
Efficient Rendering of Digital Twins Consisting of Both Static And Dynamic Data

Aleksandar Atanasov, Benedikt Kottler, Dimitri Bulatov

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB),
Gutleuthausstrasse 1, 76275 Ettlingen, Germany

(aleksandar.atanasov, benedikt.kottler, dimitri.bulatov)@iosb.fraunhofer.de

Keywords: Digital Twin, Rendering, GPU, Urban Morphology, Memory Management, Vegetation

Abstract

The high number of vertices and faces present in a digital twin of a large scene poses a challenge when executing large-scale 
simulations that require the data to be rendered multiple times with slight changes such as the light conditions in a day-night cycle 
during a long period of time (weeks and even months). Adding urban morphology such as tree planting introduces a new layer 
of complexity due to the requirement for evaluating different tree configurations and their effect on the local environment in the 
context of urban heat islands. Using advanced rendering techniques such as splitting a single buffer into sub-regions with inplace 
updates as well as buffer orphaning multiple methodologies are evaluated.

1. Introduction

Urban Heat Island (UHI) effects, which can raise temperatures
by up to 12°C due to factors like dark surfaces and scant green-
ery, necessitate mitigation strategies in urban planning such as
the use of sustainable materials, the creation of green spaces,
and smart design (Osmond and Sharifi, 2017, Williams et al.,
2012, Kjellstrom et al., 2009). Furthermore, urban planners
utilize year-long simulations on digital twins to assess and op-
timize urban designs, a process complicated by the high com-
plexity of large scenes and the need for frequent renderings
to capture light changes over extended periods. Tree planting
is particularly effective against Urban Heat Islands (UHIs) be-
cause trees provide shade, store heat efficiently, enhance the
city’s visual appeal, and make it more livable (Wong and Yu,
2005).

While there are many definitions for a digital twin, in the con-
text of remote sensing and photogrammetry the term can be
summarized as the virtual depiction of a physical model. From
the raw sensor data, such as airborne LiDAR or photgrammet-
ric point cloud, digital surface (DSM) or terrain model (DTM)
are calculated; Land cover classification is performed; Build-
ing and tree instances at a relevant level of detail are retrieved.
Additional data is added and removed according to the scenario
that the twin is covering. Trees to be virtually planted represent
a good example of such a configuration.

The underlying 3D data is usually a large set of meshes (ve-
getation, buildings, vehicles etc.) that has to be simulated in
the thermal spectrum to find the optimal with respect to the
average / peak temperature tree configuration. However, pro-
cessing and visualizing such data can pose a challenge due to
the high number of vertices and faces that a scene consists of.
The fact that the scene is not fully static, leading to elements
being (off)loaded frequently, reduces the overall performance.

This paper outlines repeated renderings with geometrical minor
changes over day-night cycles spanning weeks or months re-
quired in tree planning scenarios. Inspired by (Bulatov et al.,
2020) and (Bulatov et al., 2023) we use advanced rendering
techniques such as splitting a single buffer into sub-regions as

well as buffer orphaning, multiple solutions are provided based
on whether the tree configurations differ in size. In particular,
we explore multiple options for memory management in order
to speed up the rendering of a large scale scenes consisting of a
static digital surface model (DSM) as well as dynamically ad-
ded tree configurations. We explore two advanced techniques
from the field of computer graphics – partial updates of buffer
regions as well as buffer orphaning – with the goal of optimiz-
ing the (off)loading of data that changes very often and, thus,
improving the performance of any digital twin that has a visual
aspect to it. The main focus is not the computation of light per
face but rather the optimal memory layout and update mechan-
ism of the tree configurations that affect the local climate in the
context of urban heat islands.

2. Related Work

This paper presents an ongoing effort to improve our occlu-
sion analysis capabilities that was presented in (Bulatov et al.,
2020) and (Bulatov et al., 2023). The analysis utilizes a simple
algorithm where triangles are sequentially projected onto the
scene, with their current depth determined by their barycentric
coordinates. If this depth is less than the initial depth for any
pixel, that pixel’s depth and foreground index (or feature) map
are updated with the triangle’s values. Initially, the depth and
index maps are set to infinity. Various enhancements to this
basic process have been proposed, such as reordering triangles
based on the proximity of their center of gravity to the image
plane. Typically, transparent triangles are rendered from the
background forward, while opaque triangles are rendered from
the foreground backward. To avoid exhaustive searches across
large images for pixels not meeting the initial depth map’s cri-
teria, the search range is often limited. In the work of (Guo
et al., 2018) streamlined sun radiation calculations for thermal
simulations through pre-rendering scenes at specific sun posi-
tions, simplifying simulations at the cost of higher memory de-
mands for numerous scenes. (Jones et al., 2012) improved solar
radiation computations using periodic pre-computations and B-
spline interpolations. Recent approaches incorporate machine
learning, especially generative adversarial networks, to synthes-
ize realistic views, enhancing simulation accuracy and visual

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-27-2024 | © Author(s) 2024. CC BY 4.0 License. 27



quality (Srinivasan et al., 2019). Ray tracing improves inter-
section checks with spatial indexes. Handling large models ef-
ficiently in GPU memory has been explored (Feldmann, 2015,
Hapala et al., 2011, Landaverde et al., 2014). Another approach
found in literature is Unified Virtual Memory (UVM). It sim-
plifies memory management between GPU and CPU by auto-
mating page management, reducing complexity for program-
mers. However, large memory footprints can cause thrashing
and degrade performance (Kim and Han, 2024) (Li and Chap-
man, 2019) (Long et al., 2023). Solutions include thread throt-
tling to optimize memory use, improving performance by 3.44×
(Kim and Han, 2024), and a new UVM framework reducing
page thrashing by 64.4

3. Preliminaries

3.1 Synchronization between CPU and GPU

Rendering data using a GPU requires it to be transferred to a
designated memory so that it is made available to the GPU’s
multiprocessors. Outside of the context of technologies such as
CUDA or geometric and especially compute shaders that allow
generating data directly on the GPU, a standard approach is to
first create the data on the CPU side (RAM) and then copy it
to the GPU (VRAM)1. This creates a situation where resources
are shared between the two subsystems, which poses a problem
whenever changing the data between draw calls.

The process of updating and sharing the data between CPU and
GPU is called synchronization. In its most basic form it can
be described as a continuous and repetitive cycle of reads and
writes, where data is first written by the CPU, transferred to the
GPU and then read by the GPU as visualized in Figure 1.

Figure 1. Simplified visualization of the CPU and GPU
synchronization. Each dotted line represent a point in time

where the synchronization takes place and possible stalling may
occur.

There are two types of synchronizations – explicit and impli-
cit. The former occurs whenever a developer explicitly requests
a synchronization. This is the case when the queue has been
flushed, thus forcing the driver to execute all commands as soon
as possible (including cached ones) or when using fences, syn-
chronization objects and memory barriers. Such mechanisms
give greater control over the flow of command loading and exe-
cution. While more difficult to use, these provide a clearer and
more predictable behavior pattern between draw calls. Contrar-
ily, the implicit synchronization occurs without the developer’s
knowledge. It is part of many OpenGL operations and may in-
troduce unwanted stalling in a rendering pipeline.

1 VRAM – video random-access memory

3.2 Buffer orphaning

One specific scenario, where such stalling can occur very often,
is whenever a buffer object is being streamed. This process con-
sists of continuously delivery of new data to the GPU between
draw calls at a high frequency. A GPU’s OpenGL driver is
allowed to stall the execution of commands in the command
queue in order to give the GPU time to execute as many as pos-
sible. Changing the buffer’s data introduces a new command
that may be in conflict with previous draw commands in need
for the same resource that was changed. The driver will auto-
matically halt the thread where the resource is being modified
until all conflicts are resolved. This triggers an implicit syn-
chronization.

Also called buffer re-specification, buffer orphaning is the pro-
cess of invalidating the old buffer by setting its corresponding
reference to a NULL, while retaining other parameters such as
usage hint (the hint that is given to the GPU driver such as
GL STATIC DRAW or GL DYNAMIC DRAW). By doing so, the same
reference can be re-used for allocating a new buffer with the
same or new size on the CPU side, while the old one is still
being used by the GPU. The general assumption in this case is
that new storage allocation is faster than the implicit synchron-
ization between the CPU and GPU. The old storage will con-
tinue to be in used by previously queued OpenGL commands,
thus preventing an implicit synchronization. The new storage
will be available for every new command placed onto the queue
after the orphaning has taken place. Note that an explicit syn-
chronization may still take place if the driver deems necessary.

However, this methodology has one major drawback, namely
that it is not defined in the OpenGL specification (Segal and
Akeley, 2022), thus not being viewed as an approach capable
of delivering consistent results across platforms. Therefore, it
is up to the GPU manufacturer and GPU driver developer (may
differ) how this behaviour is implemented.

3.3 Buffer subdata and multi-buffering

A common practice whenever working with large data is to
allocate as much of the required memory as possible and re-
use it instead of re-allocating constantly. By splitting a buffer
into multiple regions OpenGL allows partial updates without
having to fully re-create it. While this method has an implicit
synchronization guarantee (the data will be copied before mov-
ing to the next command), in a mutli-threaded context this may
lead to such an implicit synchronization since meanwhile other
threads may have modified the data.

The most basic data in a rendering context can be split into two
main types based on its usage – vertices and faces. For informa-
tion loaded from common formats such as Wavefront OBJ, also
used in our setup, vertex data can be further split into buffers
on a per-vertex component basis such as position, color, nor-
mals, texture coordinates etc.. This is done mostly for conveni-
ence in order to mirror the structure imposed by the employed
data format but may not be optimal for rendering. Splitting can
be avoided by employing interleaving – the process of com-
bining multiple types of data into a single buffer. At the cost
of additional complexity in the implementation, this technique
provides improved data caching that is beneficial to the whole
process.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-27-2024 | © Author(s) 2024. CC BY 4.0 License.

 
28



3.4 Structure of a scene

It is usually not possible to load all of the data into the VRAM
due to its sheer volume. Therefore, it needs to be split so that it
can fit into the available physical memory.

Our scene can be divided into two subsets based on the fre-
quency which it is changed at. We make the assumption that
the mesh of the original scene does not change over time and
from now on will refer to it as static data. The assumption
comes from the nature of the experiment as well as the data.
The latter represents a DSM where the vertex and face data will
remain constant. A change in the vertices and/or faces would
mean that either a natural (e.g. hill, river, bush) or artificial (e.g.
house, wall, bridge) component has undergone a change. Since
the full setup (see related works on occlusion analysis) has the
purpose of evaluating natural non-destructive phenomena (here
light exposure of each face), such a change is not possible.

All subsequently loaded data is referred to as dynamic data.
In the following section, we present two different methodolo-
gies for handling the dynamic data, represented by sets of tree
meshes (tree configurations). Depending on the scenario, these
configurations can be adjusted based on the digital twin’s re-
quirements (e.g. buildings, vehicles etc.), which are placed in
an iterative manner at different locations. We concentrate on the
data management and not the occlusion analysis. A simplified
visualization of this division is shown in Figure 2.

Figure 2. A single buffer split into multiple regions, separating it
into rarely and more frequently updated data.

4. Methodology

There are two options for loading the complete scene depending
on whether we prioritize the iteration over all tree configur-
ations first or the time frame we want to render (e.g. sev-
eral hours throughout the day). While the output is the same,
both present a frequency of (off)loading the data. The following
notations apply:

S the static data of the scene (here a meshed DSM)
t instance of dynamic data to be added, here a tree
C dynamic data, the full set of tree configurations
c a single tree configuration within C
L the time frame, (sun positions

representing a specific time of day each)
l a single sun position that illuminates

S and C at the specific angle
R output: the full set of renderings

for all tree configurations and light conditions
R(l, c) a single rendering for a given l and c

Table 1. Notation used inthe course of this paper.

Prioritizing the tree configurations means that for ever time step
l (e.g. hour) within the given time frame L, all c from C are
iterated over before moving to l+1. This approach is described
in Algorithm 1 and requires (off)loading data more often. It is
useful whenever rendering the full scene has the biggest impact
on overall performance.

Data: C, L, S
Result: R
load S;
foreach l in L do

foreach c in C do
load c into buffer region;
render R(l, c);

end
end
Algorithm 1: Memory update cycle when prioritizing sun
position

On the other hand, prioritizing the sun positions (as seen in Al-
gorithm 2) leads to loading each c and then obtaining the final
rendering for ever l from L before moving to c+1. It is useful if
the biggest impact on overall performance is the (off)loading of
the data and not the rendering. The frequency which we switch
between c at determines where to optimize first.

Data: C, L, S
Result: R
load S;
foreach c in C do

load c into buffer region;
foreach l in L do

render R(l, c);
end

end
Algorithm 2: Memory update cycle when prioritizing tree
configurations

Both options follow the division into static and dynamic data.
Since we will be using data extracted from OBJ files, we can
expand the layout shown in Figure 2 as seen in Figure 3) for
the purpose of reducing the complexity of interleaving the data
ourselves.

Figure 3. Regardless of the nature of the data (dynamic or static)
we can define three distinct buffers each holding a specific

component (here vertex positions and normals as well as face
indices).

Throughout the rest of this article, in order to achieve higher ef-
ficiency we will always use multiple buffers for each each mesh
component (vertices and faces). In order to simplify future fig-
ures, we will use the notation in Figure 2 as a substitute for
Figure 3.

4.1 Buffer orphaning

For this methodology we double the number of buffers as seen
in Figure 4.

The first set of buffers holding the static data remains untouched
for the whole duration of the simulation. The second one holds
the dynamic data and is resized based on the size of the current
tree configuration.

A possible benefit here is that it allows to set the usage hint for
each type of data – GL STATIC DRAW (static) and GL STREAM -

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-27-2024 | © Author(s) 2024. CC BY 4.0 License.

 
29



Figure 4. Using orphaning we now have one set of buffers for
the static data (with the specific optimization flag), while the

dynamic data is offloaded to a completely separate set of buffers,
which can be shrunk based on the size of the current tree

configuration that is being processed.

DRAW (dynamic). Further, unlike the previous method, we can
stream new tree configurations into the scene since we do not
have to calculate cmax. The only restriction comes from the
available physical memory.

However, orphaning may experience performance penalties if
the tree configurations are not of equal size. In this case the
driver is forced to re-allocate new memory for every configura-
tion in addition to loading the data from the CPU’s memory.

4.2 Buffer subdata

Unlike the previous method, using a single buffer per compon-
ent to hold both S as well as the respective ct means that we
are dealing with a constant size per buffer (otherwise we need
to employ orphaning, which will be discussed next). However,
depending on the scenario different tree meshes (e.g. consisting
of different types of trees) and even tree configurations (ranging
between a single and possibly thousands of trees) may be em-
ployed leading to a conflict between the restriction of the buf-
fers’ sizes and the dynamic data they need to accommodate. In
order to create a more flexible solution, we can specify the total
size of each buffer as the sum of bytes of both the static and
dynamic data (refer to Figure 5).

Figure 5. A single buffer per component for both the static and
dynamic data allows easy access by simply using an offset (for
the dynamic data it always starts from the end of the memory
block that stores the static one). Using BufferSubData() we

iterate the tree configurations before every draw call.

For interleaved data, the size (#) of a single tree t can be ob-
tained by

#t = #v +#n+#f, (1)

where #v,#n and #f represent the size of its vertices, nor-
mals, and face indices, respectively. Additional components
can be added accordingly. Due to the separation of the com-
ponents, we can assume that the size of a tree per component

equals the total size of the respective component. This relation-
ship is expressed by the following equation

#t = #v or #n or #f. (2)

In a similar fashion, the total size for a whole tree configuration
c can be calculated as the the sum of the sizes of each tree t,
where t ranges from 0 to a j, and j can vary between configur-
ations. This is expressed in the following equation:

#c =

j∑
i=0

#ti. (3)

Similarly, the memory requirements on a per-component basis
can be calculated as

#c =

j∑
i=0

#tv,i or
j∑

i=0

#tn,i or
j∑

i=0

#tf,i, (4)

depending on what has been chosen in Eq. 2. The memory that
is reserved for the dynamic data for each component is calcu-
lated by taking the largest c. This requires either to pre-load
all files one after the other and extract the information about
the meshes in them or by providing metadata (e.g. a CSV file)
along with the original files that will hold the total number of
vertices, face indices etc. for each configuration. In order to
update the data in the buffers, a simple offset is required that
indicates the end of the static data and the beginning of the dy-
namic one. In addition all indices need to be recalculated based
on the indices of the static data. Otherwise, the mesh will be
rendered incorrectly due to the sequential nature of indexing
vertices (starting from 0).

If a configuration c has a smaller size than that of cmax, the re-
maining ”available” (de facto the memory chunks are reserved
but not used) space will not be taken into consideration dur-
ing the rendering due to the previously mentioned offset. Since
each buffer represents mixed data we cannot fine tune its usage
hint, which may lead to reduced performance if the hint is taken
into consideration by the GPU at all (depends on the OpenGL
implementation in the driver).

This option is inefficient if we decide to stream new tree config-
urations with size exceeding the one used during the allocation
due to the space restriction that each buffer imposes. That is
why knowing cmax is important. Otherwise, all memory (each
buffer) will have to be re-allocated multiple times.

Regardless of the methodology at hand, both provide better
performance compared to simply reloading the complete scene
S + c every time it needs to be rendered.

5. Experiment and results

In this section, we provide the necessary details on how we pre-
pared the data for as well as how we conducted the experiment.
In the end, we show the results, accompanied by a discussion.

5.1 Setup

For the static data we use a subset of the LiDAR composite
DTM (Environment Agency, 2023) provided by the UK Envir-
onment Agency with a spacial resolution of 10m (see Figure 6),
which is high enough for demonstrating the two methodologies
we have described in Section 4.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-27-2024 | © Author(s) 2024. CC BY 4.0 License.

 
30



Figure 6. The region of interest, taken from the DTM provided
by the UK Environment Agency with a spacial resolution of

10m. The close up of the region of interest is shown near upper
left corner and represents our static scene S. The low-poly tree
model t is shown in the green-framed rectanle in the upper right

corner. It will be used for tree configuration.

After converting the GeoTIFF region of interest to a PNG, we
use our custom mesh generator to create the mesh, followed
by several post-processing steps in Blender in order to remove
various artifacts such as NODATA values on the border of the
image that resulted in 3D spike-like shapes.

For the tree configurations, we use a low-poly 3D model (see
top right part of Figure 6)2, which is also employed by the
particle system for hair in Blender to generate multiple tree con-
figurations consisting of 10000 or variable number of instances
(refer to Figure 7). The emitter is using a hair length of 20m, a
local coordinate system at the bottom center of the trunk, rota-
tion around the tree’s Z axis and a scaling factor of 0.050.

Further, using a modifier in Blender we are able to create actual
meshes from the instances and export those as a single OBJ file
per configuration. This allows the creation of unlimited amount
of test data.

5.2 Experiment

The test data is loaded in a sequence between every frame fol-
lowing Algorithm 1. Our experiment presupposes application
of a simple shader for coloring each vertex instead of using
proper lighting. We are also putting an emphasis on (off)loading
data as much as possible since this is the focus of this article.
For reading the OBJ files we use the Python library PyWave-

front. For every configuration we merge all the meshes of all
the trees into a single one in order to reduce the draw calls. Oth-
erwise, instead of a single draw call we need to make 10000 per
tree configuration. All data is stored in NumPy arrays.
2 Model can be found at https://free3d.com/3d-model/blender-lowpoly-

nature-assets-pack-36502.html

Figure 7. Using Blender provides an easy and fast way to
generate random tree configurations on top of the DTM by

employing a hair particle system. The result can then be
instanced (briefly discussed in Section 6) and exported as OBJ
files for benchmarking. Top:side view of the particles rendered

as paths and not object instances, middle and bottom – portion of
the scene (perspective and orthographic view) with the instanced

object in a higher and lower resolution, respectively.

The relevant parameters of the machine we use can be seen in
Table 2.3

Device Specifications Specifications
Integrated GPU Dedicated GPU

CPU Intel Core 11th Gen Intel Core 11th Gen
i9-11980HK i9-11980HK

GPU Intel UHD Graphics Nvidia GeForce RTX
750 (integrated) 3080 Mobile Max-Q

VRAM variable 16GB
(shared with CPU) (dedicated)

RAM 32GB 32GB
OS Xubuntu 22.04 Xubuntu 22.04

Table 2. The system specifications for the integrated and
dedicated GPU.

Since we need to cover two scenarios – constant and variable
tree configuration size – along with the DTM, we create two
sets with 10 OBJ files each. All files from the first set are con-
stant in size (approx. 127MB representing 10 000 randomly po-
sitioned trees), while the latter contains files with variable sizes

3 All Intel and Nvidia related names are owned by the respective com-
panies.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-27-2024 | © Author(s) 2024. CC BY 4.0 License.

 
31



(ranging between 104KB for 100 and 127MB for 10000 ran-
domly positioned trees), sorted in an ascending order based on
the number of trees inside. An example of the experiment can
be seen in Figure 8. We do not employ land cover classification
to determine whether a tree’s position is spatially plausible.

Figure 8. Perspective view of our ROI. Example with two tree
configurations (top to bottom), all containing 10000 tree models

in our renderer. Wireframe is enabled to better visualize the
underlying terrain.

5.3 Results

In order to evaluate the experiment, we record the measured val-
ues of FPS and CPU processing time (in seconds). The meas-
urement duration per data set per scenario and methodology
was set to 10s because, after conducting several longer tests,
we found out that due to the cyclic nature of our experiment,
the result remains roughly the same than what we gathered dur-
ing the first couple of seconds. We selected FPS and CPU pro-
cessing time since these are common parameters evaluated dur-
ing benchmarks of rendering engines. Further, these two para-
meters are related to one another as we will see later on when
we present our results. They are also easy to obtain, therefore
reducing the possibility for gathering faulty data and skewing
our results due to incorrect implementation.

The actual measurement takes place from the updating of the
respective buffers to the end of the draw calls. Due to the nature
of OpenGL calls being asynchronous and also the possibility of
a driver to cache multiple commands before sending those to
the GPU, the measurement cannot determine the precise time
needed for each frame to be shown onto the screen.

Further, we conducted the experiment on both the integrated
as well as the dedicated GPU in order to outline the difference
between shared and dedicated VRAM.
The average values can be seen in Table 3 while a full report on
the measurements can be seen in Figure 9, 10, 11 and 12.4

Based on the results we notice several important aspects, name-
ly the relationships between the FPS and CPU processing time,
the difference in performance between the integrated and ded-
icated GPU as well as the difference in performance between
the two methodologies.
4 The dip/spike in every plot is due to the requirement for at least 1s to

pass in order to estimate FPS as well as the internal changes in the CPU
(e.g. CPU frequency boost) due to the change in workload.

Multi-col-row
Scenario

Same size (av.) Different size (av.)
FPS CPU FPS CPU

Sub-data int. 48.0840 0.0183 115.7615 0.0071
ded. 60.4534 0.0162 206.0668 0.0047

Orph int. 97.3502 0.0088 196.1540 0.0025
ded. 91.2254 0.0108 210.801 0.0044

Table 3. Average values of FPS and CPU processing time for
integrated (int.) and dedicated (ded.) GPU for both scenarios

and methodologies.

(a)

(b)

Figure 9. Integrated GPU benchmark for ”same size” scenario.
FPS and CPU processing time (in seconds) for the (a) sub-region

and (b) orphaning methodology.

Every time data is being loaded, a copying procedure is trigger-
ed. Regardless of whether we use an integrated or dedicated
GPU, the data needs to be moved to a specific location in the
video memory that is used for the rendering. This is not the case
if pinned memory is used, which is something we briefly dis-
cuss in Section 6. Copying the data requires the involvement of
the CPU that leads to a temporary increase in CPU processing
time and reduced FPS.

Due to the underlying hardware and memory layout, the benefit
of using a dedicated GPU is reduced due to the involvement of
the CPU and transfer of data between the RAM and the dedic-
ated VRAM, which is not the case with the integrated GPU.

The surprising result comes from the overall comparison bet-
ween both methodologies. Our initial assumption was that us-
ing a single large buffer and updating part of it without the
need to allocate a new one would be faster. For the sub-region
approach we tried multiple usage hints including GL STREAM

DRAW, also employed by the orphaning) without any noticeable

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-27-2024 | © Author(s) 2024. CC BY 4.0 License.

 
32



(a)

(b)

Figure 10. Integrated GPU benchmark for ”different size”
scenario. FPS and CPU processing time (in seconds) for the (a)

sub-region and (b) orphaning methodology.

difference. However, in our prediction we did not take into con-
sideration the impact that our transformations of the underlying
NumPy arrays may have. Beside the flattening of the arrays (a
requirements imposed by OpenGL), adding of the offset adds to
the CPU computation time. While such calculations are minus-
cule, whenever working in sub-milliseconds time ranges they
do make a difference. Further optimizations made by the driver
and the GPU remain hidden and cannot be directly evaluated.

6. Coclusion and outlook

We explored two very popular techniques for rendering large
scenes in OpenGL in the context of remote sensing – sub-region
buffer updates and buffer orphaning. Based on the experiment
we conclude that buffer orphaning is the preferable approach
for our setup.

While memory layout plays an important role in efficiency, re-
ducing the memory footprint is another parameter that needs to
be investigated and improved upon. For example, our current
full setup for occlusion analysis does not include mesh instan-
cing. This is a common technique that allows drawing a single
model multiple times at the cost of only the respective world
transformation (rotation, translation and scaling), given that the
same vertex data is used as seen in Figure 13.

While for the experiment described in Section 5.1 the tree we
used is defined by a rather simple mesh, in many digital twins
that is not the case depending on the level of detail they offer.
Therefore, we need to be able to work with high number of ver-
tices and faces per model that appears many times in our scene.

(a)

(b)

Figure 11. Dedicated GPU benchmark for ”same size” scenario.
FPS and CPU processing time (in seconds) for the (a) sub-region

and (b) orphaning methodology.

Creating even a tree configuration of 100 trees for a small urban
area would require roughly 1GB of memory if we use the model
from Figure 13. Contrarily, for the same setup instancing the
object would roughly require 10MB plus 100 transformation
matrices of negligible size. These transformations can be pre-
calculated on the CPU side and chained together using simple
matrix multiplication.

Another possible technique worth investigating is the use of
persistent mapped buffers. It allows a more efficient way of
transferring data between the CPU and GPU at the cost of hav-
ing to deal with explicit synchronization thus increasing the
complexity of the implementation, using triple buffering for the
actual rendering as well as facing possible performance issues
for large data (which is our case) and its allocation. It is useful
for very frequently updated buffers, which is the case with the
dynamic data in our scene.

Yet another improvement would be the use of pinned memory.
This technique makes it possible to lock a specific memory
range so that certain computer subsystems (the GPU in our
case) can use direct memory access (DMA). By doing so the
subsystem is able to retrieve the data from the RAM without
the help of the CPU. It also removes the chances of a page
fault (the application tries to access data that is currently not in
RAM). Both classic computer graphics as well as modern high
performance computing (e.g. using CUDA) workflows greatly
benefit from this approach.

Last but not least, especially for large scenes and long rendering
times, a distributed approach will be beneficial. A centralized

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-27-2024 | © Author(s) 2024. CC BY 4.0 License.

 
33



(a)

(b)

Figure 12. Dedicated GPU benchmark for ”different size”
scenario. FPS and CPU processing time (in seconds) for the (a)

sub-region and (b) orphaning methodology.

Figure 13. Instancing allows using the same vertex data (here
represented as the tree mesh on the left, consisting of more than
157000 vertices and approx. 303500 faces) multiple times only
at the cost of simple world transformation as seen on the right

(top to bottom – translation, translation and rotation, translation
and scaling).

location (e.g. a database) may provide the meshes as well as sun
positions to multiple computing nodes (e.g. a cloud cluster).
One or multiple sun positions or tree configurations (depend-
ing on the prioritization as seen in the beginning of Section 4)
will then be downloaded by the respective node, triggering the
rendering process. The results can then be sent separately or
in bulk for final processing and storage. A more complex ap-
proach would be to also separate the static data into smaller,
independent from one another chunks, leading to a more evenly

distributed and scalable solution.

References

Bulatov, D., Burkard, E., Ilehag, R., Kottler, B., Helmholz,
P., 2020. From multi-sensor aerial data to thermal and in-
frared simulation of semantic 3D models: Towards identifica-
tion of urban heat islands. Infrared Physics & Technology, 105,
103233.

Bulatov, D., Hecht, M., Kottler, K., Mispelhorn, J., Strauss,
E., 2023. On Acceleration of Thermal Simulation of Urban
Scenes with the Application of an Evolutionary Algorithm to
Tree Planting Strategies. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, X, 2–7.

Environment Agency, 2023. LIDAR Composite Digital Terrain
Model (DTM) 10m. Online dataset. https://www.data.gov.
uk/dataset/7f31af0f-bc98-4761-b4b4-147bfb986648/
lidar-composite-digital-terrain-model-dtm-10m
[Accessed: 2024-05-01].

Feldmann, D., 2015. Accelerated ray tracing using R-trees.
GRAPP, 247–257.

Guo, S., Xiong, X., Liu, Z., Bai, X., Zhou, F., 2018. Infrared
simulation of large-scale urban scene through LOD. Optics ex-
press, 26(18), 23980–24002.

Hapala, M., Davidovič, T., Wald, I., Havran, V., Slusallek, P.,
2011. Efficient stack-less bvh traversal for ray tracing. Proceed-
ings of Spring Conference on Computer Graphics, 7–12.

Jones, N. L., Greenberg, D. P., Pratt, K. B., 2012. Fast com-
puter graphics techniques for calculating direct solar radiation
on complex building surfaces. Journal of Building Performance
Simulation, 5(5), 300–312.

Kim, H., Han, H., 2024. GPU thread throttling for page-level
thrashing reduction via static analysis. Journal of Supercom-
puting, 80(7), 9829 – 9847. Cited by: 0.

Kjellstrom, T., Holmer, I., Lemke, B., 2009. Workplace heat
stress, health and productivity–an increasing challenge for low
and middle-income countries during climate change. Global
Health Action, 2(1), 2047.

Landaverde, R., Zhang, T., Coskun, A. K., Herbordt, M., 2014.
An investigation of unified memory access performance in
cuda. IEEE High Performance Extreme Computing Conference
(HPEC), IEEE, 1–6.

Li, L., Chapman, B., 2019. Compiler assisted hybrid implicit
and explicit gpu memory management under unified address
space. Cited by: 19; All Open Access, Bronze Open Access.

Long, X., Gong, X., Zhang, B., Zhou, H., 2023. An Intelli-
gent Framework for Oversubscription Management in CPU-
GPU Unified Memory. Journal of Grid Computing, 21(1). Cited
by: 1; All Open Access, Green Open Access.

Osmond, P., Sharifi, E., 2017. Guide to urban cooling
strategies. Low Carbon Living CRC.

Segal, M., Akeley, K., 2022. The OpenGL® Graphics Sys-
tem: A Specification, v4.6 (Core Profile). https://registry.
khronos.org/OpenGL/specs/gl/glspec46.core.pdf [Ac-
cessed: 2024-05-15].

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-27-2024 | © Author(s) 2024. CC BY 4.0 License.

 
34

https://www.data.gov.uk/dataset/7f31af0f-bc98-4761-b4b4-147bfb986648/lidar-composite-digital-terrain-model-dtm-10m
https://www.data.gov.uk/dataset/7f31af0f-bc98-4761-b4b4-147bfb986648/lidar-composite-digital-terrain-model-dtm-10m
https://www.data.gov.uk/dataset/7f31af0f-bc98-4761-b4b4-147bfb986648/lidar-composite-digital-terrain-model-dtm-10m
https://registry.khronos.org/OpenGL/specs/gl/glspec46.core.pdf
https://registry.khronos.org/OpenGL/specs/gl/glspec46.core.pdf


Srinivasan, P. P., Tucker, R., Barron, J. T., Ramamoorthi,
R., Ng, R., Snavely, N., 2019. Pushing the boundaries of
view extrapolation with multiplane images. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 175–184.

Williams, S., Nitschke, M., Weinstein, P., Pisaniello, D. L., Par-
ton, K. A., Bi, P., 2012. The impact of summer temperatures
and heatwaves on mortality and morbidity in Perth, Australia
1994–2008. Environment International, 40, 33–38.

Wong, N. H., Yu, C., 2005. Study of green areas and urban heat
island in a tropical city. Habitat International, 29(3), 547–558.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-27-2024 | © Author(s) 2024. CC BY 4.0 License.

 
35


	Introduction
	Related Work
	Preliminaries
	Synchronization between CPU and GPU
	Buffer orphaning
	Buffer subdata and multi-buffering
	Structure of a scene

	Methodology
	Buffer orphaning
	Buffer subdata

	Experiment and results
	Setup
	Experiment
	Results

	Coclusion and outlook



