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Abstract：  
 
As an important energy in modern society, the stable operation of electricity is the guarantee of social and economic operation, and 
the loss caused by the damage of power facilities is immeasurable, so the regular monitoring of power facilities is indispensable. 
UAVs, with flexible flight mode, have played an important role in power inspection. With the development of UAV docks, UAV 
inspection has entered a new stage. However, due to the fixed location of the docks and limited coverage, how to achieve the optimal 
deployment of the docks with the lowest cost and full coverage of power facilities through reasonable deployment is one of the 
important issues that need to be solved at this stage of dock construction. To solve this problem, this paper proposes an energy-
driven adaptive optimization method for dock location by combining geospatial analysis with UAV performance index. The 
experiment results show that our method can achieve an efficient, reasonable and feasible optimal location for UAV dock 
deployment. 
 
 

1. Introduction 

In the past decade, global electricity demand has been 
persistently growing, boosting rapid development of clean 
energy sources such as wind, solar, and tidal power worldwide. 
The "2023 Electricity Market Report" released by International 
Energy Agency declares that global electricity demand 
increases with an annual growth rate of 3% from 2023 to 2025 
(International Energy Agency, 2023). In terms of longer 
transmission lines and more complex environments, 
periodically manual inspections for transmission lines are labor-
intensive and costly, time-consuming, and fraught with 
considerable danger. Unmanned aerial vehicles (UAVs), serving 
as low-altitude platforms capable of mounting various sensors, 
have been widely used for defect detection and operation 
assessment of transmission pylons with its flexible flight mode 
and efficient data acquisition capability (Luo et al., 2023). 
However, the limited battery capacity and communication range 
of UAVs reduce the inspection coverage, especially when 
equipped with various sensors (Li et al., 2023). To address the 
issue, UAV dock are established along transmission lines which 
alleviates the short endurance and poor adaptability to harsh 
environments of UAVs (Hassan et al., 2022; Huang and Savkin, 
2020; Liu et al., 2019; Zhang et al., 2023). Due to the fixed 
location and limited coverage of UAV docks, how to achieve 
full coverage of power facilities and optimal configuration of 
airports with the lowest cost through reasonable deployment of 
UAVs is one of the important issues that need to be solved at 
this stage of airport construction.  
 
However, the deployment of UAV docks in the field of electric 
power inspection is at outset. Liu et al (2019) realized UAV-
dock optimization deployment by simply clustering inspection 
facilities in space, which is mainly aimed at the inspection 
situation of a small number of devices. Inspired by the site 
selection problem of communication facilities(ElSayed et al., 
2022; Jin et al., 2022; Qin et al., 2022; Ribeiro et al., 2022; 
Zhang et al., 2021). Dai et al. (2023) focus on the cost of 
construction, maintenance, and inspection of docks, and thus 
define the site selection issue as a p-median problem with the 

lowest cost with principled constraints to achieve multi-
objective optimization of the lowest cost site selection. Mai et al. 
(2023) propose a quantitative analysis decision method which 
use an improved simulated annealing algorithm to build a 
minimum total cost model, achieving optimal deployment of 
UAV docks.  
 
Different from the facility deployment problem in the 
traditional two-dimensional network, the deployment of UAV 
docks is in the three-dimensional space, which needs to 
consider the capacity constraint, energy consumption, 
connectivity and other characteristics of the UAV, as well as 
external factors such as the distribution of power facilities and 
environmental conditions. Current research on UAV dock site 
selection only focuses on cost studies while ignoring the impact 
of various factors such as UAV performance and terrain 
conditions on electric power inspection, which can hardly be 
utilized in practice. Therefore, it is a great challenge that UAV 
docks are optimally deployed to comprehensively cover the 
power facilities that need to be inspected and simultaneously 
make the construction cost-effective. In response to this issue, 
this paper comprehensively considers the energy consumption, 
environmental conditions, economic costs and other conditions. 
We propose a UAV energy consumption-driven adaptive 
optimization method for dock site selection. First, based on the 
DSM and land-use data of the operation area, the candidate area 
of the dock is generated by geospatial calculation and analysis 
method. Then, a mathematical model of UAV inspection energy 
consumption is constructed by considering various 
environmental factors in the operation area and the performance 
of UAV. Meanwhile, according to the location of power 
facilities, the locations of the docks are generated by adaptive 
clustering, and the cost function is constructed. Finally, the cost 
function is optimized to achieve an efficient, rational, and 
feasible optimal site selection of UAV docks. 
 
The remainder of this paper is organized as follows. In Section 
2, the steps of the proposed method are elaborated in detail. In 
Section 3, experiments were undertaken to evaluate the 
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performance of the proposed method, after which conclusion is 
drawn at the end of this paper. 
 

2. Method 

To achieve optimal dock layout, the method proposed in this 
paper mainly includes four key steps: First, candidate areas for 
the docks are generated using geospatial computational analysis 
methods based on Digital Surface Models (DSM) and land use 
data. Then, a UAV inspection energy consumption model is 
constructed according to the performance of the UAVs. And an 
energy-driven adaptive clustering algorithm is adopted to 
generate preliminary dock locations. Finally, optimization is 
used to generate reasonable dock deployment positions. 
 

 
Figure 1. The workflow of the proposed method. 

 
2.1 Extraction of Candidate Areas for UAV Docks 

With the continuous development of Geographic Information 
System (GIS) technology, it has become an important decision-
support tool in factor evaluation, and is widely used in site 
selection research.  
 
The main principles for UAV dock deployment planning 
include ensuring the location is open and free from signal 
interference, with flat terrain, and distant from buildings and 
rivers. Based on these principles, utilizing data such as the 
locations of electrical equipment, Digital Surface Models 
(DSM), and land use/land cover (LULC) data and employing 
geospatial computational analysis methods, we can 
preliminarily obtain candidate areas that meet all the 
construction requirements. In addition to these requirements, it 
is also necessary to consider the radius of the UAV endurance 
coverage. In this study, the coordination of multiple UAV docks 
is not considered. For each dock, it is only responsible for the 
inspection target within its coverage radius. 
 
The steps of the extraction of candidate areas for UAV docks 
are shown as follows, and as illustrated in Fig.2: 
 

 
Figure 2. The workflow of the extraction of candidate areas. 

(1) Geographic computation and analysis 
Slope calculation: Slope is one of the most important 
geographical parameters in GIS, which is widely used to 
describe surface structure and analysis topographic data. In this 
paper, the slope of the inspection area is calculated using DSM 
data, and a certain threshold is set according to expert 
experience. The area with a slope greater than the threshold is 
regarded as an unsuitable area and assigned a value. 
 
According to the raster characteristics of DSM data, many slope 
calculation methods based on 3×3 moving Windows have been 
proposed by predecessors, and the third-order inverse distance 
squared weight difference algorithm has been widely used(Liu 
et al., 2004). 

 
Figure 3. 3×3 template window. 

The center of each window is an elevation point. The slope of 
the center point e in Fig.2 is evaluated by Eq.1. And The slope 
map of the inspection area is shown in the Fig.4. 
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where, Slope is the slope, weSlope  is the slope in the X direction, 
and snSlope  is the slope in the Y direction. Cellsize  indicates the 
length of the mesh. 
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Figure 4. Slope Map. 

Buffer generation: According to the radius of the UAV 
endurance coverage, buffer analysis is carried out based on the 
location distribution information of power facilities. Regions 
that are not in the buffer are treated as unsuitable regions and 
assigned a value. 
 
At the same time, the land-use map is used to generate buffer 
zones for buildings, forest, rivers and other areas, and the buffer 
areas are regarded as unsuitable areas and assigned values. 
 
(2) Multi-layer Fusion 
In order to obtain comprehensive evaluation results, weights are 
set for the above layers according to their importance, and 
different layers are superimposed to achieve the extraction of 
candidate regions. 
 
2.2 UAV Energy Consumption Model Construction 

The optimal UAV dock deployment is to achieve the goal of 
minimizing the coverage cost under the premise of full coverage. 
To model the UAV dock site selection, we define the set of 
UAV dock as N and the equipment to be inspected as P. Based 
on the definitions above, the constraints in this problem can be 
described as follows: 
 
   , 1, ;n pn N

Y p P
⊆

= ∀ ∈∑   (2) 

 
,

;
n N p P p P n Nn p p

t t E T
⊆ ⊆ ⊆ ⊆

+ ≤ ≤∑ ∑ ∑ ∑  (3) 

where the Eq.2 indicates that each equipment must be inspected 
by exactly one UAV. and Eq. 3 ensures that the inspection tasks 
must be completed within the required time, and the inspection 
capabilities of the established bases should meet the needs of 
the inspection tasks. ,n pt  represents the required time for a UAV 
to reach equipment and pt  indicates the inspection time for the 
equipment p . E  represents the continuous operational endurance 
of a UAV in a single day, which is influenced by charging 
duration and daily effective working hours. Thereinto, e  is 
defined as the single endurance duration of UAVs, T  as the 
maintenance-required completion time for inspection tasks. 
 
In this section, we transform the optimal deployment of UAV 
dock into a problem of optimization of inspection energy 
consumption. On the basis of the above constraints, the 
inspection cost function is constructed and further expressed as 
Eq.4: 

   
,

( )e p P p Pn p p
C t t n N

⊆ ⊆
= + ∈∑ ∑   (4) 

Where  ,n pt  represents the required time for a UAV to reach 
equipment and pt  indicates the inspection time for the 
equipment p  
 
2.3 Energy Consumption-Driven Adaptive Clustering 

In contrast to the site selection for UAV-based communication 
facilities, the site selection of UAV docks is more complex and 
cannot be simply defined as a set covering problem (SCP). 
Although the traditional optimization methods can cover the 
whole region, they lead to inefficient inspection and hardly 
ensure the operational safety of the power system. In addition to 
achieving all-sided coverage with the minimum number of base 
stations, it is crucial to take into account the trade-offs among 
multiple optimization objectives in actual application scenarios. 
For power facilities inspections with UAVs, the most significant 
factor is the energy consumption of the UAVs which directly 
impacts the efficiency of inspection work. Therefore, based on 
the constructed energy consumption model, we proposed an 
adaptive clustering algorithm to determine the candidate 
locations of UAV docks. The workflow is shown in Fig.5. 
 

 
Figure 5. The workflow of the optimization algorithm. 
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The input data consists of a distribution map of electrical 
equipment. The initialization of clustering is performed by 
using the maximum coverage radius r of the UAV as the 
clustering radius to cluster the electrical equipment data. After 
obtaining the cluster centers, which serve as the initial positions 
for the UAV docks, a distance matrix is calculated in 
conjunction with the distribution data of the electrical 
equipment. This matrix includes the distances between 
electrical equipment as well as the distances between the 
electrical equipment and the UAV. 
 
2.4 Optimization 

As discussed in the previous section, we can achieve the 
optimal UAV dock deployment by minimizing the energy 
consumption eC . The UAV energy consumption model has a 
large number of parameters and high complexity, so this is 
essentially a nonconvex optimization problem in a high-
dimensional space. The Monte Carlo method, also known as the 
statistical simulation method, has strong adaptability of 
performing approximate numerical calculations by taking 
random samples from a probabilistic model. However, the 
Monte Carlo method requires the sample to be independent, 
which is a relatively strict condition. The improved Markov 
Chain Monte Carlo (MCMC) algorithm (Andrieu et al., 2003) is 
suitable for the case that the probability density function is 
complex and can’t be sampled directly. It approximates a 
complex combinatorial problem to be approximated as a much 
simpler problem through statistical sampling, and is widely used 
in non-convex optimization problems for its good performance. 
Simply put, MCMC is a strategy for generating samples and 
exploring the state space using a Markov chain mechanism, 
which in turn achieves the simulation of the target distribution. 
 
The convergence of a non-periodic Markov chain is of great 
importance for the MCMC algorithm. Regardless of the initial 
distribution probability, the Markov chain always converges to 
obtain a stationary distribution, which satisfies the detailed 
balance condition, as shown in Eq. 13. 
   ( ) ( , ) ( ) ( , )i P i j j P j iπ π=    (5) 
where P  is the status transition matrix of the Markov chain, 
and the probability distribution ( )xπ  is the stationary 
distribution of the matrix P . 
 
However, in general, it is difficult to obtain the matrix 
corresponding to the stationary distribution from the detailed 
balance condition, as the transition matrix may not satisfy the 
detailed balance condition. Therefore, MCMC sampling 
introduces the parameter of acceptance rate   to induce   and   
satisfy the detailed balance condition. 
  ( ) ( , ) ( , ) ( ) ( , ) ( , )i Q i j i j j Q j i j iπ α π α=   (6) 

( , )j iα  satisfies the following two conditions: 

   ( , ) ( ) ( , )
( , ) ( ) ( , )
i j j Q j i
j i i Q i j

α π
α π

=
 =

   (7) 

From this, we can obtain the target matrix   by multiplying any 
Markov chain status transition matrix by ( , )j iα : 
   ( , ) ( , ) ( , )P i j i j Q i jα=    (8) 
However, for complex problems, the traditional MCMC has the 
limitation that its sampling efficiency decreases sharply when 
the acceptance rate is small. The proposed Metropolis-Hastings 
algorithms solve this problem, and the MH algorithm achieves 
the efficiency improvement by improving the acceptance rate as 
shown in Eq. 9. 
   ( ) ( , )( , ) min{ ,1}

( ) ( , )
j Q j ii j
i Q i j

πα
π

=   (9) 

In this paper, we achieve the optimal UAV dock deployment by 
minimizing the energy consumption. Based on the MH 
algorithm, we can perform global optimization from the detailed 
balance distribution of Markov chains. To achieve this, we 
employ the Simulated Annealing algorithm, which allows us to 
explore the search space effectively and avoid getting trapped in 
local optima. 
   

( )

( )

; 1,...,
ˆ arg max ( )

i

i

x i N
x p x

=
=    (10) 

Due to random sampling, there are few samples from the target 
region, and computational resources are wasted on exploring 
areas of no interest. So a Simulated annealing (SA) strategy is 
used in this paper for global optimization. 
 
Simulated annealing improves efficiency based on the MH 
algorithm by constructing a non-simultaneous Markov chain. 
    1/ ( )( ) iT

i x pp x∝    (11) 
where T  represents a decreasing temperature series and 
lim 0i iT→∞ = . Under the weak regularity assumption of ( )p x , 

1/ ( )Tp x  is a probability density concentrated in the set of global 
maxima of ( )p x . Also when T  tends to 0, the target distribution 

( )p x  tends to be globally optimal. 
 
Most convergence results of simulated annealing show that for a 
given T , the flush Markov transition kernel mixes fast enough, 
then the sequence T  is guaranteed to converge to the global 
maximal set of ( )p x . The detailed procedure of the simulated 
annealing algorithm is shown as follows: 
 
Algorithm: Simulated Annealing Algorithm 

 
//Input: 0 (initial temperature)T  
              ( )   f nd temperature oT e f cooling process  
             (the cooling rate), ( ) nN iteratio numberα  

 // Initialization: 0 00, ,ii T T x= = (original state) 
1: do 
2: Obtain 1ix +  via Metropolis Sampling Algorithm  

                        (input ix ;  and iT ). 
3:             00, ik s x= =  
4:             do 
5:                      Construct ms from ks  
6:                      Calculate ( ), ( ) ( )m m kE s E E s E s∆ = −  
7:                      if 0E∆ <  
8:                             1k ms s+ =  
9:                      else 
10: 

                            if  ( )0,1 i

E
Trandom e
∆

<  
11:                                   1k ms s+ =  
12:                            else 
13:                                    1k ks s+ =  
14:                      1k k= +  
15:              while  Tk L<  
16:             1 1i kx s+ +=  
17:        1i iT Tα+ =  
18:         1i i= +  
19: while i fT T> or i N≥  
20: //Output:  1ix +  
 

3. Experiment 

3.1 Data Description 

The experimental data used in this paper includes 153 High-
Voltage pylons located in in Yangjiang City, Guang Dong 
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Province, China, with an area of 32km2, which include multiple 
transmission lines forming a closed loop (See red points in 
Fig.6(a)). The background satellite image is acquired from 
Google Earth with a resolution of 0.5m. Meanwhile. we take the 
global map of LULC in 2022 derived from ESA Sentinel-2 

imagery at 10m resolution from ESRI as a source data (In 
Fig.6(b)). And the ALOS World 3D 30m (AW3D30). that is a 
global DSM with a horizontal resolution of 30m (In Fig.6(c)), is 
used in our experiment. 

(a). Overview of the pylon distribution. 

(b) LULC data in 2022 (c) DSM data
Figure 6 The experimental data in this work 

3.2 Experiment Results 

Based on the method proposed in this paper, we achieve the 
optimal location of the UAV dock in the study area. The 
verification shows that the dock placement can realize efficient 
and reasonable inspection of the covered area. 

The deployment sites of the 3 UAV docks obtained by the 
algorithm locate at 112°4'42"E 21°54'39"N, 112°5'53"E 
21°54'28"N, 112°5'42"E 21°53'24"N, respectively, which cover 
all the 153 transmission power pylons in this region. As shown 
in Fig. 7, the dock 1 serves the pylons represented by blue 
points, the dock 2 serves the pylons represented by red points, 
the dock 3 serves the pylons represented by green points. 

4. Conclusion

In this paper, we comprehensively consider the energy 
consumption, environmental conditions, economic costs and 
other conditions. We propose a UAV energy consumption-
driven adaptive optimization method for dock site selection. 
First, the candidate area of the dock is generated by geospatial 
calculation and analysis method. Then, a mathematical model of 
UAV inspection energy consumption is constructed. Meanwhile, 
according to the location of power facilities, the locations of the 
docks are generated by adaptive clustering, and the cost 
function is constructed. Finally, the cost function is optimized to 

achieve site selection of UAV docks. The experiment results 
show that our method can achieve an efficient, reasonable and 
feasible optimal location for UAV dock deployment. 

In future work, we will add more variables that affect the 
deployment of the UAV docks in the energy consumption 
model, to make the model more suitable to the actual situation 
and improve the practicability of our method. 
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Figure 7. The qualitative result of dock deployment planning. 
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