 

models and machine learning for efficient, city-wide building 

SRP analysis. The results of the study in Shenzhen, China, show 

that Shenzhen has a huge potential for BIPV solar power genera-

tion, with mean annual total building roof and facade solar radi-

ation values of 9.22 ∗ 107𝑘𝑤ℎ and 2.47 ∗ 108𝑘𝑤ℎ, respectively. 
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In conclusion, this study has made several significant contribu-

tions to the field of urban solar energy potential assessment and 

sustainable urban development. Firstly, by presenting a hybrid 

approach that integrates physical models with ML, we have 

achieved both accuracy and scalability in SRP mapping. This in-

novative methodology not only confirms the research paradigms 

of GeoAI but also lays the groundwork for quantitative studies of 

various complex geographic phenomena, extending its applica-

bility to diverse urban contexts. 

 

Secondly, our comprehensive city-wide assessment of SRP has 

provided valuable insights into the solar energy potential of urban 

areas. By shedding light on the SRP distribution across different 

building configurations, this research serves as a catalyst for cit-

ies to explore green building practices and adopt sustainable de-

velopment strategies. This holistic understanding of urban solar 

energy dynamics is essential for fostering a more sustainable ur-

ban future. 

 

Future research efforts can focus on enhancing simulation accu-

racy by incorporating detailed 3D model data and employing 

more accurate ML models. By addressing these aspects, future 

research endeavors can further advance the scientific basis for ur-

ban planning and management, ultimately promoting sustainable 

urban development on a global scale. 
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