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Abstract 

 

Lidar odometry and mapping has emerged as fundamental technology in various fields, including accurate positioning and mapping, 

autonomous vehicles, robotics, and environmental monitoring. The ability to create accurate maps and calculate trajectories is essential 

for localization and navigation in complex environments, particularly in scenarios where GNSS signal are unavailable. In this context, 

we propose a novel method for simultaneous localization and mapping (SLAM) specifically designed for GNSS-denied environments 

and without the need for high-accuracy ranging or inertial measurement units (IMUs). Our approach aims to address the challenges 

posed by GNSS-denied environments and the cost constraints associated with using multiple sensors. By using only lidar sensors, 

specifically the Velodyne VLP 16 sensor, we offer a cost-effective solution. Our method utilizes a modified version of the Iterative 

Closest Point (ICP) algorithm to handle consecutive lidar scans seamlessly. In addition to our method, we conducted thorough accuracy 

assessments on the created map. The reason behind extensive accuracy evaluation is to ensure the quality of registration. By comparing 

alignment between the features of different frames within the map and determining the error between the registered features and the 

original, we gain a more comprehensive understanding of registration quality. 

 

1. Introduction 

With the increasing demand for large-scale data acquisition with 

minimum efforts, light detection and ranging (LiDAR) emerged 

as remote sensing technology (Wang, Z. et al., 2021). Lidar 

sensors capture highly detailed, three-dimensional maps of the 

Earth’s surface. The resulting dataset of millions of data points 

creates a three-dimensional representation known as a point 

cloud. Point clouds mainly capture the geometric structure of 

surroundings, excluding environmental texture features. As the 

LiDAR sensor collects the raw data in the form of fragmented 

and unorganized point clouds, there is a necessary step called 

point cloud registration also known as alignment or fusion, which 

is the process of aligning multiple point clouds obtained from 

different viewpoints or sensors into a unified coordinate system. 

The point cloud registration acts as a vital bridge between raw 

scan data and actionable maps. Without it, mapping efforts may 

suffer from inaccuracies and inconsistencies, limiting the 

effectiveness of autonomous systems. There are plenty of point 

cloud registration methods (Gu, X. et al. 2020). One of the widely 

used methods is ICP-based point cloud registration. ICP 

(Iterative Closest Point) based point cloud registration is 

favoured due to its simplicity, efficiency, and robustness in 

aligning noisy and incomplete data. Its iterative nature enables it 

to effectively handle imperfections in real-world scenarios while 

offering good accuracy, making it versatile for various 

applications such as autonomous vehicles, object reconstruction, 

and localization (Li P. et.al., 2020).  

 

In the context of simultaneous localization and mapping 

(SLAM), LOAM (Lidar Odometry and Mapping), ICP plays a 

crucial role (Khan et al., 2021; Mendes E. et al., 2016).  Lidar 

odometry and mapping involve estimating the motion of the 

sensor using consecutive point cloud scans while simultaneously 

creating a 3D map of the environment (Ji X. et al., 2019). Within 

this framework, we propose a novel approach for localization and 

mapping in GNSS-denied environments using solely LiDAR 

sensors. While existing systems often utilize GNSS and IMU data 

to enhance accuracy, our focus is on environments lacking GNSS 

signals, such as dense urban areas, indoor spaces, remote regions, 

or dense forests. Our proposed system operates without an IMU 

and aims for cost-effectiveness and simplicity by relying solely 

on low-cost LiDAR sensors. Additionally, our approach allows 

for accuracy validation without the need for high-precision 

measurement units. 

 

In addition, we conduct thorough accuracy assessments of the 

created map. We used techniques to extract geometric features 

from the generated map and compared these features with the 

original data features. The reason behind extensive accuracy 

evaluation is to ensure the quality of registration. Root mean 

square error gives a measure of overall accuracy. It does not 

provide insights into whether the correct correspondence is being 

determined between data points. By comparing features within 

the map and determining the error between the registered and 

original features, we gain a more comprehensive understanding 

of registration quality. 

 

2. Related Work 

Lidar-based SLAM is revolutionizing mapping and navigation 

research, offering efficient solutions. By integrating Lidar scans, 

it tracks sensor movement and creates detailed maps 

simultaneously, transforming navigation and analysis. The 

LOAM algorithm (Ji Zhang et al., 2014), introduced by Ji Zhang 

and Sanjiv Singh in 2014, achieves minimal error accumulation 

and low computational demand without relying on highly 

accurate measurements. It splits problem into two algorithms: 

one estimates high-frequency sensor velocity for odometry, 

while the other focuses on precise point cloud registration, 

enabling real-time mapping. Subsequent advancements have 

done to develop more efficient algorithms using LiDAR for 

localization and mapping integrating GNSS and IMU. But 

research is actively focused on mapping in GNSS-Denied 

environments. The authors in G. He (2021) proposed a system 

which can be used in partially GNSS denied environment. Author 

develops mobile mapping systems for outdoor environments that 

do not rely on expensive inertial systems. Map construction is 

achieved through GNSS-LiDAR integration where RTK 

positioning is available, and solely through LiDAR in GNSS-

denied environments. Jian Tang and Xiaoji Niu have introduced 

a Lidar scan matching-aided inertial navigation system for 

GNSS-denied environments (Tang J. et al., 2015). They integrate 

INS with LiDAR SLAM into a unified navigation framework 
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using an extended Kalman filter to achieve stable long-term 

navigation. For precise positioning, they rely on INS to 

compensate for the absence of GNSS. De Paula Veronese, L. has 

proposed Lidar-only systems for GNSS-denied environments, 

introduced a single-sensor system for mapping (de Paula 

Veronese, L. et al., 2019). Their approach utilizes Lidar odometry 

based on particle filter localization and global positioning derived 

from virtual GNSS to detect loop closures. Additionally, they 

employ graphSLAM to fuse outcomes from Lidar odometry and 

virtual GNSS. 

 

Given the limited research on localization and mapping relying 

solely on LiDAR systems, our primary focus is on proposing an 

effective and a simplistic solution for GNSS-denied 

environments. We aim to develop a cost-efficient system that 

utilizes low-cost LiDAR technology without the requirement for 

high-cost inertial measurement units or other complex 

technologies. 

  

3. Data Sets and Methodology  

The VLP 16 sensor is chosen for data collection. The reason 

behind this selection serves two key purposes: to thoroughly 

evaluate the accuracy of our proposed system and to maintain 

cost-effectiveness in its implementation. Also, the environment 

where data collection can be done should be rich in diverse 

mapping features includes prominent structures such as 

buildings, vehicles, and vegetation such as trees, bushes. Also, 

this environment extends to outdoor areas, assuring complete 

coverage and representation of urban landscape for precise and 

detailed mapping purposes. The data collection is conducted 

within the premises of faculty building parking area at Indian 

institute of Technology, Kanpur, shown in figure 1. This location 

has prominent features for accurate data registration and precise 

alignment, additionally, this location has plenty of geometric 

features, which are pivotal for registration process and also the 

evaluating the accuracy of registration. These features provide 

good reference point to compare and verify alignment of data. 

 

 
 

Figure 1. Selected Location for Data Collection. 

After data collection, the raw data is stored as PCAP (Packet 

Capture) file format. The data goes through conversion from 

PCAP to PCD (Point cloud Data) file format using Veloview 

software (Paraview, 2024). This conversion process extracts the 

data into point cloud data file containing coordinates (x, y, z) for 

analysis and visualization. 

3.1 Registration of Two Point Clouds  

After the data collection, there is necessary step of noise removal. 

Noise removal in point cloud data includes data filtering which 

removes unwanted or noisy points to improve the data quality 

and accuracy. Usually, it is achieved by techniques like statistical 

outlier removal and voxel grid down sampling. 

 

After preprocessing, we pass the data to a registration module 

that uses a point to plane ICP approach for registration of two 

consecutive frames. We employ a modified GICP (Segal et al., 

2009) algorithm with LM (Levenberg Marquadt) optimization to 

estimate the translation and rotation parameters between the two 

frames.  

 

The basic ICP introduced by chen and medioni (Besl, P. J., 1992) 

in which convergence is done by minimizing Euclidean distance 

between 2 point clouds. Point to plane ICP is a modification to 

basic ICP which takes advantage of surface normal information 

for registration process.  

 

Let the source and target point clouds are denoted as A = {a1,..., 

aN} and B = {b1,...,bN}, respectively.  Hence, the relationship 

between the two correspondences ai and bi is given by equation 

(1). 

 

                                           ai = T.bi                                          (1) 

 

where, T = [R: t] (transformation Matrix). 

The notation R denotes a 3×3 rotation matrix and t denotes a 3×1 

translation vector. 

 

To compute transformation matrix, basic ICP minimizes 

∑ ||𝑇. 𝑏𝑖 − 𝑎𝑖||2, however, Point to plane ICP takes the different 

approach by minimizing the distance from each point in target to 

tangent plane of its corresponding (source) point cloud. Instead 

of computing point to point distance, point to plane ICP computes 

distance to the tangent plane, which provides a more accurate 

representation of surface geometry.  

 

Our method uses a modified generalized ICP (Segal et al., 2009) 

for registration. It incorporates a probabilistic model for 

minimization. Correspondences are determined using kd-tree. It 

efficiently finds the closest points (correspondences) between 

two sets of points. For each point in the source point cloud, the 

kd-tree is queried to quickly locate its nearest neighbor in the 

target point cloud, significantly speeding up the correspondence 

search process. This probabilistic approach can incorporate 

surface information and assess the reliability of correspondences, 

making it more robust against erroneous matches. Consequently, 

for 𝑁 correspondences, the transformation 𝑇 is determined in the 

equation (2). 

 

                    T =   argmax ∑ log(𝑝(𝑑𝑖))                                  (2)  

𝑁

1

 

 

where di = ai - T.bi denotes the transformation error. 

 

As these correspondences ai and bi are inaccurate and are 

assumed to be sampled using gaussian distribution. i.e. 

𝑎𝑖~𝑁(𝑎𝑖 , 𝐶𝑖
𝐴),  𝑏𝑖~𝑁(𝑏𝑖 , 𝐶𝑖

𝐵)
and indexed according to their 

correspondence (ai correspondence with bi). In this case, 

𝐶𝑖
𝐴 and 𝐶𝑖

𝐵are covariance matrices related to the measured 

points. Since both ai and bi are following gaussian distribution, di 
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will also follow a gaussian distribution with mean 𝑑𝑖  ̂and 

covariance matrix (𝐶𝑖
𝐴 + 𝑇𝐶𝑖

𝐵𝑇𝑇), shown in equation (3). 

 

  

           𝑑𝑖
(𝑇∗)

~ 𝑁(𝑎𝑖 − (𝑇∗)𝑏𝑖 , 𝐶𝑖
𝐴 + (𝑇∗)𝐶𝑖

𝐵 (𝑇∗)𝑇)                  (3) 

 

 

The estimator di is an unbiased estimator of di and hence, di = 0. 

 

 

                        𝑑𝑖
(𝑇∗) =  𝑁(0, 𝐶𝑖

𝐴 + (𝑇∗)𝐶𝑖
𝐵(𝑇∗)𝑇                        (4) 

 

 

By substituting, equation (4) in equation (2), we get. 

 

                    𝑇 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑(𝑑𝑖
𝑇(𝐶𝑖

𝐴

𝑁

𝑖=1

+ 𝑇𝐶𝑖
𝐵𝑇𝑇) −1𝑑𝑖                (5) 

 

The values of the covariance matrices 𝐶𝑖
𝐴 and 𝐶𝑖

𝐵 are depends on 

the properties of the correspondences.  

 

After the determination of correspondence pair, to get better 

accurate results, our method uses L-M optimization to achieve a 

wider convergence basin. The Levenberg-Marquardt (L-M) 

optimization technique is used in point cloud registration to 

address challenges like low overlap, noise, outliers, and complex 

environments. By solving non-linear least squares problems, the 

L-M algorithm enhances point cloud alignment accuracy. It also 

mitigates the issue of local minima in ICP registration, aiming to 

find global minima. This robust and efficient approach 

significantly improves the results of point cloud registration, 

making it more reliable in various challenging scenarios. 

 

From registration of two point clouds, we transformed this 

modified Generalized ICP (G-ICP) approach for the 

simultaneous registration of frames. This method enhances the 

robustness and accuracy of aligning multiple point clouds. 

 

3.2 Registration of Simultaneous Frames 

Simultaneous registration of frames is an important step for 

accurate alignment of features and mapping of the environment. 

This process involves continuous registration of point cloud data 

frames for creation of up-to-date map of surrounding features. 

Here, as simultaneous registration of frames means to convert all 

frames one by one into coordinate system of 1st frame. 

Registration depends on percentage of overlap between the 

frames. In order to enhance the efficiency of our proposed 

method, we conducted experiments using various conditions to 

optimize our approach and identify potential enhancements. Our 

goal was to simultaneously register all frames with respect to the 

coordinate system of the first frame. Initially, we attempted to 

individually register each frame with the first frame to determine 

the optimal overlap required for registration. However, this 

approach proved unsuccessful as the overlap decreased over 

time. 

 

Subsequently, we explored an alternative method where we used 

the solution from the previous registration as the initial 

parameters for the registration of the next frame. Unfortunately, 

this approach led to the overall solution becoming trapped in a 

local optimum, resulting in incorrect alignment between the 

frames. Later, we performed the approach in which provided in 

below pseudo code.  

 

Input: Number of consecutive frames N, Consecutive Frames, 

Initial transformation matrix [r,t] 

Output: Final transformation matrices [r,t], Registered Frames 

1 iter ← 0 

2 tr1 = [0,0,0,0,0,0] 

 2 for i in [1, N] do 

 3 Frame i is target point cloud  

 4    Frame i+1 is source point cloud  

 5    Preprocesses both point clouds with voxel grid  

 6   Transformation matrix tri,i+1 = point cloud registration( 

 target, source, tr[0,0,0,0,0,0])  

 7 Final transformation matrix, tri+1 = tri × tri,i+1 

 8 Final source point cloud = transform original source 

 point cloud by applying transformation matrix tri+1 

 9 Save tri+1 and transformed source point cloud 

   end  

   return all transformation matrices and registered point clouds 

 

Using this approach, results are optimized throughout the 

trajectory, involving fewer points cloud for computation, and 

significantly taking less time for computation. The final map is 

generated by merging all frames together. The trajectory is 

determined by translation vectors extracted from the resulting 

transformation matrices. 

 

3.3 Accuracy Evaluation   

Extensive accuracy evaluation is performed by extracting planes, 

lines, cylinder, and corner planes from Registered data and 

comparing them with original data. The reason behind extensive 

accuracy evaluation is to ensure the quality of registration. Root 

mean square error gives a measure of overall accuracy. It does 

not provide insights into whether the correct correspondence is 

being determined between data points. By comparing features 

within the map and determining the error between the registered 

features and the original, we gain a more comprehensive 

understanding of registration quality.  

 

1. Standard deviation between fitted planes 

2. Angle between Normal of planes (e.g., Plane of 

Buildings) 

3. Angle between axis of the cylinder (e.g., Electric Pole) 

4. Angle between fitted line in 2 corner planes (e.g., 

Corner of Building) 

5. Deviation between planes 

4. Results and Discussion 

4.1 Data Collection  

Data was collected using the VLP 16 LiDAR sensor employing 

a stop and go approach without loop closure. In the STOP and 

GO approach, the LiDAR sensor remains stationary at one 

position for 3 to 4 seconds, collects the data, and proceeds to the 

following position. Data collection was carried out for about 22 

meters distance with the sensors positioned at intervals of 1.5 to 

2 meters. At each location, the sensor remains stationary for 3 to 

4 seconds. With a rotation speed of 600 RPM, the sensor 

collected approximately 30 to 40 frames at each location. Out of 

which, one frame is taken for the registration process. Figure 2 

shows the set up for the data collection. 
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Figure 2. Data Collection using VLP 16 Sensor. 

 

4.2 Data Preprocessing and Final Map Creation  

As data is collected, it is essential to remove noise from the data, 

to avoid wrong correspondence matching between two frames, 

and remove unnecessary points from the frames. Noise removal 

is achieved using Voxel Grid Down sampling techniques. The 

parameters for Voxel Grid Down-sampling are set as 0.1, number 

of neighbours taken as 6. Data collected at 12 consecutive 

locations, one frame is taken for processing from each location. 

All frames were registered with respect to the first frame. The 

final map is shown in figure 3. 

 

 
 

Figure 3. Top view of generated Map. 

 

Figure 3 shows the plan view of the created map. This map is a 

combination of 12 consecutive frames. We can see the features 

present in the map such as cars, bushes, trees, buildings, electric 

poles, etc. All features from the different frames are perfectly 

aligned with each other. This accurate alignment between the 

features makes the accurate 3D map. The figure 4 shows the 

oblique view of the generated map. 

 

 
 

Figure 4. Oblique view of generated map. 

 

Additionally, the trajectory is determined to track the movement 

of the sensor during data collection. The coordinates of the 

sensor’s position at 1st location are set as [0,0,0], and subsequent 

coordinates are computed with respect to 1st location of the 

sensor. Figure 5 shows the plotted trajectory in the generated 

map. 

 

 
Figure 5. Generated map with the trajectory. 

 

4.3 Accuracy Evaluation of Created Map 

To determine the accuracy of a map, it is essential to check the 

relative difference between features shown in the map. Ideally, if 

features from various frames are perfectly align with each other, 

it indicates that there is no error in the map. However, since 

registration errors can occur, it is necessary to compute the 

relative errors between the features shown in the map, by which 

accuracy is determined. 

 

To compute the accuracy of the map, we extracted geometric 

features such as planes, lines, cylinders, corner planes, etc within 

the map and compared them with each other. Using the novel 

method of accuracy determination, ensure precise determination 

of accuracy. 

 

4.3.1 Standard Deviation between Fitted Planes  

 

By fitting the plane in the extracted data, standard deviation can 

be determined. It talks about the deviation of points around the 

plane. Lower the standard deviation, higher the accuracy in the 

map.  

 

The figure 6 shows the extracted planes, Plane A, Plane B, Plane 

C from the map for standard deviation computation. 

Trajectory 
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Figure 6. Extracted planes from the data. 

 

Imaginary planes are fitted using least square method 

(Mathematics , 2024) in these extracted data points. Figure 7 

shows the fitted planes in data points. 

 

 
 

Figure 7. Fitted planes in three extracted data sets. 

 

Subsequently, Standard deviation is computed for each data sets 

with respect to the fitted planes. The below table 1 shows the 

standard deviation value. 
 

Planes  A B C 

Max Std dev. (in cm) from data 

points to fitted plane in all individual 

frames (frame 1 to frame 12) 

1.87 2.16 6.18 

Std. dev. (in cm) From total data 

points to fitted plane of all frames 

(Total data) 

1.96 2.22 8.23 

Table 1. Computed standard deviation in extracted planes. 

 

In table 1, planes A, B, C exhibit different standard deviation 

values compared to each other.  This discrepancy arises due to 

their respective distance from the sensor’s position along the 

trajectory. Plane A is at 4 to 5 meters from the sensor’s starting 

point. Plane B is at 7 to 8 meters, and Plane C is at around 13 

meters. As the distance from plane to sensor’s position is 

increasing, there is a corresponding increase in the standard 

deviation among the point cloud data. The sensor's range 

accuracy, typically around ± 3 cm, ensures that Plane A and Plane 

B maintain an acceptable level of error. However, the slightly 

increased distance between Plane C and the sensor results in a 

marginally higher error which demonstrates the error in the 

registration or the quality of registration. 

 

4.3.2 Angle between the Normal of Planes 

 

Another approach to achieve the registration accuracy involves 

comparing the angles between computed normal for the fitted 

planes. The plane is fitted in extracted data sets and normal of 

fitted planes is computed. Subsequently, the angles between 

original and registered frames data sets are compared. Computing 

the normal of each plane and comparing the angles between them 

gives the error in rotation among the features within the map. If 

the angle between normal of planes is zero, indicates the planes 

are perfectly aligned. Therefore, by comparing the angle between 

normal from registered data with original data determines the 

error in alignment between planes, thereby the quality of the 

registration. 

 

The normals are computed for 1st frame (original) and 2nd frame 

(registered) of plane 2 data sets are shown figure 8. 

 

 
 

Figure 8. Extracted datasets with computed normals of original 

and registered frame. 

 

As shown above figure, normals have been computed for 1st 

frame (original) and 2nd frame (registered). The angle between 

these normal measures 0.59 milli radians. Similarly, angle 

compared in all other registered frame with original frame for 

Plane A, Plane B, and Plane C in figure 9. 

 

 
 

Figure 9. Bar plot between computed angles and registered 

frames for Plane A, B and C. 

 

The RMS value of Error in angle between the normals for each 

plane is computed and shown in table 2. These metrics indicate 

the registration quality by assessing the alignment accuracy of 

planes. With all planes exhibiting errors within the range of 8 to 

12 milliradians, or equivalently 0.45 to 0.68 degrees, our results 

suggest that the registration error falls within the acceptable 

range considering the sensor resolution accuracy. 

 

Planes  RMS values (in mrad) 

Plane A 8.66 

Plane B 9.34 

Plane C 11.17 

Table 2. Root mean square value for angles for each extracted 

plane. 
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4.3.3 Angle between Axis of Fitted Lines 

 

Features like electric pole, kerb are cylindrical in shape, but due 

to spare density of the sensor’s point cloud data. These features 

appear as line features. Therefore, line can be fitted by extracting 

these features from the map and angles can be compared. 

Extracted data of electric poles, Pole A and Pole B are shown in 

figure 10. 

 

 
 

Figure 10. Extracted electric poles from the map. 

 

Line is fitted in each extracted data from original as well as 

registered frames and angle is compared. The below figure 11 

shows the fitted line in data of 1st frame (original frame) and data 

of 2nd frame (registered frame). Angle is compared among 

original and all registered frames and plotted in bar graph, shown 

in figure 12. 

 

 
 

Figure 11. Fitted lines in extracted data. 

 

 
 

Figure 12. Computed Error in angles between original and 

registered frames. 

 

Electric Pole  RMS Value (in mrad) 

Electric Pole A 24 

Electric Pole B 14 

Table 3. RMS value of line fitted in electric pole. 

 

RMS value is computed in error in angles of axis of line for both 

poles in table 3. Here you can see, compared to error in angles of 

normal vectors of planes, error in angle of electric poles is little 

bit on higher side. This is because electric poles have fewer points 

than plane of buildings. As the feature has a denser point cloud, 

registration tends to occur more accurately. Or we can say if 

feature has less points registration error tends to be higher. The 

reason behind this is that registration process relies on the 

matching corresponding points between frames, and if points are 

less to determine the feature, the alignment between the features 

becomes less precise. 

 

4.3.4 Angle between Fitted Line in Two Corner Planes 

 

Planes intersect at corner, where line can be fitted and angle 

between the lines can be compared.  Figure 13 shows the 

extracted two corner planes from the map. 

 

 
 

Figure 13. Extracted corner planes from the map. 

 

Line is fitted in the extracted data from original as well as 

registered frames. The fitted line between data of 1st frame 

(original) and 2nd frame (registered) is shown in figure 14. (a) 

shows the fitted line in data 1 and (b) shows the fitted line in data 

2. 

 

 
 

Figure 14. (a) Line fitted in original Data set (b) Line fitted in 

registered data set. 

 

Subsequently angle is computed between in the fitted lines of 

original and registered data sets and compared in figure 15. 
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Figure 15. Bar plot between error in angles vs registered frames. 

 

The RMS values of error in all different registered frames is 10 

milli radians. This means there is average deviation between the 

corner planes is about 10 milli radians or half a degree. VLP 16 

has horizontal resolution of 0.20 degrees for angular speed of 600 

RPM. If we neglect the resolution from the error value, we will 

get error due to registration process, that is about 0.30.    

 

4.3.5 Deviation between the Planes 

 

Till now, errors in angles or in angular alignment have been 

identified. However, it’s also essential to check for error in 

normal deviation or distance between the points. It can be 

achieved by computing distance between the planes. Ideally, if 

the planes are completely overlapping, distance between the 

planes should be zero. But due to registration error, it is important 

to check deviation between the planes of original as well as 

registered frames. To check the deviation between the planes, 

some plane features are extracted from the map and compared. 

figure 16 shows the top view of one single column feature 

extracted from map. The deviation between plane of the column 

is compared between the original and registered frames. 

 

 
 

Figure 16. Extracted data points from original and registered 

frames. 

 

In figure 16, data points extracted from 1st frame (original) are 

depicted in white, while data points from the 2nd frame 

(registered) are shown in different colors. It is clearly shown that 

from 2nd frame to 12th frame, there is an observable increase in 

deviation. It occurs due to drift error in simultaneous registration 

of frames. Also same as column 1, planes from other columns are 

also extracted shown in figure 17 and deviation is computed in 

figure 18. 

 

 
 

Figure 17. Extracted planes from column features from the map. 

 

 
Figure 18. Bar plot: Deviation in mm vs registered frames. 

 

In figure 21, the plot is shown between calculated errors in mm 

and registered frames. As we can see, the deviation is increasing 

as senor is moving further. In the 2nd frame the maximum 

deviation is 50 mm. The maximum deviation in the 12th frame is 

158 mm. The increase in error from the initial frame to the last 

frame is called drift error, which is cumulatively increasing as 

more frames are registered.  

We have conducted thorough accuracy evaluations of the 

generated map. The reported error serves as a metric for assessing 

the registration quality. The maximum error in rotation and 

translation currently stands at 60 milli radians and 10 cm, 

respectively. Given our utilization of the VLP 16, the coverage is 

limited, resulting in incomplete capture of features due to lower 

point cloud density. In future we are planning to perform 

mapping using the VLP 32, will provide broader coverage and 

higher point cloud density, are anticipated to yield reduced error 

compared to the current reported figures. 

 

5. Conclusion and Future Work 

This research focuses on transforming a modified ICP 

registration algorithm into a crucial application, specifically 

Lidar odometry and mapping. By leveraging this algorithm, the 

study advances the efficiency and effectiveness of the mapping 

process and contributes to the evolution of novel LOAM 

techniques. Our work stands as a novel contribution to the field 

of mapping, alongside a thorough accuracy evaluation process. 

This method offers valuable insights for evaluating the alignment 

between frames, effectively identifying errors in translation and 
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rotation. Up to this point, our emphasis has been on utilizing the 

VLP-16 LiDAR sensor without loop closure and with restricted 

data gathering. In the future, our strategy involves expanding data 

collection using the VLP-32 LiDAR sensor with good coverage 

and dense point cloud data across diverse environments, 

incorporating loop closure conditions to assess trajectory error 

accurately. Additionally, we plan to integrate advanced machine 

learning techniques to further refine the alignment process and 

enhance the overall robustness of the system in dynamic and 

complex settings. Through these advancements, we aim to push 

the boundaries of current LOAM methodologies and contribute 

significantly to the field of autonomous navigation and mapping. 
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