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Abstract 

During the execution phase of construction projects, quality defects arise due to various factors such as human intervention, technical 
aspects, logistical issues and environmental influences. Early detection of these defects is imperative to minimize their impact and 
prevent possible delays, increased costs and safety hazards. This paper explores the effectiveness of indoor mobile laser scanners for 
geometric quality control, adhering to established European technical norms and Spanish standards. Our developed approach presents 
a simple method for rapid assessment, capable of identifying vertical deviations in columns and walls, axis deviation in columns, 
flatness deviation in horizontal planes and level deviation using LIDAR data from Mobile Mapping Systems. This methodology has 
been validated through a real-world case study, demonstrating its practical applicability. 

1. Introduction

There are different types of buildings depending on their intended 
use, such as offices, residential buildings, or industrial facilities 
(Li et al., 2022). Despite their differences, they all share the 
common requirement for periodic inspections and progress 
monitoring to ensure adherence to standards and jurisdictional 
requirements (Mirzaei et al., 2023b). However, inadvertent can 
arise due various factors at any time of the process. (Jingmond 
and Ågren, 2015) suggest that many defects in the construction 
industry stem more from internal organizational factors rather 
than technical causes. Although market factors and technical 
issues do have an impact, they are often consequences of deeper 
organizational problems. Nevertheless, (Love et al., 2022) 
propose an alternative perspective, emphasizing the significant 
impact of human factors within the context of human, technical, 
logistical, and environmental influences. They particularly 
highlight how deteriorated human cognition, such as fatigue, 
stress, or boredom, affects our capabilities and leads to errors, 
potentially compromising the quality of the final result. 
Therefore, it is imperative to quickly identify errors to prevent 
them from causing major disasters (Matthews et al., 2021). 

These errors are classified based on their geometrical and spatial 
aspects (Delval et al., 2023) and include surface-based defects, 
easily identified through visual inspection, and volume-based 
defects, which encompass dimensional discrepancies, such as 
flatness or section issues, as well as positional deviations, which 
involve XYZ position and orientation regularities like vertical 
deviation. Given our focus on geometric defects, Geometric 
Quality Control assumes a crucial role in the early identification 
of these issues during construction. Its impact lies not only in 
preventing costly rework, extensive repairs, and potential budget 
increase (Love et al., 2022) but also in ensuring the safety, 
durability, and functionality of structures (Bueno and Bosché, 
2023). However, conventional quality control methods in 
construction present significant challenges (Mirzaei et al., 
2023a). They are typically manual, inefficient, and require highly 
specialized personnel, resulting in time-consuming processes and 
increased costs. Moreover, current manual building compliance 
inspections frequently suffer from insufficient coverage, high 
costs, and reliance on subjective measurements. These 
limitations contribute to their ineffectiveness in identifying 
defects early in the construction process, leading to undetected 
issues persisting until later stages of construction or even into the 

maintenance phase (Akinci et al., 2006). Thus, there is a growing 
demand for more efficient and accurate methods to inspect 
structural works and monitor damage progression (Mirzaei et al., 
2023b). This had led to the extensive adoption of building 
information models (BIMs) generated from laser scanner point 
cloud data to ensure both, completeness, and accuracy in the 
quality control of the model (Anil et al., 2013). 

The past few decades have witnessed a dramatic drop in the price 
of scanning technologies, while simultaneously evolving into 
different types of devices, moving from the costly tripod-
mounted scanners to backpack systems, handheld devices, and 
currently, smartphone integrations. High-speed scanning 
technology evolution produces new possibilities for quick and 
automatic inspections of defects in buildings under construction. 
On one hand, Indoor Mobil Mapping Sensors are characterized 
by their high efficiency in terms of speed and data completeness, 
but still they are poor in complying with technical requirements 
related to quality control of buildings under construction. Hence, 
the success of automated construction quality inspections relies 
on finding a compromise between speed and accuracy of data 
acquisition and data accuracy. 

The present research focuses on exploring the capabilities of 
indoor mobile laser scanners for geometrical quality control 
based on the technical requirements established in existing 
norms. It introduces a method for the rapid analysis of level 
deviation, vertical deviation for walls and columns, flatness 
deviation in horizontal planes and axis deviation between 
columns. Then the methodology is validated through a real-world 
case study, which consists in a building under construction, 
demonstrating its practical application and effectiveness in 
identifying deviations and evaluating compliance with standards. 

This paper is organized as follows. Section 2 provides a review 
of different methods to automatically detecting geometric defects 
in buildings employing scanning technologies. Section 3 outlines 
the developed approach, which includes four deviation analysis: 
level, flatness, vertical and axis deviation. Section 4 reveals the 
results obtained from applying the method in a real-world case 
study. Finally, Section 5 offers concluding remarks. 
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2. Related work 

In recent years, numerous papers have focused on automatically 
detecting geometric defects in buildings under construction using 
laser scanning, with most utilizing both terrestrial laser scanners 
(TLS) and total stations. These studies have explored methods for 
identifying surface deviations, classified as dimensional defects, 
and vertical and axis deviations, classified as positional defects, 
all of them within the geometrical deviations category. Among 
these approaches, various methods have been developed to detect 
surface deviations. Damage Detection (Mohammadi, 2019), for 
instance, is a method that computes three surface descriptors 
(surface, normal, and curvature variation), each contributing to a 
probability distribution function for deviation identification. 
Then, an algorithm evaluates the potential damage by cross-
referencing anomalies identified by all descriptors. 
 
In contrast, (Suchocki et al., 2008) present two distinct 
methodologies: the Spatial Intersection and 3D polar. The Spatial 
Intersection method targets characteristic points on the surface, 
typically at the corners of the windows or other prominent 
features, forming a grid pattern for systematic observation. 
Conversely, the 3D Polar method involves measuring form a 
single position multiple point cloud. Unlike the Spatial 
Intersection, which relies on simultaneous measurements from 
multiple points, the 3D Polar method requires manually pointing 
the instrument to each observed point sequentially. This approach 
creates a detailed three-dimensional model for visualizing all the 
deviations. 
 
Other authors have devised approaches such as Flatness Quality 
Assessment (Fu et al., 2022) for evaluating, specifically, concrete 
surfaces. This method entails capturing point cloud data, fitting 
planes to establish a reference for deviation calculation and 
calculating deviations, which are subsequently visualized using 
color-coded maps. Similarly, for component surfaces, deviations 
are calculated based on reference points from as-designed 
models, which are aligned with scanned data using algorithms 
like 4PCS and IPC. Additionally, (Kim and Chang, 2014) 
propose the concrete spalling defect-detection method, which 
utilizes defect-sensitive features to identify quality issues. The 
method subdivides the surface, computes defect indices and 
establishes a diagnosis threshold based on intact subdivisions. 
Initial defect localization is followed by recursive refinement and 
defect quantification for estimating total volume loss.  
 
Recent advancements have incorporated deep learning 
techniques to enhance efficiency as seen in the Flatness Quality 
and Vertical Assessment (FQVA) method (Li et al., 2022). This 
approach to flatness assessment combines elements from both, a 
method closer to the manual measurement denoted as virtual 
ruler-based method, and the reference plane-based method. By 
calculating the distance between each point and a given reference 
plane, it allows for the identification of defects. Additionally, the 
FQVA method aids in evaluating alignment and ensuring 
compliance with standards by calculating the angle between 
normal vectors and floor surfaces in the provided point cloud 
data.  
 
Aside from techniques aimed at detecting surface deviations, 
many researchers have introduced approaches for identifying 
discrepancies between the as-planned and the as-built building 
such as the Point-to-point comparison method  (Chen and Cho, 
2018), Deviation Analysis method (Anil et al., 2013), (Moyano 
et al., 2022) method and Change Detection method (Girardeau-
Montaut et al., 2005; Park et al., 2021). The first two methods 
can identify geometric, orientation and localization errors by 

generating deviation colour-coded maps from point cloud data 
that highlight these errors according to the degree of deviation. 
(Moyano et al., 2022), employ Dynamo for deviation analysis 
and validation of effectiveness for vertical assessment. Finally, 
the change detection, examined by (Girardeadu-Montaut et al., 
2005) uses Hausdorff distance for a precise comparison between 
points. This metric measures the maximum distance between two 
sets of points, indicating their spatial separation, and is 
streamlined for efficiency using a light octree structure. This 
approach was further enhanced by (Park et al., 2021), which 
introduced an approach based on Modifiable Nested Octree 
(MNO) that subdivides 3D space into cubic cells enabling 
comparisons between similar elements in point cloud analysis 
providing a binary answer if the element is compliant on non-
compliant with the standards. 
 
Furthermore, ASDMCon (Advances Sensor-based Defect 
Management on Construction sites) is a model-based approach 
that employs feature-ontology and an attribute-ontology for 
identifying deviations, mapped to specific attributes or features 
(Akinci et al., 2006). Moreover, End-to-End method (Mirzaei et 
al., 2023a) automates extracting and assessing building structural 
members from point clouds. It utilizes distribution patterns and 
cross-section shapes of beams, columns and bracings for accurate 
detection. Through semantic segmentation and alignment, the 
method improves segmentation accuracy and obtains dimensions 
of the detected structural members. 
 
Building on advancements in point cloud analysis, (Dąbrowski 
and Hubert Zienkiewicz, 2022) highlight the significance of 
considering factors such as height, inclination angle and 
symmetry axis offset to ensure precise outcomes when 
employing the Point Cloud Spatial Expansion (PCSE) method. 
This method rectifies inclination and extends the point cloud for 
comprehensive analysis, enabling detailed evaluation of 
geometric properties and symmetry parameters. Subsequent 
studies by (Dabrowski, 2022) focused on utilizing the PCSE 
method to introduce verticalization of point clouds, addressing 
distortions caused by inclined axes of sloped symmetrical 
objects. Utilizing Errors-In-Variables estimation ensured 
accurate determination of the symmetry axis. Extending this 
work, (Dabrowski et al., 2023) enhanced the method for 
evaluating the asymmetry and regularity of complex objects by 
estimating the symmetry axis through the identification of wall 
planes using RANSAC algorithm and their cross-section 
centroids. 
 
Finally, recent research advancements in computer vision, 
machine learning and structural engineering, as highlighted by 
(Spencer et al., 2019), are transforming inspection and 
monitoring applications. The effectiveness of vision algorithms, 
including deep learning and optical flow, along with technologies 
like remote cameras and UAVs, aims to automate data pre-
processing for improved infrastructure assessment efficiency. 
Ongoing research in condition-aware models, synthetic data 
generation and video estimation promises time-efficient, cost-
effective and automated civil infrastructure monitoring, 
enhancing city safety and resilience. 
 

3. Method 

3.1 Preprocessing 

Depending on the input point cloud, a preprocessing step may be 
required, including spatial subsampling, noise removal, or both. 
Spatial subsampling involves reducing the number of points to 
facilitate handling the point cloud, by specifying the minimum 
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distance between two points. Noise removal entails eliminating 
unnecessary points, such as trees, artifacts, or other irrelevant 
environmental features. 
 
3.2 Segmentation 

Following the preprocessing, the point cloud is segmented to 
detect the floor and ceiling. For this purpose, we employ the well-
known RANSAC algorithm used to estimate the best fitting plane. 
Properly tuning the parameters of the RANSAC algorithm, 
including minimum number of points for a model, iteration 
count, and distance threshold, is essential for achieving the best 
results given their impact on accuracy, computation time, and 
robustness in noisy data. 
 
3.3 Level deviation analysis 

Next in line is to calculate level deviation, which denotes the 
vertical deviation from the actual position of point, line, or plane, 
concerning the basic position of a reference horizontal plane. 
Level evaluation is analysed for both single-storey (figure 1.a) 
and multi-storey (figure 1.b) buildings. Since both the floor and 
the ceiling are expected to be flat, we use RANSAC-based point 
fitting techniques for creating each plane to extract their 
parameters. Moreover, we employ equation 1 (where A, B, C and 
D are the plane parameters and x, y and z are each point 
coordinates) to calculate the distance (d) from each point (P) to 
the fitted plane (π) to evaluate the level deviation.  
 

 
Figure 1. Level deviation analysis. (a) Multi-storey building, (b) 

Single-storey. H is the total height of the building; h is the 
height of each floor and Δ is the admitted tolerance. 

 

𝑑𝑑 (𝑃𝑃,𝜋𝜋) =
|𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷|

�𝐴𝐴2 + 𝐵𝐵2 + 𝐶𝐶²
     (1) 

 
Assuming that the fitted planes represent the real surfaces of the 
floor and the ceiling, we must only consider the distances that 
define the usable space between them to verify the height 
according to the standards. The points within the functional space 
are positioned above the fitted floor plane and below the fitted 
ceiling plane (green coloured crosses in figure 2), allowing us to 
dismiss irrelevant points outside these boundaries. This process 
requires spatially distributing the level deviation measurements 
across the entire horizontal surface of the floor plan by projecting 
the points on the plane and extracting the sign of each calculated 
distance. 

 
Additionally, the final step in level deviation analysis involves 
checking the parallelism of both planes using dot product 
definition and once confirmed, the distance between the planes is 
calculated to assess any deviation employing equation 2 (where 
A, B and C are coefficients that define the normal vector and D1 
and D2 represent the offsets of each plane concerning the origin 
of the coordinates). The distance between planes is considered a 

deviation if it exceeds the limit bounds imposed by the normative 
tolerance, which are calculated as follows: the lower bound is 
[real height - tolerance] while the upper bound is [real height + 
tolerance]. The error committed by fitting the planes is taking 
into account if it exceeds the tolerance. 
 

 
Figure 2. Spatial distribution of points relative to the fitted 

planes. 
 

𝑑𝑑 (𝜋𝜋1,𝜋𝜋2) =
|𝐷𝐷2 − 𝐷𝐷1|

�𝐴𝐴2 + 𝐵𝐵2 + 𝐶𝐶²
     (2) 

 
3.4 Flatness deviation analysis 

After that, we implement an algorithm for analysing flatness 
deviation, which measures how closely a surface approaches to a 
plane (figure 3). In this case, the plane considered is horizontal, 
as we are evaluating deviations for both floor and ceiling. 
Building upon the spatial distribution of points established in the 
previous analysis, the next step in flatness deviation assessment 
is to verify whether the distances are within the global tolerance 
specified on the standards. To accomplish this, the studied 
surface must be divided into regions of 2×2 square meters, as the 
requirement applies to every 2-meter length of the surface. 
 
To proceed with this division, the point cloud surface is aligned 
with the global coordinates by employing the rotation matrix, 
which is obtained from its covariance matrix, calculated as shown 
in equation 3 (where Xi and Yi  are the coordinates of the ith point, 
𝑋𝑋� and 𝑌𝑌� are the mean values for each coordinate and n is the 
number of points in the point cloud). Afterwards, the limits of 
each square are calculated, and the points of the surface are 
iteratively processed accordingly by selecting those that fall 
within every individual square. Once all of the points are 
organized, the previously obtained distances between the points 
and the plane (equation 1) are checked. The verification process 
involves calculating the mean distance value for the points within 
each square and ensuring that the result falls within the accepted 
tolerance.  
 

 
Figure 3. Flatness deviation analysis. 
 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌) =
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)𝑛𝑛
𝑖𝑖=1

𝑛𝑛 − 1      (3) 
 

3.5 Vertical deviation analysis 

Moving forward, our attention turns to analysing the vertical 
deviation in walls and columns. Vertical deviation is the 
discrepancy between the position of a point, line, or plane and the 
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basic position of a vertical line or vertical plane reference (figure 
4). We proceed to segment the provided elements vertically into 
sections, specifying the height of each segment. After obtaining 
the vertical sections of the point cloud for the element, we 
determine its centroid by calculating the mean of each coordinate 
of the points in the cloud. 
 
Ultimately, to check if the element is vertically aligned, we have 
to select a reference, specifically the reference centroid. Initially 
it seems logical to select the lower centroid. However, after 
testing with different elements, we have noticed deviations in the 
extreme centroids that could lead false negatives. Consequently, 
the second lowest centroid is chosen as reference, achieving more 
realistic results. 
 

 
Figure 4. Vertical deviation analysis. 
 
Then, we calculate the transversal distance between the reference 
centroid and the highest centroid, taking into account that the 
verification process differs depending on whether the element is 
a column or a wall. If the element is a column, we measure the 
distance in both x and y-coordinates (figure 5.a), while if the 
element is a wall we only calculate the deviation in the direction 
of the normal vector (figure 5.b). Initially, we determine the 
orientation of the wall by fitting a plane. Then, the normal vector 
is obtained from the fitted plane parameters, and we proceed to 
calculate the distance in the established direction, obtaining the 
deviation. 
 

 
Figure 5. Transversal distance calculation: (a) For columns, (b) 
For walls. 
 
3.6 Axis deviation of free space between columns analysis 

Finally, we analyse the axis deviation, defined as the free distance 
between adjacent walls or columns, measured at a reference point 
(figure 6.a), which are the inner faces of the vertical elements. 
We begin by rotating the point cloud using the procedure 
established in the flatness deviation analysis. This rotation is 
necessary to determine the axis along which we calculate the 
distance between the adjacent elements of the same type. 
Subsequently, we segment the point cloud vertically and 
determine the centroids for each segment as in the vertical 
deviation analysis. 
 

Furthermore, deriving the dimensions of the columns from the 
point cloud data is crucial for determining the separation between 
their inner faces by integrating the dimension information with 
the centroids. The methodology varies depending on whether the 
column profile is rectangular or circular. For rectangular profiles, 
we extract the extreme points of the columns to delineate their 
boundaries and directly acquire dimensional data by calculating 
the differences between the maximum and the minimum values 
along each axis. In contrast, for circular profiles, we initially 
cluster the points using the DBSCAN algorithm. Then, it extracts 
side points, which are the subset of points representing the outer 
boundary of the cylindrical shape. These side points are used to 
calculate their bounding to determine the width, depth and height 
dimensions. These approaches allow us to calculate the 
Euclidean distance between inner faces, as shown in figure 6.b., 
where the dimensions/2 represent half the width or the depth of 
the element, depending on its alignment. Subsequently, if over 
half of measurements are within the specified threshold, we 
consider the elements compliant with the standards. 
 

 
Figure 6. (a) Axis deviation analysis, (b) Measurement between 
the faces of the columns. 
 

4. Results 

4.1 Data acquisition and pre-processing 

Finally, we check if the measured distances exceed the tolerances 
in accordance with the Spanish standard Real Decreto 470/2021, 
Annex 14 and the European norm UNE-EN 13670:2013, through 
tests conducted on a real-world case study involving two eight-
storey building under construction. The data acquisition of the 
entire building was conducted using the BLK2GO mobile laser 
scanner, which offers an indoor accuracy of ±10 mm and a range 
noise of ±3 mm at 25 m, enough for the required accuracy 
exposed in the standards. 
 
For this study, data from only one of the stories (figure 7.a) was 
utilized, as it provided sufficient information given the volume of 
points in the point cloud (312.319.284 points). We began by 
preprocessing the point cloud, focusing on subsampling to 
simplify handling, and removing any noisy points (figure 7.b). 
 

 
Figure 7. Case study: single-storey of a two eight-story building. 
(a) Raw point cloud, (b) Pre-processed point cloud 
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4.2 Segmentation 

Subsequently, we proceed with the segmentation of the point 
cloud into floor, ceiling and walls (Figure 8), employing 
RANSAC algorithm. The parameters were carefully selected to 
achieve satisfactory results. Specifically, the distance threshold 
was set to 0.1 m to ensure that points within this range were 
considered in the fitting process. Additionally, we conducted 
10.000 iterations to robustly estimate the best-fitting planes. 
 
Despite the maximum distance might appear to be large, the 
number of iterations was precisely balanced, allowing the 
algorithm to effectively converge on high-quality solutions. The 
number of iterations was carefully adjusted to obtain a 
compromise between computing time and robustness against the 
inherent randomness of the algorithm. 
 

 
Figure 8. Result of the segmentation process employing RANSAC 
algorithm. 
 
The selection of these parameters involved a series of trial-and-
error executions to ensure high reliability and consistency during 
segmentation. Adopting this detailed approach allowed the 
segmentation to provide accurate, slice-like delineation of all the 
major structures, as basis for more discussion under analysis, 
inspection and validation. 
 
4.3 Level deviation 

To introduce the findings from the level deviation, figure 9 shows 
the spatial distribution of the points, highlighting whether they 
are positioned above or below their respective fitted plane. 
Notably, the mean error committed in fitting the floor and ceiling 
planes is 0.009 m and 0.01 m, in each case, both of which remain 
below the admitted tolerance of ±0.020 m. This ensures a robust 
fit without the need to account for plane error during verification. 
 
Furthermore, the mean measured distance between the fitted 
planes, which amounts to 2.758 m, falls within the bounding box 
delineated by the theoretical height, 2.741 m, and the admitted 
tolerance. 
 

 
 Figure 9. Spatial distribution of points relative to fitted planes. 
(a) Floor, (b) Ceiling. 
 
4.4 Flatness deviation 

In the other hand, respecting to the flatness deviation, after 
calculating the covariance matrix for each surface, floor and 

ceiling, we obtained the results illustrated in the graphs of the 
figure 10. 

 
These results show a positive correlation between x (0) and y (1) 
coordinates, indicating their tendency to increase together. This 
correlation is essential for reconstructing an accurate rotation 
matrix for our point cloud data, as it informs how the points are 
oriented relative to each other. Additionally, symmetric 
covariance values further support this, suggesting similar 
variability in those coordinates. 
 

 
Figure 10. Covariance matrices. (a) Floor, (b) Ceiling. 
 
We continuously extracted the eigenvectors employing 
eigenvalue decomposition, which allowed us to identify the main 
directions for variation in the point cloud. The resulting 
eigenvectors are provided below. 
 

�−0.728 0.686
0.686 0.728� 

Floor plane eigenvectors 
�−0.727 0.686

0.686 0.727� 
Ceiling plane eigenvectors 

 

 
Figure 11. Point cloud alignment procedure. 

 
Then, we selected the eigenvector corresponding to the smallest 
eigenvalue, representing the direction of least variation. For the 
floor, the resulting eigenvector was [−0.723 0.686] and for the 
ceiling, it was [−0.727 0.686]. These values correspond to a 
variation angle of 136.78º or -43.22º (figure 11) with respect to 
the x-axis in both cases. The resulting rotation matrices obtained 
are as follows. 
 

�
−0.728 −0.686 0
0.686 −0.728 0

0 0 1
� 

Floor rotation matrix 

�
−0.727 −0.686 0
0.686 −0.727 0

0 0 1
� 

Ceiling rotation matrix 
 
Once the point cloud was aligned with the global coordinates, we 
divided both surfaces in 2x2 meters squares. We required eight 
squares along the local x-axis and 14 along the local y-axis, 
resulting in a total of 120 squares. To enhance visualization, 
every individual square is represented in a random colour (figure 
12.a and figure 12.b). Moreover, each square has been assigned 
an ID for identification. The initial square, coinciding with the 
local coordinate axis (0,0), is located in the bottom-right corner 
and the values increase while advancing along the axes. 
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Finally, we verified every square by checking if the mean 
distance between the points within each square and the fitted 
plane complied with the admitted global tolerance of ±0.015 m, 
corresponding with Unmoulded surface. In figure 12.c and 12.d, 
compliant squares are coloured in green, while non-compliant 
ones, (3,7) and (4, 10) on the floor and (4, 0), (4, 13), (5, 5), (5, 
8), (6, 5) and (6, 9) on the ceiling, are shown in red. In figure 13, 
the distance scattering for the flatness assessment is illustrated, 
revealing a maximum deviation of 0.024 m on the ceiling, 
representing a 60% increase over the permitted deviation, and a 
33% increase on the floor. Additionally, a notable number of 
measurements show deviations exceeding 50%, underscoring the 
variability present in the data. 
 

 
Figure 12. Segmentation into 2x2 square meters: (a) Floor, (b) 

Ceiling. Verification: (c) Floor, (d) Ceiling. 
 

 
Figure 13. Scattering distance for flatness deviation analysis on 

floor and ceiling 
 

4.5 Vertical deviation 

The next phase in our quality control method is the analysis of 
the vertical deviation. If the height is less than or equal to 6 m, 
the allowed deviation is ±24 mm. If the height is in the range of 
6 m to 30 m, the deviation increases ±4 times the height in 
millimetres, ensuring it does not surpass ±50 mm. For heights 
exceeding 30 m, the permitted deviation is ±5 times the height 
divided by 3 in millimetres, constrained within ±150 mm. 
Considering the height of our case study to be 2.741 m, the 
allowable deviation for the vertical elements is limited to ±24 
mm. 
 
In figure 14 we present the results for vertical deviation in two 
adjacent columns of the presented case study. First, we sectioned 
the elements into 55 vertical segments of 0.05 m of height, a 
parameter chosen based on experimentation. Shorter segments 

resulted in an excessive number of centroids, risking clarity 
visualization, while larger ones lacked structural detail. After 
examining both x and y axes for the columns, we found that in 
column 1 the deviation on the x-axis was 0.074 m and on the y-
axis was 0.020 m. As a result, column 1 fails to meet the specified 
criteria in the x direction, making it non-compliant, despite 
satisfying them in the y direction. Conversely, in column 2, the 
x-axis deviation was 0.041 m, and the y-axis deviation was 0.165 
m, resulting in failure to meet the specified criteria in both 
directions.  
 

 
Figure 14. Vertical deviation analysis in columns results. (a) 
Column 1, (b) Column 1 vertical partitioning, (c) Column 1 
centroids alignment along x-z plane, (d) Column 1 centroids 

alignment along y-z plane, (e) Column 2, (f) Column 2 vertical 
partitioning, (g) Column 2 centroids alignment in perspective 

 

 
Figure 15. Vertical deviation analysis in walls results. (a) Wall 1 
(x-axis orientation), (b) Wall 1 centroids alignment along x-z 
plane, (c) Wall 1 centroids alignment along y-z plane, (d) Wall 2 
(y-axis orientation) (e) Wall 2 centroids alignment along x-z 
plane, (f) Wall 2 centroids alignment along x-z plane. 
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The analysis then shifted to evaluating the vertical deviation of 
two walls (figure 15), each divided in 54 vertical sections of 0.05 
m of height. After fitting a plane to each one, we determined that 
wall 1 is orientated along x-axis and wall 2 is orientated along y-
axis, so we have to check verticality in the y-axis for wall 1 and 
in the x-axis for wall 2. The analysis showed a 36 mm deviation 
in wall 1, failing compliance with the standard, while wall 2, with 
a deviation of 12 mm, is undistorted. 
 
4.6 Axis deviation of free space between columns 

The remaining analysis to verify is the free space between 
columns. According with the Standards, the maximum 
permissible deviation for this assessment is determined by the 
larger value between 20 mm and l/600 mm (where l represents 
the distance between reference points in millimetres), ensuring it 
does not exceed 60 mm. 
 
In our case study, the distance between the reference points of 
column 1 and column 2 is 6.266 m, resulting in an admitted 
tolerance of ±0.020 m. Using this data, we establish a bounding 
box of [6.246, 6.286] m. Figure 16 shows the measurements of 
the free space between the columns, ranging from 6.227 m to 
6.411 m, with a maximum deviation of 2%. Those measured 
values falling within the bounding box (represented in orange) 
are highlighted in green, while those outsides are marked in red. 
Notably, consistent with our previous discussion, values closer to 
the extremes exhibit a higher degree of deviation.  
 

 
Figure 16. Measured distance between column 1 and column 2 
for axis deviation analysis. 
 

5. Conclusions 

In this paper, we have described and demonstrated a simple 
methodology for rapid geometric quality control of buildings 
under construction from point cloud data obtained with indoor 
mobile mapping scanners. By adhering to the European norms 
and Spanish standards, our approach enables the timely detection 
of deviations, ensuring project integrity. Through the 
implementation of well-known algorithms, we were able to 
identify and quantify level, vertical, flatness and axis deviation. 
 
Validation through a real-world case study confirmed the ability 
of the proposed approach to rapidly identify deviations and assess 
compliance with Real Decreto 470/2021 and UNE-UNE 
13670:2013. Notably, our approach achieved mean error levels 
within acceptable tolerances for floor and ceiling planes, 
depicting high accuracy that did not require extra errors 
consideration during verification. However, it is important to 
acknowledge the limitations of our method, particularly 

concerning the accuracy of the BLK2GO, rated at ±10 mm, which 
is not enough when measuring flatness deviation for Moulded or 
isolated surfaces, which have a tolerance of ±9 mm. 
Consequently, specific deviation detection may necessitate the 
use of a scanner with higher precision. 
 
The study supports the basis for the development of geometric 
quality control in construction and provides all the necessary 
groundwork for improving accuracy, efficiency, and compliance 
with regulations. Besides the current results, there will always be 
scope for further future work and research in this area for 
improving integrity control in construction industry. One 
potential area for research is the use of new sensors coupled to 
machine-learning algorithms, offering improved accuracy in 
identifying defect detection and efficiency in project completion 
timelines. Moreover, exploring other methodologies to detect 
deviations, such as transversal section deviation, straightness and 
curvature deviations, offset deviation, or axis deviation on 
beams, represents an important area for advancement in the field, 
as there are not many studies focused on these specific 
deviations. 
 
Additionally, applying real-time verification systems and 
continuous inspection throughout the construction activities for 
complex structural components can significantly improve the 
geometric quality control process in terms of more accurate and 
efficient predictions and proactive problem-solving. 
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