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Abstract 

 

In the process of autonomous navigation of outdoor mobile robots, four modules are involved: perception, localization, planning, and 

controlling. The perception module utilizes sensors such as cameras and radars based on various principles to analyze the robot's 

surroundings in real-time. The localization module uses GPS (Global Positioning System), IMU (Inertial Measurement Unit), and prior 

maps for real-time positioning analysis. The planning module plans optimal path based on the outputs of the first two modules, and 

the controlling module directs the robot's chassis to move along the planned optimal path. For the localization module, the accuracy of 

GPS positioning results heavily depends on weather conditions and GPS signal receptions. Even if the positioning results of imu are 

integrated, the positioning accuracy still cannot meet the needs of robot navigation. Therefore, using prior maps for repositioning can 

compensate for this accuracy deficiency. The planning module also requires path planning based on prior maps. If the a priori map 

storage is large, it will lead to difficulties in usage, maintenance, and updates. Therefore, it is crucial to research lightweight navigation 

map mapping methods. In this paper, an automatically mapping method of lightweight navigation maps is proposed, combining 

cameras and LiDAR (Light Detection and Ranging), including semantic informations necessary for outdoor navigation positioning, 

such as pole-like objects and traffic signs for robot longitudinal positioning, and lane line elements for robot lateral positioning. This 

method automatic generates robot navigation maps in Lanelet2 format, providing support for subsequent positioning and path planning 

modules. 

 

 

1. Introduction 

With the development of three-dimensional scene reconstruction 

and deep learning technologies, research combining map 

construction and semantic segmentation is becoming more 

prevalent. Various devices are primarily used for three-

dimensional reconstruction, including monocular cameras, 

binocular cameras, RGB-D depth cameras, and LiDAR. 

Semantic segmentation tasks have made significant progress 

through convolutional neural network-based methods, with 

various structures continuously enhancing the segmentation 

accuracy. 

 

Li et al. (Li et al., 2017) integrated LSD-SLAM framework with 

convolutional neural networks, selected keyframes for deep 

learning, and achieved semantic segmentation. Keisuke Tateno et 

al. (Tateno et al., 2017) utilized monocular vision to estimate 

absolute scale and used convolutional neural networks to 

generate dense semantic labels. Yi Yang et al. (Yang et al., 2018) 

used stereo vision to generate depth information, refining the 

results of semantic segmentation. Additionally, they removed 

moving objects by combining semantic labels, resulting in 

improved accuracy. Unlike binocular cameras, RGB-D cameras 

can directly generate depth information, avoiding stereo 

matching computations in SLAM solutions, presenting an 

advantage. Zhe Zhao et al. (Zhao & Chen, 2016) fused depth 

images obtained from RGB-D cameras with semantic labels to 

construct three-dimensional semantic maps of indoor scenes. 

While RGB-D cameras can directly receive depth information, 

they are sensitive to ambient light and are only suitable for small-

scale environments such as indoors, unable to handle large-scale 

outdoor environments. These SLAM (Simultaneous Localization 

and Mapping) methods are vision-based, reconstructing three-

dimensional models of the environment through stereo image 

pairs. In these methods, errors arise during three-dimensional 

reconstruction for creating the initial map of the environment, 

impacting the accuracy of the final semantic map and increasing 

computational resource consumption. LiDAR SLAM, by directly 

utilizing LiDAR point clouds for environmental mapping, can 

avoid these shortcomings. 

 

As the application scope of mobile robots continues to expand, 

the range of movement for outdoor mobile robots is also 

increasing. Therefore, the issues of the storage volume of prior 

maps and the computational load during localization cannot be 

ignored. Additionally, the maintenance of maps is also crucial. In 

practical applications, it is not feasible to frequently reconstruct 

maps as changes in roadside building appearances or seasonal 

variations in tree states can affect map usage. Overly dense and 

detailed maps can actually increase the difficulty of localization. 

Hence, simplifying map elements and storage formats to 

construct lightweight semantic maps, and then utilizing 

lightweight semantic map relocation methods, is a preferred 

solution for many road environment SLAM modules (Zhao et al., 

2019). 

 

Schreiber et al. (Schreiber et al., 2013) proposed using lane 

markings as localization clues. To achieve this, they manually 

labeled lane markings on LiDAR intensity maps, then used stereo 

cameras to detect lane markings online and match them with lane 

markings in the map. Welzel et al. (Welzel et al., 2015) and Qu 

et al. (Qu et al., 2015) used traffic signs to assist image-based 

vehicle positioning. Inspired by this, Ma et al. (Ma et al., 2019)  

proposed a lightweight localization method that does not require 

detailed knowledge about the world's appearance (e.g., dense 

geometric structures or textures). Instead, it utilizes vehicle 
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dynamics and a semantic map containing lane markings and 

traffic sign. Traffic signs provide longitudinal information, while 

lanes help avoid lateral drift. Experiments conducted over a test 

drive of over 300 kilometres showed that this method achieved a 

lateral accuracy of 0.05 meters and longitudinal accuracy of 1.12 

meters. 

 

Jie Jin et al. (Jin et al., 2018) conducted similar research, utilizing 

LiDAR data and its semantic extraction results, along with GPS 

poses, to construct semantic maps. They used GPS as an initial 

value to determine the search radius and directly searched for the 

positioning result within the search range based on the 3D 

landmark's reprojection result on images. Due to the potential 

mismatch of lane markings and traffic lights, and relatively 

sparse features, the method primarily used 2D-3D matching of 

traffic signs during initialization, which could be achieved after 

multiple frames due to the sparse distribution of traffic signs. 

 

Relocation algorithms based on prior semantic maps have been 

well-validated in underground garages, industrial parks, and 

small-scale road scenes, making them an important module in 

mobile robot research. Prior maps provide bounded error 

assurance for the localization system, serving as a reliable way to 

improve localization accuracy. Lightweight semantic maps 

address the storage and maintenance challenges of large-scale 

high-precision maps. The lightweight characteristics of 

navigation prior maps can be reflected in two aspects: 1. 

Lightweight elements, selecting a small number of elements with 

obvious geometric or texture feature. For this study, they are 

poles and traffic signs, and lane line elements. In this way, when 

using a prior map for relocation, only real-time extraction of 

these distinctive features is needed, and then matching them with 

the prior map can achieve relocation, avoiding positioning errors 

caused by unclear geographical features leading to real-time 

extraction errors. At the same time, due to the reduced number of 

map elements, the computational complexity of feature matching 

during positioning is reduced. 2. Lightweight storage format, 

using the simplest vector format to store geographic features, 

simplifying the complex world into points, line strings, and 

polygons, reducing the storage capacity of prior maps.   

 

2. Method 

In this paper, a road scene automatic mapping method is 

proposed, combining cameras and LiDAR. The image is fed into 

a lightweight semantic segmentation network BiseNETv2 

(Bilateral Segmentation Network) and SCNN (Spatial CNN) to 

provide 2D semantic information. Through the calibration of 

cameras and LiDAR, the 2D semantic information is mapped 

onto a 3D point cloud. The point cloud is used to construct a 3D 

point cloud of the scene through LiDAR SLAM, resulting in a 

3D semantic point cloud map of the scene. In the process of 

SLAM, considering the temporal and spatial character of point 

cloud semantic information, the optimization of the current frame 

point cloud semantic labels is achieved by extracting point clouds 

from previous and subsequent frames and calculating the normals 

of points. After obtaining the 3D semantic point cloud map of the 

scene, interested elements are finely extracted through denoising, 

clustering, fitting, and other methods. Finally, the 3D semantic 

point cloud of the scene is stored as a vector navigation feature 

map using the Lanelet2 map format. The framework of the entire 

system is depicted in Figure 1. 

 

 

Figure 1. Framework of the automatic mapping method. 

 

2.1 The extraction of semantic information in outdoor 

scenes 

2.1.1 2D image semantic segmentation: For real-time 

mapping, real-time semantic segmentation of scenes is required. 

Thus demanding an efficient semantic segmentation network. To 

balance accuracy and efficiency, this paper uses the BiseNETv2 

(Yu et al., 2021) with a dual-channel network structure to 

perform semantic segmentation on scene images. The network 

consists of three main components: Detail branch, Semantic 

branch, and Feature Fusion module. The Detail branch has fewer 

network layers but larger feature map sizes, suitable for 

extracting spatial detail information; the Semantic branch is 

relatively deeper with more down sampling operations, resulting 

in smaller feature map sizes and larger receptive fields, suitable 

for extracting high-level semantic information; the Feature 

Fusion module is used to merge the features of the Detail and 

Semantic branches to fully utilize the information from both 

branches. The network is trained using the cityscapes (Cordts et 

al., 2016), a publicly available road scene semantic segmentation 

dataset, which includes fine labels for 19 classes of road scene 

basic elements.  

 

To provide lateral constraints for navigation positioning, this 

paper also uses the SCNN (Pan et al., 2018) semantic 

segmentation network to extract lane line elements. In SCNN, the 

feature map obtained from the backbone network is sliced and 

convoluted in four directions (up, down, left, and right) to 

enhance spatial information fusion, and facilitate the 

segmentation tasks of elongated objects like lane line. Compared 

to the redundant data issue caused by the transmission of feature 

pixel information from various directions in traditional networks, 

the SCNN model transmits information in a sequential manner, 

where each pixel is transmitted to the next layer pixel either by 

row or by column, thereby saving significant computational time. 

The SCNN network is trained using CUlane dataset (Pan et al., 

2018), a widely used dataset for lane line detection. 

 

2.1.2 3D semantic point cloud generation：The mapping of 

2D images and 3D point clouds in the KITTI dataset involves 

each data sample containing an RGB image, a binary file of laser 

point clouds, and a calibration file. The calibration file is 

presented in floating-point form with seven rows of floating-

point sequences, each representing a calibration matrix: 𝑃rect 

(0)
，

𝑃rect 

(1)
，𝑃rect 

(2)
，𝑃rect 

(3)
，𝑅rect 

(0)
，𝑇velo 

cam 和𝑇imu 
velo .Since four cameras 
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were used during data collection in the KITTI dataset, 0 for the 

left grayscale camera, 1 for the right grayscale camera, 2 for the 

left color camera, and 3 for the right color camera. The 

𝑃rect 

(1)
matrix represents the intrinsic matrix of camera i multiplied 

by the extrinsic matrix from camera 0 to camera i, 𝑅rect 

(0)
is the 

rectifying rotation matrix of camera 0, and 𝑇velo 
cam is the extrinsic 

matrix from LiDAR to camera 0. This study utilizes the color 

monocular camera 2 and, following the KITTI dataset paper 

(Geiger et al., 2013) the 2D-3D mapping relationship is given by 

the equation: 

 

𝑦3×1 = 𝑃rect 
(2)

∙ 𝑅rect 
(0)

⋅ 𝑇velo 
cam ⋅ 𝑥4×1 (1) 

 

where  𝑦3×1 = {𝑢, 𝑣, 1}𝑇 represents the transformed RGB image 

pixel coordinates and 𝑥4×1 = {𝑥, 𝑦, 𝑧, 1}𝑇  represents the 

coordinates of the 3D point cloud.    

 

The entire projection process can be summarized as follows: 

projecting the points from the LiDAR coordinate system into the 

camera 0 coordinate system, performing projection correction for 

camera 0, projecting the points from the camera 0 coordinate 

system into the camera 2 coordinate system, and finally, based on 

the intrinsic parameters of camera 2, projecting the points into the 

pixel coordinate system of camera 2, thereby completing the 

mapping of 2D images and 3D point clouds, resulting in a 

semantic 3D point cloud. 

 

2.2 The construction of scene semantic point cloud map and 

vector navigation map 

2.2.1 LiDAR SLAM： This paper uses LeGO-LOAM (Shan 

& Englot, 2018) and the each frame of semantic point cloud 

obtained in Section 1 to construct the scene and obtain the 

semantic point cloud of the scene. Initially, the semantic point 

cloud is divided into ground points and non-ground points. Then, 

calculating the curvature of points using formula 2 and extracting 

feature plane points and feature corner points by sorting 

curvature. 

 

𝑐 =
1

|𝑠| ⋅∥ 𝑋(𝑘,𝑖)
𝐿 ∥

‖ ∑ (𝑋(𝑘,𝑖)
𝐿 − 𝑋(𝑘,𝑗)

𝐿 )

𝑗∈𝑆,𝑗≠𝑖

‖ (2) 

 

where 𝑋(𝑘,𝑖)
𝐿  is the coordinate of the point 𝑝𝑖  , 𝑋(𝑘,𝑗)

𝐿  is the 

coordinate of  𝑝𝑖’s adjacent point and s is the number of point 

𝑝𝑖’s adjacent point points excluding the point 𝑝𝑖. 

 

Feature matching is then carried out to find the corresponding 

feature plane and feature line in previous frame for each feature 

plane and feature corner point in the current frame. Minimizing 

the distance between feature points and feature lines and planes. 

This process yields the coordinate changes between the two 

frames, providing an estimate of the current frame's pose. Finally, 

the fused odometry matches the keyframe point cloud to generate 

a global point cloud, conducts scan-map loop closure detection, 

optimizes the generated map, and outputs the final pose 

estimation of each frame and the semantic point cloud of the 

scene. 

 

2.2.2 Label optimization based on semantic information: 

At this moment, every frame of semantic point cloud in the 

semantic point cloud map is obtained by 2D semantic 

segmentation and 3D point cloud mapping, where errors may 

exist leading to incorrect semantic labels of point cloud. 

Considering that the semantic information of points is temporal, 

it is possible to optimize the semantic labels of the current frame 

by using the semantic labels of the point clouds from the previous 

and subsequent frames. The semantic information of point cloud 

also has spatial characteristics, where points that are close in 

distance and have similar normal vectors tend to have the same 

semantic label. Therefore, in this study, the semantic labels of 

each key frame point cloud were optimized by combining the 

temporal and spatial characteristics of semantic labels in the 

thread of publishing maps in LeGO-LOAM. The original thread 

of publishing maps publishes local maps consisting of key frames 

within a certain range relative to the current frame based on the 

pose information of key frame point cloud. This thread runs at a 

specific frequency, and ultimately, several local maps constitute 

the global map of the scene. 

 

In this map publishing thread, this study optimized the labels for 

each current key frame point cloud 𝐹𝑝 = {𝐹1
𝑃 , 𝐹2

𝑃 . . . 𝐹𝑖
𝑃}  that 

constitute the local map. Firstly, based on the key frame estimate 

pose 𝐹𝑒 = {𝐹1
𝑒 , 𝐹2

𝑒 . . . 𝐹𝑖
𝑒} , the point clouds of the current key 

frame 𝐹𝑖
𝑃and the 3 frames before and after it were obtained to 

form neighboring point clouds 𝐹𝑖
𝑛. Then, the voxel grid of the 

neighboring point cloud 𝐹𝑖
𝑛 was partitioned with a voxel size of 

0.2, the label in each voxel was counted, and the label that 

appeared most frequently in a voxel represented that grid. Finally, 

the label of each point in the current key frame was determined 

based on the voxel it belongs to. Using this method, temporal 

optimization was achieved for the current key frame 𝐹𝑖
𝑃 , 

followed by spatial optimization of the frame's point cloud. 

Specifically, the method involved computing the 10 nearest 

neighbors of each point, comparing the normal vectors of each 

neighboring point with the point in question, counting the labels 

of neighboring point with similar normal vectors, and assigning 

the most frequent label to the point. This method achieved spatial 

optimization of the labels. 

 

2.2.3 The construction of vector navigation map：After 

obtaining the semantic point cloud map of the scene through 

SLAM, it is necessary to extract the elements of interest, such as 

lane lines, pole-like objects, and traffic signs required for creating 

a vector navigation location map, based on the semantic labels. 

Subsequently, through denoising, clustering, and line fitting 

operations, the mapping elements mentioned above were finely 

extracted to eliminate noise points and erroneous points resulting 

from inaccuracies in 2D image semantic segmentation and 3D 

point cloud mapping. Specifically, the entire point cloud 

representing the elements of interest was denoised, pole-like 

objects and traffic signs were subjected to Euclidean clustering, 

and lane lines were fitted using RANSAC for line fitting. 

 

Upon completion of the fine extraction of the elements of interest, 

the Lanelet2 map format (Poggenhans et al., 2018) was used to 

construct the vector navigation location map. The Lanelet2 map 

is a 2D vector map, consisting of basic units, including points, 

line strings, and polygons. Line strings and areas are composed 

of points, while polygons are formed by a line string. In this study, 

lane lines, traffic signs, and pole-like objects were added as 

elements in the navigation feature map. Lane lines and traffic 

signs were stored using line strings, while pole-like objects were 

stored as points. 

 

3. Experimental Result 

The KITTI dataset is the largest computer vision evaluation 

dataset in the field of autonomous driving, collected from urban, 

rural, and highway scenes. The data collection platform of the 

KITTI dataset consists of 2 grayscale cameras, 2 color cameras, 
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a 3D LiDAR-64, and a GPS navigation system. This experiment 

uses the data package from the 2011_09_26_drive_0059 

sequence in the KITTI dataset, which includes color images, 

grayscale images, 64-line LiDAR point cloud, sensor calibration 

files, and more. The duration of this sequence is 37 seconds, 

containing 379 frames of data, providing extensive information 

about cars, people, buildings, and more. In this experiment, the 

segmentation model is trained using the Cityscapes dataset. The 

Cityscapes dataset includes 2975 street scene images with dense 

labels for 19 object classes, such as roads, sidewalks, pedestrians, 

vehicles, buildings, and traffic lights. 

 

Table 1 shows the IOU and MIOU of 2D image semantic 

segmentation of 19 classes of road scene. Figure 2 display the 

results of 2D semantic segmentation and 3D point cloud mapping. 

Figure a represents the original image, while figure b shows the 

semantic segmentation of 19 classes of road scene elements. 

Figure c displays the lane line semantic segmentation, and figure 

d illustrates the 3D semantic point cloud obtained by mapping the 

2D semantic segmentation results onto the 3D point cloud. 

 

 
Figure 2. Result of 2D and 3D semantic segmentation. 

 

 

 

 

 

 

 

 

 

 

 

Num. Class IOU Num. Class IOU 

0 Road 0.979 10 Sky 0.945 

1 Sidewalk 0.83 11 Person 0.808 

2 Building 0.918 12 Rider 0.579 

3 Wall 0.465 13 Car 0.945 

4 Fence 0.56 14 Truck 0.689 

5 Pole 0.617 15 Bus 0.787 

6 Traffic 

light 

0.687 16 Train 0.75 

7 Traffic 

sign 

0.773 17 Motorcycle 0.588 

8 Vegetation 0.92 18 Bicycle 0.768 

9 Terrain 0.63    

MIOU: 0.75 

Tabel 1. Results of 2D semantic segmentation. 

 

Figure 3 demonstrate the scene semantic point cloud map 

obtained by inputting a single-frame 3D semantic point cloud 

into the LeGO-LOAM laser SLAM system, presenting two 

different perspectives of the scene semantic point cloud map. The 

"2011_09_26_drive_0059" sequence in the KITTI dataset 

depicts a straight road segment with a lane, featuring grassland, 

trees, stationary vehicles, pole-like objects, traffic signs, 

buildings, and other prominent elements along the road. 

Furthermore, the processing speed of semantic segmentation is 

around 200ms per frame, and the frequency of semantic point 

cloud input into the SLAM system is 5Hz, meeting the real-time 

requirements of the SLAM system for point cloud input. 

 

 
(a) 

 

 
(b) 

Figure 3. Semantic point cloud map of the scene from two 

perspectives. 
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Figure 4 reveal the optimized labeling results of a single frame 

point cloud, indicating misclassified points from the 2D image 

semantic segmentation and 3D point cloud mapping in gray 

within the red markers. By considering the temporal and spatial 

characteristics of point cloud semantic labels, misclassified 

points are corrected through semantic label optimization. 

 

 
(a) 

 

 
(b) 

Figure 4. Single frame semantic point cloud before and after 

label optimization 

 

The results displayed in Figure 5 show the refined extraction of 

navigation elements, the gray points represent pole-like objects, 

the yellow points represent traffic signs, and the light yellow 

points represent lane lines. Parameters set as follows: the number 

of neighboring points searched during denoising is 30, the outlier 

threshold is 5; the Euclidean clustering tolerance is 0.5, the 

minimum cluster point number is 3, and the maximum cluster 

point number is 200; the distance threshold for RANSAC line 

fitting is 0.3. The result image demonstrates that through refined 

extraction operations, most of the noise points have been 

removed, making the pole-like objects next to the lane lines 

clearly visible and guiding poles for right turns on the road also 

clearly visible. Additionally, the misclassified lane lines point 

cloud have been filtered out through line fitting. 

 

 
(a) 

 

 
(b) 

Figure 5. semantic point cloud map of elements of interest 

before and after fine extraction. 

 

Figure 6 depicts a vector map of the road drawn using the online 

mapping tool (Autoware Vector Map Builder), generating a 

vector navigation element map containing lane lines, pole-like 

objects, and traffic signs. This map is a 2D map where lane lines 

and traffic signs are stored as line strings, shown in blue in the 

image, while pole-like objects are stored as points, shown in 

yellow in the image. 

 

 
Figure 6. lightweight navigation map of the scene. 

 

4. Conclusion 

For the purpose of facilitating the storage, maintenance, and 

updating of robot prior navigation maps, this study proposes the 

concept of lightweight maps. "Lightweight maps" are mainly 

reflected in two aspects. The first aspect is to select a small 

number of map elements, which are elements with clear 

geometric or texture features, which also need to serve 

positioning and navigation. In this study, lane lines, pole-like 

objects, and traffic signs are selected as map elements. The 

second aspect is to use the most simplified vector format to store 

the prior map, thereby reducing the storage of maps. Therefore, 

this study proposes an automatically mapping method of 

lightweight navigation maps, combining data from cameras and 

LiDAR. Through experiments, this method successfully obtain a 

vector navigation map of outdoor scenes, including the three 

elements required for the subsequent  navigation and positioning. 

Traffic signs and pole-like objects can provide longitudinal 

information, while line lanes help avoid lateral drift. 

 

References 

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., 

Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The 

cityscapes dataset for semantic urban scene understanding. 

Proceedings of the IEEE conference on computer vision and 

pattern recognition. 

  

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision 

meets robotics: The kitti dataset. The International Journal of 

Robotics Research, 32(11), 1231-1237.  

 

Jin, J., Zhu, X., Jiang, Y., & Du, Z. (2018). Localization based 

on semantic map and visual inertial odometry. 2018 24th 

International Conference on Pattern Recognition (ICPR). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-221-2024 | © Author(s) 2024. CC BY 4.0 License.

 
225



 

Li, X., Ao, H., Belaroussi, R., & Gruyer, D. (2017). Fast semi-

dense 3D semantic mapping with monocular visual SLAM. 2017 

IEEE 20th International Conference on Intelligent 

Transportation Systems (ITSC). 

 

Ma, W.-C., Tartavull, I., Bârsan, I. A., Wang, S., Bai, M., 

Mattyus, G., Homayounfar, N., Lakshmikanth, S. K., Pokrovsky, 

A., & Urtasun, R. (2019). Exploiting sparse semantic HD maps 

for self-driving vehicle localization. 2019 IEEE/RSJ 

International Conference on Intelligent Robots and Systems 

(IROS). 

 

Pan, X., Shi, J., Luo, P., Wang, X., & Tang, X. (2018). Spatial as 

deep: Spatial cnn for traffic scene understanding. Proceedings of 

the AAAI conference on artificial intelligence. 

 

Poggenhans, F., Pauls, J.-H., Janosovits, J., Orf, S., Naumann, M., 

Kuhnt, F., & Mayr, M. (2018). Lanelet2: A high-definition map 

framework for the future of automated driving. 2018 21st 

international conference on intelligent transportation systems 

(ITSC). 

 

Qu, X., Soheilian, B., & Paparoditis, N. (2015). Vehicle 

localization using mono-camera and geo-referenced traffic signs. 

2015 IEEE Intelligent Vehicles Symposium (IV). 

 

Schreiber, M., Knöppel, C., & Franke, U. (2013). Laneloc: Lane 

marking based localization using highly accurate maps. 2013 

IEEE Intelligent Vehicles Symposium (IV). 

  

Shan, T., & Englot, B. (2018). Lego-loam: Lightweight and 

ground-optimized lidar odometry and mapping on variable 

terrain. 2018 IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS). 

 

Tateno, K., Tombari, F., Laina, I., & Navab, N. (2017). Cnn-slam: 

Real-time dense monocular slam with learned depth prediction. 

Proceedings of the IEEE conference on computer vision and 

pattern recognition. 

 

Welzel, A., Reisdorf, P., & Wanielik, G. (2015). Improving urban 

vehicle localization with traffic sign recognition. 2015 IEEE 18th 

International Conference on Intelligent Transportation Systems. 

 

Yang, Y., Qiu, F., Li, H., Zhang, L., Wang, M.-L., & Fu, M.-Y. 

(2018). Large-scale 3D semantic mapping using stereo vision. 

International Journal of Automation and Computing, 15(2), 194-

206.  

 

Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., & Sang, N. (2021). 

Bisenet v2: Bilateral network with guided aggregation for real-

time semantic segmentation. International Journal of Computer 

Vision, 129, 3051-3068.  

 

Zhao, Z., & Chen, X. (2016). Building 3D semantic maps for 

mobile robots using RGB-D camera. Intelligent Service Robotics, 

9, 297-309.  

 

Zhao, Z., Mao, Y., Ding, Y., Ren, P., & Zheng, N. (2019). Visual-

based semantic SLAM with landmarks for large-scale outdoor 

environment. 2019 2nd China symposium on cognitive 

computing and hybrid intelligence (CCHI). 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-221-2024 | © Author(s) 2024. CC BY 4.0 License.

 
226




