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Abstract 

With the development of society, spatial artificial intelligence (spatial AI) research is gradually able to play a greater role. However, 
spatial AI has problems such as data alignment, poor interpretability, and cross domain learning. Therefore, this paper proposes an 
innovative GeoSOT-3D grid modeling framework for spatial AI research, which enhances the application capabilities of spatial AI. 
Grid modeling will be able to run through the upstream and downstream of spatial AI research, providing encoding calculations and 
spatial neighborhood embedding matrices for spatial data. This paper also uses task examples to demonstrate how to effectively 
organize and index spatial data using GeoSOT-3D grids and conduct spatial AI research. The use of GeoSOT-3D grids for spatial AI 
analysis has enormous potential and broad application prospects, which will help promote the further development and application of 
spatial AI. 

1. Introduction

In the field of spatial data analysis, methods of spatial artificial 
intelligence (spatial AI) are gradually emerging (Janowicz et al., 
2019). Spatial AI is a branch of AI that focuses on the processing 
and analysis of geospatial data. Compared with traditional spatial 
analysis methods, spatial AI has advantages such as automation, 
intelligence, and high accuracy (Zhu, Gao, and Cao 2022). 
Spatial AI utilizes machine learning, deep learning, and other AI 
technologies to extract valuable information from a large amount 
of geospatial data to support various applications (Franch-Pardo 
et al., 2020). Therefore, the application scenarios of spatial AI are 
very extensive, such as urban planning, environmental and 
resource management, disaster prevention and response, logistics 
transportation, commercial site selection, etc (Casali, Aydin, and 
Comes 2022; Franch-Pardo et al., 2020). However, there are still 
some problems that need to be solved in the research of spatial 
AI, mainly including the following aspects: 

 Data cleaning problem: spatial AI requires a large amount
of geospatial data to support, but these data often have
problems such as low quality, inaccurate labeling, and
difficulty in sharing (Yuan, and Li 2021). How to obtain
high-quality and large-scale standard data, as well as how
to effectively share and utilize this data, are important
challenges faced by spatial AI research (Wang et al., 2023).

 Interpretability and transparency issues: Many spatial AI
models, especially deep learning models, are often
considered "black box" models, and their decision-making
processes are difficult to explain and understand (Alam,
Torgo, and Bifet 2022). It is difficult for people to
understand why the model makes a certain decision,
reducing the credibility and acceptability of the model (Li
et al., 2022).

 Lack of reasoning ability: Geospatial data has rich
semantic information, but current spatial AI models often
can only handle low-level spatial relationships, making it
difficult to perform high-level semantic analysis and
reasoning (Duckham et al., 2022; Zhu et al., 2022). For
example, for a dataset of "natural disasters" in a certain
region, the model may only be able to identify specific
types of disasters such as earthquakes and floods, but it is

hard to associate these types of disasters with broader 
concepts such as "natural disasters". 

 Poor cross domain learning ability: Spatial AI models often 
only perform well in specific fields or tasks, and have weak 
transfer ability between different fields or tasks. This limits 
the application of spatial AI in a wider range of fields (Ivić
2019).

In recent research, the application of spatial grids processes of 
spatial AI is expected to solve some problems (Gomes, Queiroz, 
and Ferreira 2020). The spatial grid is a structure used to describe 
and organize geospatial data, dividing the geographic space into 
a series of discrete grid units (Sun et al., 2021). Through spatial 
grids, spatial AI can more effectively standardize the analysis of 
large-scale geospatial data (Li, and Stefanakis 2020). Meanwhile, 
spatial grids can also provide richer application scenarios for 
spatial AI. For example, in urban planning, spatial grids can be 
used to divide and analyze different areas within the city, thereby 
optimizing urban layout and resource allocation (Chen et al., 
2023). The spatial grid has brought many important values and 
conveniences to the research of spatial AI. However, due to the 
limitations of existing methods, spatial grids can still only be 
applied upstream in spatial AI research and cannot exert greater 
value (Wu et al., 2022). 
Therefore, this paper will propose an innovative three-
dimensional grid full process modeling framework for spatial AI 
research based on the Geographic Coordinate Subdividing Grid 
with One Dimension Integrated Coding on 2n-Tree-3D 
(GeoSOT-3D), which can enhance the interpretability and 
reasoning ability of spatial AI, and reduce the efficiency of 
spatial data preprocessing and extraction. This framework 
combines the advantages of GeoSOT globally unified 
spatiotemporal 3D coding system with grid coding algebraic 
computation, aiming to solve the problems encountered in 
existing spatial AI analysis. By integrating key processes such as 
collection, processing, analysis, and visualization of 
spatiotemporal data. The framework can effectively organize, 
index, and correlate spatial data using GeoSOT-3D grids, and 
how to combine deep learning algorithms with grid 
neighborhood computing models to explore potential patterns 
and correlations in spatial data. This paper constructs a 
comprehensive and efficient spatial AI workflow. Subsequent 
research on spatial AI can be based on this framework, greatly 
reducing the difficulty of preprocessing and modeling. 
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2. GeoSOT-3D grid modeling  

 
2.1 GeoSOT 

The spatial grid can be two-dimensional, three-dimensional, or 
even contain temporal dimensions, thus forming a spatiotemporal 
grid. The types of spatial grids are very diverse, and can be 
divided into various types based on different application 
requirements and data characteristics (Li et al., 2020). The 
GeoSOT used in this paper is a Geographic Coordinate 
Subdividing Grid with One Dimension Integrated Coding on 2n 
Tree, created by three spatial extensions of the longitude and 
latitude range of the Earth's surface, which is shown in Figure 1 
(Han, Li, and Cheng 2021). The First expansion of GeoSOT is 
Transforming the Earth into a plane through simple projection, 
expanding 180 ° x 360 ° to 512 ° x 512 °, forming a degree level 
grid. The second extension is to expand the 1 ° grid cells from 60 
'to 64', forming a minute level grid. And third expansion of 
GeoSOT is to expand the 1 ° grid cells from 60 'to 64' to form a 
second level grid. 
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Figure 1. GeoSOT earth subdivision grid pyramid. 

 
By constructing a multi-scale grid with 32 levels, GeoSOT has 
identifiability, multi-hierarchy, aggregation, and correlation 
compared with other spatial grids, which can achieve organic 
correlations between different levels and provide a foundation for 
spatial multi-scale expression and training embedding; by using 
GeoSOT as the central component, GeoSOT can be transformed 
into various types of existing data, which is conducive to data 
compatibility and cross domain spatial data integration and 
sharing (Qian et al., 2019). 
 
2.2 GeoSOT-3D 

With the expansion of research scenarios, the utilization and 
research of spatial data are not limited to two-dimensional scenes, 
and GeoSOT-3D is the three-dimensional extension of GeoSOT 
in high dimensions (Hou et al., 2021). GeoSOT-3D adopts octree 
data structure, which divides the entire Earth's space from 50000 
km up to the center of the Earth into 32 levels of spatial voxels, 

which can carry heterogeneous spatial data from multiple sources, 
as shown in the Figure 2 and Figure 3 (Han et al., 2022). 
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Figure 2. GeoSOT-3D octree data structure diagram. 

 
In Figure 3, The GeoSOT-3D grid adopts a globally unified 3D 
gird framework, which can seamlessly cover geospatial data on a 
global scale. Thus, GeoSOT-3D grids have unique advantages in 
processing large-scale, cross regional 3D spatial data, and 
provides a solid foundation for building global spatial AI 
applications. At the same time, GeoSOT-3D mesh has the 
characteristics of hierarchical nesting and correlation, which can 
achieve efficient organization and management of three-
dimensional spatial data of different scales and resolutions. This 
design of hierarchical nesting and correlation helps to efficiently 
calculate and analyze spatial data at different scales (Han et al., 
2021). 

  
Figure 3. Actual shapes of the divided blocks of GeoSOT-3D at 

different levels. 
 
More importantly, GeoSOT-3D proposed an efficient encoding 
algebraic model. This model can achieve rapid identification, 
retrieval, and association of spatial targets, providing strong 
support for complex spatial relationship calculation and analysis. 
By utilizing the encoding system of GeoSOT-3D, it is convenient 
to fuse and mine spatio-temporal data. Spatio- temporal data from 
different sensors are mapped to the same GeoSOT grid, and then 
spatial AI algorithm is used to discover hidden patterns and 
associations in the data. The advantages of GeoSOT-3D will be 
able to solve the problems in the current spatial AI workflow, 
which will be explained in detail in the next section (Han, Li, and 
Cheng 2021). 
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3. GeoSOT-3D framework for spatial AI 

 
3.1 Framework flow 

The research on spatial AI mainly includes data cleaning and 
feature extraction of upstream, algorithm construction and 
training of midstream, and task result analysis and visualization 
display of downstream. As shown in Figure 4, the GeoSOT-3D 
grid framework can play a role in various stages of research and 
enhance the ability of spatial AI. 
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Figure 4. The Framework flow schema of GeoSOT-3D 

modeling service for spatial AI. 
 
3.2 Spatial data processing by GeoSOT-3D 

Using GeoSOT-3D grids to process spatial data can greatly 
reduce the difficulty of cleaning and aligning spatial data, as 
shown in Figure 4. In the specific research process: 
 

1. Input original spatial data: Collect original data related to 
spatial AI analysis, including geospatial data (satellite images, 
map data), flow data (meteorological observation data, traffic 
flow data), and multi-media data (text, videos, and images with 
spatial information), and import them into the GeoSOT-3D grid 
database. 
 
2. GeoSOT-3D grid encoding: Based on the GeoSOT-3D grid 
system, the collected raw data is preprocessed, and each spatial 
data is encoded at 32 levels. Various complex spatio-temporal 
coordinates are cleaned and unified at multiple scales, and each 
grid unit is assigned a unique encoding. According to the 
requirements of subsequent tasks, the corresponding grid level 
can be accurately selected to quickly organize and index the data. 
 
3. Feature extraction of spatial data: Based on the spatial range 
of the GeoSOT-3D grid, extract relevant spatial and time series 
features within each grid unit, such as terrain and landforms, land 
use types, population density, traffic flow, etc. Based on the grid 
as the basic unit, these features will serve as inputs for subsequent 
AI analysis. 
 
4. Spatio-temporal grid neighborhood embedding: Through the 
inherent encoding algebra theory of GeoSOT-3D, it is possible to 
quickly calculate the first-order and second-order spatiotemporal 
neighborhoods of each spatial data through grid encoding, and 
intelligently generate embedding matrices. Compared with 
traditional semantic training, this can greatly improve the 
interpretability and reasoning ability of spatial AI models 
 
3.3 Spatial AI analysis using GeoSOT-3D 

After completing the processing and encoding of spatial data, 
spatial AI tasks can also be further analyzed and displayed in 
conjunction with GeoSOT-3D: 
 
1. Algorithm construction: Based on specific analysis tasks and 
data characteristics, select appropriate AI algorithms and models. 
It is best to combine learning algorithms with spatiotemporal 
embedding matrices in the process effectively to improve the 
training effect of the model, such as machine learning algorithms 
(decision trees, or support vector machines), deep learning 
algorithms (convolutional neural networks, or graph neural 
networks) And spatiotemporal analysis algorithms (spatio-
temporal autocorrelation analysis, or spatio-temporal clustering 
analysis). 
 
2. Algorithm training and optimization: Using extracted spatial 
features and corresponding label data, train and optimize the 
selected algorithm to obtain an AI model suitable for spatial 
analysis. During the training process, techniques such as cross 
validation, regularization, and hyperparameter tuning can be used 
to improve the performance of the model. Meanwhile, different 
levels of spatial grids in GeoSOT-3D can be added to the model's 
training to try to improve accuracy. 
 
3. Spatial analysis and interpretation: By GeoSOT-3D grid, 
diverse 3D testing scenarios can be constructed, and the trained 
model can be applied to test data to obtain spatial analysis results.  
 
4. GeoSOT-3D visualization: Based on GeoSOT-3D's fast and 
accurate 3D reconstruction ability, it can visualize the analysis 
results of spatial AI in a dynamic grid graph, making it easier for 
decision-makers to analyze and use the training and testing 
results better. 
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5. Decision support: By analyzing and interpreting the results, 
discover patterns and trends in spatial data, and provide support 
for decision-making. 
 
3.4 Discussions 

Through the framework flow of GeoSOT-3D modeling service 
for spatial AI mentioned above, this paper integrates the grid 
generation and neighborhood concept of GeoSOT-3D into the 
entire process. In response to the current problems in spatial AI, 
the framework of GeoSOT-3D grid modeling can first 
standardize and quickly encode and clean multi-source 
heterogeneous spatial data through unified spatial encoding; The 
encoding algebra of the grid and the inherent connotation of its 
own encoding can help spatial AI construct its spatio-temporal 
embedding matrix, which has better interpretability and spatio-
temporal reasoning ability compared with traditional text image 
training; At the same time, the grid can associate various 
semantic and spatio-temporal data, achieving cross domain and 
multimodal learning. Through grid-based improvements, spatial 
AI will be able to play a greater role. This paper will demonstrate 
the advantages of the current GeoSOT-3D framework in spatial 
AI in the next section. 
 

4. Grid task experiments of spatial AI 

 
4.1 Intelligent driving 

In Spatial AI, GeoSOT-3D can be used not only for organizing 
and analyzing static spatial data, but also for simulating and 
predicting dynamic spatio-temporal processes (Jiang et al., 2022). 
By combining spatio-temporal data models and dynamic 
simulation algorithms, complex spatiotemporal processes such as 
urban traffic flow can be modeled and predicted, thereby 
achieving intelligent driving. 
 
As shown in Figure 5, in intelligent driving, GeoSOT-3D can 
improve Spatial AI by quantifying the various driving 
environments and surrounding obstacles encountered by 
autonomous vehicles during the driving process according to the 
grid, and expressing them directly in red, green, and blue colors. 
Through neighborhood calculation and reinforcement learning of 
grid coding, inheritance based local dynamic updates can be 
achieved, thereby constructing a grid driving map for 
autonomous vehicles. Compared with traditional polar 
coordinate models, the speed of environmental data transfer, 
efficiency of situation update, and efficiency of driving decision 
calculation have all been significantly improved (Yu et al., 2021). 
 
 
 

 
Figure 5. GeoSOT-3D Intelligent driving. 

 
 

4.2 spatio-temporal reasoning 

Spatio-temporal reasoning refers to the ability to calculate or 
predict unknown spatio-temporal information in complex 
geographical environments, which requires spatial AI models to 
have strong interpretability. Therefore, based on the GeoSOT-3D 
model, we propose a grid-augmented geographic knowledge 
graph (AugGKG), which establishes a geo-hidden layer by 
setting the grid as a node in the graph (Han et al., 2023). 
AugGKG enables the knowledge graph to support efficient 
expression and spatio-temporal reasoning of multi-source 
heterogeneous data from geographic spatial nodes, and provides 
spatio-temporal object retrieval, inference, calculation, and 
management capabilities. 
 

 
Figure 6. The framework schema of AugGKG (Han et al., 

2023). 
 
4.3 Disaster monitoring 

Disaster monitoring analysis is a hot topic in the field of 
geospatial information, and in many cases, it is necessary to 
comprehensively utilize various types of data for analysis. The 
integration and analysis of multiple types of geospatial 
information poses challenges for existing spatial data 
organization models and deep learning analysis models (Han et 
al., 2021). For multi type geospatial data, the GeOSOT-3D model 
proposes a spatial AI model for disaster warning, and fuses 
features of multi type geospatial data based on standard grids, 
establishing a 3D convolutional neural network model based on 
grouped convolution, which is shown in Figure 7. 
 
 

 
Figure 7. GeoSOT-3D disaster monitoring grid model 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-233-2024 | © Author(s) 2024. CC BY 4.0 License.

 
236



 

5. Conclusions 

Spatial AI has broad application prospects, which can help us 
better understand and utilize geographic data, improve decision 
making efficiency and accuracy. However, there are still some 
issues to be solved in spatial AI. Compared with other 3D grids, 
GeoSOT-3D has a globally unified 3D grid framework, 
hierarchical nesting and correlation, and efficient encoding 
algebraic models. Thus, this paper proposes the GeoSOT-3D grid 
model to solve the problems of data cleaning, poor 
interpretability, insufficient spatial reasoning ability, and cross 
domain analysis in current spatial AI research through GeoSOT-
3D grid model, spatial AI can more effectively process and 
analyze large-scale geospatial data, and perform more in-depth 
spatio-temporal analysis and inference tasks. GeoSOT-3D would 
provide a method for the standardization research of spatial AI. 
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