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Abstract 

Mangrove and saltmarsh vegetation are two important communities in the wetland ecosystem that require continuous monitoring 
considering their ecological threats and status. Remote Sensing observation is one of the tools to monitor this community. However 
algorithms are also important for the best sensor to map it accurately. Although there is some research about eCognition-based mapping, 
a unique rule set is important to monitor this community. Considering this research gap, a unique threshold-based ruleset has been 
generated in the Random Forest Model environment. A range of vegetation indices, individual bands of Sentinel 2 and Digital Elevation 
Model (DEM) data were tested in the feature selection method to find the best features for a Random Forest (RF) model. Top three 
variables were selected and those are (a) reNDVI_A, (b) VIRE_A, and (c) SWIR1 which gave 98.37% accuracy for the test data.  A 
similar trend was found for the other three sites when they were compared with observed data. For site 1, Mangrove was 84.73%, 
Saltmarsh was 60.19%, and Mixed was 70.12% accurate. A similar trend was found for other three sites with overall accuracy 87.74 
% for site-2, 66.23% for site 3, and 72.98% for site 4. A unique ruleset for wetland extent estimation will help to map a wide range of 
areas with a very minimum level of fieldwork. It will also reduce the cost of mapping done by visual observation, measurement and 
extensive fieldwork. The results of this work will provide the necessary insight and motivation for ecologists, and environmentalists. 

1. Introduction

1.1 Introduction 

Mangroves are evergreen woody plants and grow in the inter-
tidal region in the tropics and subtropics, with a total global area 
of about 137,760 km2 (Giri et al. 2011). Saltmarsh is an intertidal 
plant community dominated by herbs and low shrubs (Adam 
1993). Although Saintilan (2009) treated them not as exclusively 
intertidal, he defined a special characteristic that apart them from 
mangroves. Mangroves and saltmarsh both play an important role 
in the coastal biodiversity and maintenance of ecological balance 
(Rasel et al 2019). However, global mangrove forests declined 
by 35% from 1980 to 2000 due to conversion to agricultural land, 
aquaculture ponds, and construction land (Giri 2016).  Similarly, 
saltmarshes have suffered a long history of reclamation for 
coastal development, being vulnerable to temperature change, 
sea-level rise and associated geomorphic and vegetation 
transitions (Saintilan and Rogers 2013). This degradation of 
saltmarshes wetlands could increase net global atmospheric CO2 
inputs by approximately 6% per year(Hopkinson et al. 2012). 
Hence wetland ecosystems including mangrove and coastal 
saltmarshes have been targeted for greenhouse gas (GHG) offset 
programs, carbon trade and habitat restoration (Emmett-Mattox 
et al. 2010; Mcleod et al. 2011). It is crucial, therefore, to monitor 
the extent of mangrove and saltmarsh against land use change 
and wetland ecosystem degradation.  

Remote sensing is one of the options to identify vegetation and 
monitor land cover changes that provides an accurate, efficient, 
and repetitive method of mapping and evaluating mangroves.  
Olmsted and Armentano (1997) mentioned the need for 
monitoring wetland vegetation and its distribution to detect 
changes in the terrestrial aquatic landscape transition. Wetland 
classification is challenging due to the fluctuation of water and is 

further complicated by the need for frequent data collection and 
high spectral and spatial resolution imagery. Because coarse 
spatial resolution images captured by satellite missions may 
produce lower image classification accuracy, especially in 
wetland areas. It is well acknowledged that due to the narrow 
spectral gap within the electromagnetic spectrum of 
hyperspectral data, there is a redundancy of information within a 
similar spectral channel. Although Sentinel-2 is not a 
hyperspectral sensor, however, there are three additional red edge 
bands within a very narrow spectral gap. In addition, two NIR 
and two SWIR bands are also within the narrow spectral channel. 
So, it is very important to check the multicollinearity (variables 
are highly correlated) within the bands.  Variable selection is a 
crucial issue in machine learning (RF) dealing with applied 
classification and regression problems (Hastie et al. 2001). The 
RF itself provides three independent variable importance 
measures, Mean Decrease Accuracy (MDA) measure, the Gini 
Purity Index, and the number of times each variable is selected ( 
Mansour et al. 2012) 

1.2 Aim and prospect of the study. 

Based on the above circumstances, our primary objective of this 
study were to develop a ruleset derived from a new Sentinel 2 
MSI that would accurately extract the area of saltmarsh and 
mangrove. A range of vegetation indices, individual bands of 
Sentinel 2 and Digital Elevation Model (DEM) data were tested 
in the feature selection method to find the best features for a 
Random Forest (RF) model. The selected variables were used in 
eCognition to set a threshold for each class. Imagery collected 
from four sites had different dates of acquisition, hence the 
reflectance value for each class also differed. Thus, a unique 
ruleset was developed from one study site (study site-1) and 
applied it to the remaining three sites to determine performance.  
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A unique ruleset for wetland extent estimation will help to map a 
wide range of areas with a very minimum level of fieldwork. It 
will also reduce the cost of mapping done by visual observation, 
measurement and extensive fieldwork associated with it. The 
results of this work will provide the necessary insight and 
motivation for ecologists, wetland groups, environmentalists, and 
remote sensing groups to shift toward the most affordable and 
freely accessible satellite imagery necessary for reliable 
mangrove and saltmarsh area estimation for wetland 
management. 
 

2. Data and Methodology 

2.1 Study site 

The four sites are located in Port Stephens, NSW, Australia (Fig. 
1), a tidally dominated drowned river within the Port Stephens-
Great Lakes Marine Park. Three sites are situated around the 
main estuaries that feed into Port Stephens (Myall River, Karuah 
River, Tillegery Creek), with the forth situated around north Arm 
Cove (Fig. 1). The dominant intertidal wetland species are 
Avicennia marina (Grey mangrove), and numerous small 
saltmarsh species including Sporobolus virginicus (Saltwater 
couch), Juncus kraussii, Sarcocornia quinqueflora (Samphire) 
and Phragmites australis (Common reed). Mapping, did not, 
however, discriminate among species and instead classified only 
mangrove and saltmarsh habitats. 
 

 

 

 

 

 

 

 

 

 
2.2 Satellite imagery  

High-resolution and cloud-free satellite images from the Sentinel 
2 (10 m spatial resolution) from 2015 to 2023 and  30 m spatial 
resolution Landsat 5, 7 and 8 imagery from 1985 to 2014 were 
obtained and processed in the Google Earth Engine (GEE) cloud 
computing environment. 
Description of the dataset available in the GEE platform that are 
used to generate MaxNDVI seasonal irrigation area raster for 35 
years’ time series. 
 

2.3 Digital Elevation Model (DEM) 

Elevation data was downloaded from the ELVIS - Elevation and 
Depth - Foundation Spatial Data site, http://elevation.fsdf.org.au 
as 1 m DEM tiles. These tiles were then combined into a mosaic 
using the "Mosaic to New Raster" tool in ArcGIS 10.6.1. 
 
2.4 List of variables and vegetation indices:  

The vegetation indices that are selected for this study are mainly 
focused on NIR, SWIR and Rededge bands of Sentinel 2 data. 
Some of the indices have been modified due to the presence of 
three red edges and two SWIR bands in Sentinel-2 data (Table 2) 
 
 
Table 2: Description of  different variables 

Seria
l No 

Variable
s 

Description Reference
s 

1 -10 Spectral 
Bands 

10 Bands of Sentinel ( 10m 
resolution) 

 

11 MNDW-
1 

Modified Normalized 
Water Index-1 
(Green-SWIR1)/(Green 
+SWIR1) 

(Ji et al. 
2009) 

12 MNDWI
-2 

Modified Normalized 
Water Index-2 
(Green-SWIR1)/(Green 
+SWIR2) 

13 NDRE-1 Normalized Difference 
RedEdge Index-1 
(NIR1-
Rededge1)/(NIR+Rededge
1) 

(Eitel et 
al. 2011; 
Ramoelo 
et al. 
2015) 

14 NDRE-2 Normalized Difference 
RedEdge Index-2 
(NIR1-
Rededge1)/(NIR+Rededge
2) 

15 NDRE-3 Normalized Difference 
RedEdge Index-3 
(NIR1-
Rededge1)/(NIR+Rededge
3) 

16 SAVI Sentinel Improved 
vegetation Index 
(NIR2-R)/(NIR+R) 

(Ng et al. 
2017) 

17 RVI Ratio Vegetation Indices  
NIR1/R 

(Heuman
n 2011) 

18 VIRE-1 Vegetation Indices Ratio 
Based on RedEdge-1 
10-NIR1/(Rededge1)2 

(Xie et al. 
2008) 

19 VIRE-2 Vegetation Indices Ratio 
Based on RedEdge-2 
10-NIR1/(Rededge2)2 

20 VIRE-3 Vegetation Indices Ratio 
Based on RedEdge-3 
10-NIR1/(Rededge3)3 

21 VIRE-A 10-NIR2/Rededge1 (Xie et al. 
2008) 22 VIRE-B 10-NIR2/Rededge2 

23 VIRE-C 10-NIR3/Rededge3 
24 reNDVI-

A 
(NIR2-
Rededge1)/(NIR+Rededge
1) 

(Wolf 
2012) 

25 reNDVI-
B 

(NIR2-
Rededge2)/(NIR+Rededge
2) 

Figure-1: Study site map: Australia country boundary and 

map of New South Wales (NSW) state (Clockwise).  The main 

view picture shows the locations of four study sites in NSW. 

An RGB composite of Sentinel-2A for each study location is 

overlaid to the study sites (site1-4) vector polygon. 
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26 reNDVI-
C 

(NIR2-
Rededge3)/(NIR+Rededge
3) 

27 DEM  1 meter resolution DEM   
 
 
2.5 Extracting Image Spectra for Model Calibration.  

To apply the random forest (RF) supervised classification 
algorithm, training data for seven types of image spectra were 
collected from 70% of the pixels in Site 1. These seven classes 
are Mangrove, Saltmarsh, Mixed, Forest, Water, Grass, and 
Urban . As our classification method followed a step-by-step 
elimination strategy to map only the target three classes, we 
combined some similar non-target classes within a broad general 
category. For example, water and mudflat were considered in the 
same class, water. Due to the similar spectral properties, sand and 
urban structure were grouped in the same class, urban. The 
remaining 30% of pixels in Site 1 were used to validate the 
model. 
Three wetland vegetation classes identified in the study are 
Mangrove, Saltmarsh and mixed.  Some of the terrestrial plant 
species (termed as Forest spectra) in the area have similar spectral 
properties as mangrove species based on age and abundance. 
However in most of the cases plant species (Forest) spectra have 
significantly different spectral properties, and it was an issue at 
level 2 (Table 3) classification when all non-target (including 
forest and grass) vegetation and other abundance ( i.e. water, 
mudflat and sand/soil)  were separated from the target classes 
(mangrove, saltmarsh and mixed). 
 
2.6 Random Forest model                    

This study uses the application of the predictive model Random 
Forest (RF). Although RF models are presented in this study, it 
should be mentioned that the mapping and feature selection tool 
presented here applies the predictive models using the R package 
caret. This allows the flexibility of from several classifier-based 
algorithms with a range of feature selection method. 
 
2.6.1 Parameter optimization for random forest model 

 
RF works based on two tuning parameters, the number of trees in 
the ensemble (ntree), and the number of variables randomly 
sampled at each node to be considered for splitting (mtry) (Peters 
et al. 2002). In principle one should simultaneously optimize both 
parameters before applying them for a model development. 
However, this computation process is intractable. We used the 
‘randomForest’ library for RF classification, and Classification 
and Regression Training (Caret) packages (Kuhn 2008) for 
feature selection. R statistical software (R development core team 
2016) was used to tune the parameters, variable selection and 
execute the Random Forest Classification method.  
 
2.6.2 Random Forest variable selection 

 
Mean Decrease Accuracy: It gives a rough estimate of the loss 
in prediction performance when that particular variable is omitted 
from the training set. If two variables are somewhat redundant, 
then omitting one of them may not lead to massive gains in 
prediction performance, but would make the second variable 
more important. The Mean Decrease Accuracy measure is 
computed from permuting OOB data: For each tree, the 
prediction error on the out-of-bag portion of the data is recorded 
(error rate for classification, MSE for regression). Then the same 
is done after permuting each predictor variable. The difference 

between the two is then averaged over all trees, and normalized 
by the standard deviation of the differences. 
 
Mean Decrease Gini: GINI is a measure of node impurity, i.e. . 
If this feature is used to split the data, it will tell how pure the 
nodes will be. Highest purity means that each node contains only 
elements of a single class. Assessing the decrease in GINI when 
that feature is omitted leads to an understanding of how important 
that feature is to split the data correctly. This GINI measure is the 
total decrease in node impurities from splitting on the variable, 
averaged over all trees. For classification, the node impurity is 
measured by the Gini index. For regression, it is measured by the 
residual sum of squares.  
 
2.7 Threshold for wetland feature extraction 

Individual spectral were examined to allow a threshold for each 
class using the top-ranked features selected in the feature 
selection process. At level 1, only DEM data (Table 3) were used 
to separate wetland from the upland area. Besides the top-ranked 
features, other features were also applied to remove non-target 
classes at level 2. However, top-ranked features were only 
applied for the level 3 classification step to develop a unique 
threshold for salt marsh and mangrove area extent calculation. 
 
Table 3: Three level classification in the eCognition using 
threshold-based approaches. 
 

Leve

l 1 

Upland 

(elevatio

n ) 

Wetland (separated based on elevation ) 

          Level 2 Wetlan

d Non-

target 

class 

(remov

e grass, 

mudflat

, water 

and 

other 

forest 

within 

wetland

) 

 

Wetland Target Class ( 

Class-1:Mangrove 

Class-2:Saltmarsh 

Class-3: Mixed 

                              Level 3 Mangrove Saltm

arsh 

Mixed 

 
 
2.8 Model validation and accuracy assessment 

Object-based accuracy: The Intersect tool of ArcGIS calculates 
the geometric intersection of any number of feature classes and 
feature layers. The features, or portion of features, that are 
common to all inputs (that is, they intersect) will be written to the 
output feature class. Polygon inputs and polygon output approach 
of intersecting was used in ArcGIS 10.5 to assess object based 
accuracy. Threshold-based classification object derived from 
eCognition and microphytes dataset (polygon shape file) were 
used as inputs for every three classes (level 3). The output 
intersected layer was considered as the correct area for each class. 
In this way, individual objects were intersected with the 
microphytes data to calculate the model performance (under/over 
estimation), subsequently area was calculated for each class to 
randomly distributed within a threshold based output map to 
generate a thematic confusion matrix to calculate the  model 
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performance  ( under and over  estimation) subsequently area was 
calculated for each class to compare the results.   
 
Confusion matrix from the test sample: 30 % test data 
randomly distributed within a threshold based output map to 
generate a thematic confusion matrix to calculate the overall 
accuracy of the classified map 
 
 

3. Results and Discussion 

3.1 Identification of Image Spectra for Wetland Mapping 

Spectral profiles for Tilligery Creek (Site-1) showed that 
buildings, water and grass had highly distinctive spectral features 
compared to the other habitats (Figire 2). The Mangroves were 
clearly distinguishable species using spectra within the range of 
Rededge 2 to SWIR 2. The spectral profile of Saltmarsh’s is 
confusing with the mixed’s profile, however, they are still clearly 
separable with the spectrum of SWIR (Figure 2). Mangroves 
were only distinguishable when using bands 5-9 

 
Figure 2. The spectral profile of different classes derived from 
the calibration sample points of site-1 (Tilligerry creek). 
 
3.2 Optimum parameter of the random forest (RF) 

algorithm for wetland mapping 

Instead of default (1/3 of the total number of variables), mtry, 
lowest Out-Of-Bag (OOB) error rate was used to determine the 
best value of mtry (Figure 3). In the OOB method, some of the 
training data are excluded for each classification tree generation, 
and the errors for these data can be used to inform the RF of the 
relative strength (Dube and Mutanga 2015). 
 
From figure 3, it is clear that mtry and ntree has a very minimal 
effect on the results of accuracy. We can see that the most 
accurate value for ntree was 1500 and mtry was 13 with accuracy 
0.988. Based on the cross-validation result, mtry value =13 and 
ntree = 1500 were used in the variable selection model 
assessment. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3 Variable Selection in Random Forest 

Random Forest feature importance method was able to identify 
the smallest number of explanatory variables that would offer the 
best predictive ability of the random forest (Figure 4). Here top 
three variables were selected and those are (a) reNDVI_A, (b) 
VIRE_A, and (c) SWIR1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Out of Bag (OOB) error rate increased from 1.28 % to 1.61% 
when all 27 variables were added to the model (Table 4 a and b) 
 
Table 4a: Confusion matrix derived from 27 variables from site 
1 calibration data set. (Key: Mangrv= Mangrove, 
Salt=Saltmarsh).  

 Man
grv 

Sa
lt 

M
ix 

Wa
ter 

For
est 

Gr
ass 

Urb
an 

Accur
acy 

Man
grv 

68 0 0 0 0 0 0 100% 

Salt 0 55 2 0 0 0 0 96.00 
Mix 1 5 36 0 0 0 0 85.71 
Wat
er 

0 0 0 107 0 0 0 100 

Fore
st 

0 0 0 0 198 0 0 100 

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10

R
ef

le
ct

an
ce

 %

Bands of Sentinel-2 within the 
electromagnetic spectrum

Image spectra for each class 
in site-1 

Mangrove Saltmarsh mixed

water forest grass

urban

Figure 3. Optimization of random forest parameters (mtry 

and ntree) using training data. 

Figure 4: Shows the number of top-ranked variables to 
classify wetland area. 
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Gras
s 

0 0 0 0 0 65 0 100 

Urba
n 

0 0 0 0 0 0 86 100 

Tota
l 

69 60 38 107 198 65 86 623 
(98.7
2%) 

 
 
Table 4b: Confusion matrix derived from reNDVI_A, VIRE_A, 

and SWIR1s from Site 1 calibration data set. (Key: Mangrv= 
Mangrove, Salt=Saltmarsh).  

 Man
grv 

S
al
t 

M
ix 

Wa
ter 

For
est 

Gr
ass 

Ur
ban 

Accura
cy 

Man
grv 

67 0 0 1 0 0 0 98.52 

Salt 0 5
5 

2 0 0 0 0 96.00% 

Mix 1 5 36 0 0 0 0 85.71% 
Wat
er 

0 0 0 10
7 

0 0 0 100% 

Fore
st 

0 0 0 0 198 0 0 100% 

Gras
s 

0 0 0 0 0 65 0 100% 

Urb
an 

0 0 0 0 0 0 86 100% 

Tota
l 

68 6
0 

38 10
7 

198 65 86 623(98.
39%) 

 
 
3.4 Threshold-based classification for wetland feature 

extraction: 

The three top-ranked variables were applied at level 3 
classification to extract mangrove, saltmarsh and mixed classes. 
From the threshold value, it is clear that there is a sharp boundary 
between two classes to automate the process in eCognition. For 
example, SWIR1 value is similar between saltmarshes and mixed 
classes but there is a clear boundary for reNDVI value. Similarly, 
VIRE_A feature value for saltmarsh and mangrove are similar 
but SWIR1 and reNDVI value make a clear boundary between 
these two classes. This value resulted from a long trial and error 
method and worked for site -2 imagery as well. Because both 
study sites covered by the same Sentinel-2 imagery and there is 
a similarity of reflectance value for each class. For study site-3 
and 4 were covered by different date of Sentinel-2 image and 
have different reflectance value. That’s why for study site 3 and 
4 there was a slight modification within the value of these three 
features. For more details, readers are requested to look at the 
supplementary data provided online for site-3 and 4.       
 
Table 5: Threshold for wetland classification 

Mangrove  Saltmarsh  Mixed  

ReNDVI_A ≥ 
0.32  to  ≤ 0.50 

ReNDVI_A ≥ 

0.17  to  < 0.31 

ReNDVI_A≥ 0.32  

to  ≤ 0.41 

VIRE_A ≥ 1400   
≤ 2500 

VIRE_A≥ 500  ≤ 
1700 

VIRE_A ≥ 1000  ≤ 
1900 

SWIR1 ≤ 0.12   SWIR1 ≥ 0.15  ≤ 
0.25 

SWIR1  > 0.12  ≤ 

0.21 

 
 

3.5 Performance of Sentinel-2 derived variables for wetland 

extent map for site -1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The wetland extent maps of the study site-1 derived from the 
three Sentinel variables depicted the extent of habitats well 
compared to the field-vaildated manual-produced map (Figure 
5(a, b)). The wetland extent map produced by means of field 
survey and manual visual interpretation in 7.5 cm pan-sharpened 
near map imagery is presented in Figure 5(b), which is used as a 
reference map. However, there were some clear discrepancies, 
with the Using visual overview, Sentinel-2 including  dispersed 
scattered misclassified mangrove patches 
 
A sub-section of Site 1 is shown in Figure 6 to depict highlight 
the misclassification issue. In both maps, mangrove is well 
defined as the mangrove area is homogenous. But some pixels 
are bare (Red rectangle in figure 6a) in Sentinel-2 map as there 
no mangrove more than 50% within 10m pixel. But it was not an 
issue for near map visual map as it delineated small patches using 
high spatial resolution (6c). In addition, a mixed class of visual 
map (the black circle in 6c) was divided into saltmarsh and mixed 
two categories (the black circle in 6a) in Sentinel-2 map. It was 
clear that high-resolution manual delineated map could better 
render the creeks within the mangrove forest (Blue triangle, 6c), 
but it overestimated by Sentinel-2 data (Blue triangle, 6a). 
 
 
 
 
 
 
 
 
 
 

Figure 5: Comparison 
of (a Figure 5: 
Comparison of (a) 
Sentinel-2 and (b) 
manual visual 
interpretation based on 
field survey using near 
map imagery for 
mangrove and 

Figure 5 Comparison of Sentienl-2 wetland mapping to the 
manually drawn, field-validate map for Site 1 
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3.6 Comparison of modelled and observed area for three 

wetland features 

3.6.1 Accuracy assessment for site 1 
 
Objet based accuracy: When individual objects were intersected 
with the reference map, only 392.12 ha mangrove area were 
overlayed with the reference map. And this area for saltmarsh and 
mixed were 138.29 ha and 87.46 ha for mixed class (Table 6). 
 
Table 6: Observed and modelled areain Site-1 

Site-1 Observed 
(ha) 

Modelled (ha) Accurate 
(ha) 

Mangrove 462.740083 419.045006 392.12 
(84.73%) 

Saltmarsh 229.737205 185.505018 138.29 
(60.19%) 

Mixed  124.720018 163.220034 87.46 
(70.12%) 

Total 817.19 767.765 617.87 
(75.60%) 

When 
individual 
object was 
tested for 
each 
respective 
classes 

Difference  =817.19 - 
617.87 
=199.32 ha 

= 
651.82/81
7.19*100 
= 75.60 

% 

 
Confusion matrix from the test data: Within 129 randomly 
generated mangrove points, 123 points were accurately 
overlayed to the reference map. And for saltmarsh and mixed 
category this percentage was 87.03% and 88.00% respectively 
(Table 7). Compare to the polygon intersection method, this 
thematic matrix method provided higher accuracy for each class. 
  
Table 7 : Confusion matrix 
 

Class 
name 

Sampl
e no 

Mangro
ve 

Saltmar
sh 

Mixe
d 

Acc 
uracy 
(%) 

Mangro
ve 

129 126 0 3 97.67 

Saltmars
h 

108 2 94 12 87.03 

Mixed 50 1 4 44 88 
Total  287 129 98 59 91.98 

Overall 
accurac
y 

 
 
3.7 Wetland extent map for site-2 (Myall River estuary) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The wetland extent maps of the study site-2 produced from 
Sentinel-2 is shown in Figure 7(a) and manual visual 
interpretation map came from near map imagery is presented in 
Figure 7(b). Like as site-1, Sentinel-2 data extracted the 
mangrove extent very well (7c). Within Myall River Estuary, the 
Sentinel-2, and manual classifications precisely extracted the 
mangrove areas, with an area of 269.45 ha, and 331.06 ha, 
respectively. The saltmarsh area produced by the visual 
interpretation is 206.17 ha and 237.58 ha is by Sentinel-2 (Figure 
7c). This over estimation (7c) of saltmarsh from Sentinel-2 is 
very clear at the centre part of the map that is zoomed in figure 
7.   
 
Major discrepancy raised from the definition of the mixed class 
followed by area calculation under this category. A large portion 
of mixed class category has been identified as saltmarsh and 
zoomed in figure 8. 

 
 
Figure 8: Shows how Sentinel-2 mapping accuracy deviated from 
the observed microphytes map data for site-2 where (a) Sentinel-

0%
20%
40%
60%
80%

100%

Site-2

Observed Modelled

Figure 7: 
Comparison of 
(a) Sentinel-2 
and (b) manual 
visual 
interpretation 
based on field 
survey using 
near map 
imagery for 
mangrove and 
saltmarsh 
classification. 

Figure 6: Shows how Sentinel-2 mapping accuracy deviated 
from the observed microphytes map data for site-1 where (a) 
Sentinel-2 model map (b) nearmap imagery for that site and 
(c) High resolution manually delineated map. 
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2 model map (b) near map imagery for that site and (c) High 
resolution manually delineated map. 
 
3.8 Wetland extent map for site-3 (Bundabah Creek): 

Within the four sites, Bundabah creek is the smallest and very 
uneven sites in terms of scattered distribution of mangrove and 
saltmarsh. There are very few areas of homogenous mangrove 
that are along the creek. Due to the effect of water in 10 m pixel, 
extraction of homogenous mangrove pixels was severely 
impacted and very clear from figure 9 . Considering the creek and 
narrow water channel, high-resolution manual delineated map 
better rendered the creeks within the mangrove forest but this 
mangrove area was not well depicted in Sentinel-2 data due to 
impure pixels in terms on water. Delineation of saltmarsh and 
mixed was still an issue for study site three. According to the 
manually delineated map, mangrove, saltmarsh and mixed areas 
are with an area of 80.06 ha, 63.17 ha and 88.14 ha, respectively. 
The mangrove, saltmarsh and mixed area produced by the 
Sentinel-2 map are 80.62 ha, 60.59 and 78.55 ha respectively. 
Although from figure 9c it looks like almost 50:50 ratio, accuracy 
was severely affected due to the above reasons and will be 
discussed in the accuracy assessment section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Comparison of (a) Sentinel-3 and (b) manual visual 
interpretation based on field survey using near map imagery for 
mangrove and saltmarsh classification. 
 
 
3.9 Wetland extent map for site-4 (Correebah Island and 

Swan Island): 

 
This is the largest site among the four and has total 1820.23 ha 
area of wetland along the Karuah River. According to the 
manually delineated map, mangrove, saltmarsh and mixed areas 
are with an area of 868.84 ha, 425.83 ha and 525.55 ha, 
respectively. The mangrove, saltmarsh and mixed area produced 
by the Sentinel-2 map are 620.02 ha, 258.99 ha and 679.97 ha 
respectively. Using visual overview, Sentinel-2 data extracted the 

mangrove extent less (10) compare to the visual map, a similar 
trend was for saltmarsh. But it was reverse for mixed were mixed 
was overestimated (15-20% more). One of the important features 
of this site is it has a major part covered by mudflat or muddy 
area within mangrove. This is the most important reason that 
effects on mangrove area estimation. In the manual delineation 
map this muddy area was included within a habitat either 
mangrove or mixed. But in Sentinel-2 this area has been removed 
at layer 2 mapping stage in eCognition when all non-target area 
has been excluded from the target features. 
 

 
 
Figure 10: Comparison of (a) Sentinel-2 and (b) manual visual 
interpretation based on field survey using near map imagery for 
mangrove and saltmarsh classification. 
 

3.10 Performance of threshold based technique for wetland 

extent mapping 

Developing an efficient framework for mapping mangroves is 
tricky due to their growth behavior and  requires a deep 
understanding of the spectral, physical, and spatial distribution 
characteristic of the mangroves and surrounding wetland covers 
(Valderrama-Landeros et al. 2017; Wang et al. 2004). There is no 
universal framework for different imagery and sites for a specific 
vegetation map. In the study, we used a unique threshold-based 
approach for mangrove extent and it is reproducible. In general, 
a framework developed for a specific sensor cannot directly 
transferred to other sites because of different ecological 
characteristics of mangrove system, climate and solar altitude 
angle (Wang et al. 2018). However, in this study the unique 
ruleset was replicated to the other three sites with a very minor 
changes that asserts the ability of this framework for a state-wide 
mangrove mapping scheme. 
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The only uncertainties introduced in the accuracy comparison 
were attributed.  

(1) No clear definition of mixed, saltmarsh and mangrove
classes during the mapping process from near map data
with ground truth validation where we applied a clear
definition to separate each class from others.

(2) Bare land/ mudflat was not removed in the reference
map when it was developed in 2014/2015 (ongoing 
process). Masking of this bare and mudflat area from
the model map effects on area estimation.

4. Conclusion and recommendation

A rule-based algorithm has been presented to map wetland and 
monitor mangrove and saltmarsh extent using open source 
satellite platform. Our analysis has shown that, a rule-based 
thresholding and variable selection method improve the accuracy 
of wetland mapping. Subsequently, we discuss how data 
provided by satellite remote sensing could be most effectively 
leveraged to support mangrove and saltmarsh monitoring. 
Although it was tested sperate three sites as a pat of validation, 
application of this rule for other sites can confirm the reliability 
and robustness of the rule-based model. 
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