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Abstract

Geospatial data is available at increasingly finer spatial resolutions. However, such data can also be problematic because it may 
result in increased financial, resource and time cost. It might also be unnecessary if the phenomenon of interest does not vary at 
this scale or if the scientific application does not require it. This paper explores the scale effects associated with increased spatial 
resolution using the entropy-based local indicator of spatial association (LISA-ELSA). Results are illustrated for two datasets a 
digital elevation model (30 m ASTER GDEM) and for a raster PM2.5 air pollution map (1000 m). It is shown that increasing the 
size of the local window for the LISA can be used to explore the effect of reducing the spatial resolution. It is possible to identify 
areas where the spatial association is invariant with increasing window size and which could be represented with coarser pixels.

1. Introduction

Spatial resolution is possibly the most widely quoted charac-
teristic for geospatial datasets. However, producing fine spatial
resolution datasets (i.e., small pixel size) can also be difficult
and problematic. In order to achieve a finer resolution more
data is required, leading to increased financial, resource and
time costs. The resulting dataset may also be more difficult to
work with. A fine spatial resolution may also not be necessary
if the phenomenon of interest does not vary at this scale or if
the scientific application does not require it. Hence there is an
interest in methods to evaluate different spatial resolutions and
to identify the appropriate ones. Published approaches include
those based on entropy (Kodl et al., 2024), spatially stratified
heterogeneity (Guo et al., 2022) and the Pareto boundary (Wald-
ner et al., 2018).

Predictive mapping of environmental phenomena aims to pro-
duce a map with complete spatial coverage based on measure-
ments of the target variable that are sparse in space. This may
be based on (i) statistical or machine-learning models that pre-
dict the target variable based on covariates that have complete
spatial coverage, (ii) interpolation between the sparse obser-
vations, e.g., using geostatistics, or (iii) some combination of
both. Hence the sample density of the target variable, the spa-
tial resolution of the covariates and the model prediction accur-
acy may all affect that spatial resolution that can be achieved.
Therefore spatial data quality is also a concern.

In order to identify the appropriate spatial resolution we first
need to understand the effects of decreasing the spatial resolu-
tion. The research presented here evaluates the effect of redu-
cing the spatial resolution using the entropy-based local indic-
ator of spatial association (ELSA) (Naimi et al., 2019). The use
of ELSA to help identify appropriate spatial resolutions is then
discussed.

2. Methods

The entropy-based local indicator of spatial association (ELSA)
was developed by Naimi et al. (2019) and further illustrated
by Hamm et al. (2024) and Zheng et al. (2024). It is a local-
indicator of spatial association (LISA) as described by Getis
and Ord (1996), Anselin (1995) and others.

ELSA, Ei(r), is defined as:

Ei(r) = Eai(r)× Eci(r) (1)

and is calculated within a local neighbourhood centred on loc-
ation, i, and ωij is a weight for an adjacent feature at location
j. The local neighbourhood (r) is typically defined by a radius,
adjacency matrix or moving window The weight ωij takes a
value of 1 when the feature is within the local neighbourhood
and zero otherwise.

Eai(r) is the dissimilarity within the local neighbourhood

Eai(r) =

∑
j
ωijdij

max d
∑

j
ωij

, j ̸= i (2)

where dij is the dissimilarity between two categories or num-
bers at locations i and j and max d is the maximum dissimilar-
ity in the data. The calculation of dissimilarity will depend on
the data. For continuous data it would be the difference between
the attribute values at i and j, but for categorical data it depends
on the hierarchical structure and ordering of the categories.

Eci(r) is the composition or diversity, evaluated using the Shan-
non entropy:

Eci(r) = −
∑mω

k=1
pk log2 pk

log2 mi
, j ̸= i (3)

where m is the total number of categories in the entire dataset
and mω is the actual number of categories within r. The mi

is the maximum possible number of categories within r and
mi = m if

∑
ωij > m or

∑
ωij otherwise. The pk indicates

the probability of obtaining category k from the mω categories
within r.

The presentation above makes clear that Ei(r) can be applied
to categorical data; however, it can also be applied to continu-
ous data by dividing the data into ordered categories in a man-
ner designed to minimize the information loss (Naimi et al.,
2019). There is a R package elsa, which is available on CRAN
(https://cran.r-project.org/package=elsa) and can be used to im-
plement ELSA. This was used for the experiments presented in
this paper.
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Figure 1. ASTER GDEM (version 3) 30 m digital elevation
model (DEM) for Ningbo, Zhejiang, China (units: m a.s.l., UTM
Zone 51N). The two boxes are subsets covering the plain (right)

near the urban area and the hills (left).

It is proposed that the change in ELSA with decreased spatial
resolution depends on the spatial structure in the data, the win-
dow size as well as data quality. This is expected from the-
ory (Hamm et al., 2024; Naimi et al., 2019) and this study
further elaborates it through experimental results. This paper
presents structured experiments based on datasets of elevation
and PM2.5 air quality that cover different landscapes, pixel sizes
and window sizes. Hence evaluating ELSA for increasing win-
dow sizes would allow us investigation of the effect of aggrega-
tion or ’upscaling’ and to identify areas with high spatial asso-
ciation at different scales.

3. Data

This study used publically available data for (i) elevation (AS-
TER GDEM version 3) ASTER Science Team (2019) (https:
//doi.org/10.5067/ASTER/ASTGTM.003) (Figure 1) and (ii)
air quality (PM2.5) (Chi et al., 2023) (Figure 2) for Ningbo in
Zhejiang Province, People’s Republic of China (Tang et al.,
2015). Ningbo (total population 9.6 million) is made up of
an urban centre (population 2 million) and surrounding urban
and rural areas. It is made up of six districts, two rural south-
ern counties and two county-level cities (Cixi and Yuyao). The
central urban area is on a flat plain bordered to the north by the
sea and is surrounded by hills. The altitude ranges from sea-
level to approximately 1000 m, as shown in Figure 1. The air
pollution data is annual PM2.5 data for 2020, shown in Figure
2. Two subsets were identified covering the plains and hilly
areas (Figure 1).

The steps are given as follows:

1. Calculate ELSA for the base pixel size u and a window
size with a radius of r = 2u. For the air pollution example
the base pixel size is u = 1000 (1000 m × 1000 m ) and
the radius, r = 2000 m. For the DEM example u = 30 m
(30 m × 30 m )and the radius is r = 60 m.
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Figure 2. Annual PM2.5 concentration for 2020 (Chi et al.,
2023) at 1000 m spatial resolution (units: µg m−3, UTM Zone

51N). The areas covered is the same as in Figure 1.

2. Calculate ELSA for increasing window sizes, r = 4u, 6u,
8u, . . .. This evaluated the spatial association within pro-
gressively larger local windows. The logic is that this can
help to identify the scale of spatial variation (Getis and
Ord, 1996), which supports the identification of suitable
spatial resolutions.

3. Evaluate the maps, histograms and tabulated results. Note
that the ELSA value is dependent on the data so the results
need to be interpreted for each dataset specifically. The
aim here is to identify patterns related to the increased win-
dow size and associated spatial scale.

4. Aggregate (upscale) the pixel size by a factor of 2, 3 and
4 and present the results. For the DEM example this leads
to a pixel size of 60, 90 and 120 m.

5. Evaluate ELSA for the new pixel sizes.

4. Results and discussion

In this section the results of experiments for the DEM dataset
and PM2.5 air pollution dataset are presented.

4.1 Digital elevation model (DEM)

The ELSA calculations are shown in Figure 3. For r = 2u and
r = 4u the maps show a very high degree of spatial association,
although this decreases for larger values of r. Hence, even in the
hilly areas, the spatial association is high for small r whereas for
larger r there could be more variability within the local window.
The result is different in the low-lying flat areas in the north and
north east where the central urban area is located. That shows
consistently high spatial association across all window sizes. In
Figure 4 the pixels were aggregated to larger window sizes (30,
60, 90, 120m) while maintaining r = 2u. A similar pattern is
observed to Figure 4.

The ELSA values from Figure 3 were divided into bins of width
0.01. The proportion of ELSA values in each bin is shown in
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Figure 3. ELSA for the DEM (Figure 1) for fixed u = 30m and increasing window size, r = 2u, 4u, 6u, 8u.

ELSA 60 120 180 240 Plain Hills
0.01 88.2 62.7 54.3 50.7 99.9 9.5
0.02 11.1 23.2 16.9 12.5 16.7
0.03 0.5 11.4 16.2 14.2 23.3
0.04 2.2 8.8 11.6 20.9
0.05 0.2 2.9 6.9 15.4
0.06 0.5 2.7 8.9
0.07 0.1 0.8 4.2
0.08 0.2 0.9
0.09 0.1 0.1
0.10
NA 0.0 0.2 0.3 0.4 0.0 0.0

Table 1. Percentage ELSA values in different bins for u = 30m
and r = 2u, 4u, 6u, 8u (60m, 120m, 180m, 240m) for the DEM
dataset (Figure 1). For r = 8u the ELSA distribution for plain

and hilly areas is shown (see Figure 1). A blank means that
< 0.1% of ELSA values fall in this bin.

Table 1. There is a clear shift towards larger ELSA values as
r increases. This reflects the increased dissimilarity and di-
versity within the local window. Table 1 also shows the res-
ults for r = 4u for the flat and hilly areas illustrated in Figure
1. Even for the largest window size the ELSA values remained

very low indicating high spatial association and suggesting that
these areas could be represented using larger pixels. The result
is different for the hilly areas which show increased ELSA, due
to increased dissimilarity and diversity, for larger window sizes.

4.2 PM2.5 air pollution

The results for the air pollution data are shown in Figure 5 and
Table 2. The range of ELSA values is larger than for the DEM
example. The heterogeneity across the study area is also less
clear, in particular for lower values of r – possibly reflecting the
fact that the PM2.5 data appears to be more noisy. For larger
values of r we see clearer patterns with higher spatial associ-
ation (low ELSA) over the hills and lower spatial association
in the plains. Hilly areas are predominantly rural whereas the
plains include urban areas, roads, industry and a major port. It
is possible that the air pollution over rural areas is mainly back-
ground pollution whereas this is augmented by local sources on
the plains, which show higher heterogeneity. It should also be
noted that there are large flat areas (e.g., the north-west coast)
which show high PM2.5 concentration (Figure 2) and also high
spatial association. Hence both high and low pollution areas
can exhibit high spatial association.
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Figure 4. ELSA for the DEM (Figure 1) for aggregated pixels, 30, 60, 90, 120 m and consistent r = 2u. Note that the legend is the
same for all four maps.

ELSA 2000 4000 6000 8000 Plain Hills
0.02 24.3 4.5 1.3 0.1
0.04 39.2 30.0 20.8 13.8 54.5
0.06 21.2 39.2 29.2 26.5 4.7 34.4
0.08 8.4 17.2 20.5 22.2 33.7 7.0
0.10 3.3 9.6 13.2 15.5 24.3 2.3
0.12 1.4 4.6 6.8 9.4 22.8 1.7
0.14 0.6 2.1 3.6 5.4 6.5
0.16 0.5 0.9 2.1 2.9 3.6
0.18 0.3 0.5 0.9 1.7 4.0
0.20 0.3 0.3 0.6 0.9 0.4
> 0.20 0.6 1.0 1.1 1.6

Table 2. Percentage ELSA values in different bins for
u = 1000m and r = 2u, 4u, 6u, 8u (2000m, 4000m, 6000m,
8000m) for the air pollution data (Figure 2). For r = 8u the

ELSA distribution for plain and hilly areas is shown (see Figure
1). A blank means that < 0.1% of ELSA values fall in this bin.

5. Conclusions

The research presented in this paper used the ELSA statistic
to quantify local spatial association for elevation and air pollu-

tion (annual PM2.5) in the city of Ningbo in Zhejiang Province,
China. By calculating and mapping ELSA the heterogeneity in
the spatial association across the study area could be evaluated.
It is proposed that this could be used to help identify the ap-
propriate spatial resolution for a given environmental variable.
For the DEM dataset the high level of spatial association (low
ELSA) over the plains for r = 4u (Figure 3, Table 1) as well
as for large pixel sizes (4u) suggested that a pixel size of 120
m or larger would be sufficient. Over the hilly areas the rapidly
changing relief meant that a finer resolution was required to
represent the topography. The ELSA statistic allows to identify
these areas. Depending on the application, and on the location,
the spatial resolution could be adjusted for different areas.

The PM2.5 dataset was more difficult to evaluate. The dataset
was already provided at a relatively coarse resolution of 1000m
× 1000 m (Chi et al., 2023) and the data appears to be noisy.
This conclusion is made based on the salt and pepper effect in
Figure 2 and on the mottled appearance of Figure 5 (top left).
Nevertheless the results did indicate a higher degree of spatial
association over the hills, in particular for larger values of r
and also for some flat areas. The tentative conclusion is that
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Figure 5. ELSA for the PM2.5 dataset (Figure 2) for fixed u = 1000m and increasing window size, r = 2u, 4u, 6u, 8u. Note that the
legend is the same for all four maps.

these areas could be represented by coarser spatial resolutions.
Possibly of greater interest is what these patterns might inform
us about PM2.5 air pollution and how it might relate both to
the physical and urban environment and to pollution sources.
Although not directly related to the original research objective,
it does suggest that evaluating scale can help to gain insight into
environmental data.

Further research will aim to establish whether thresholds can
be identified to support representing some areas by coarser res-
olution pixels. Other steps will be to link to the idea of spa-
tially stratified heterogeneity and to address the multidimen-
sional issue of data quality, including noise, accuracy and spa-
tial sampling density. Hence, an important task is to evaluate
the spatial resolution that can be obtained considering spatial
data quality.
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