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Abstract  
 
Urban areas face significant environmental challenges, including high CO2 emissions largely attributed to the transportation sector. 
Introducing solar-powered vehicles (SPVs) presents a promising solution to reduce urban carbon footprints. However, in dense urban 
settings, the effectiveness of SPVs is often compromised by shading from buildings, which significantly diminishes solar power 
generation. This study explores the impact of shading on urban roads, aiming to identify roads with substantial shadow variations that 
affect solar energy harvesting. Using Geographic Information Systems (GIS) and hillshade analysis, the study examines how nearby 
buildings and road orientation influence shadow variability. The findings reveal considerable variability in shadow throughout the year, 
with significant fluctuations during transitional months like February, August, October, and November. These results highlight the 
importance of considering shadow patterns in urban planning and vehicle routing to optimise the use of solar energy in urban settings. 
 
 

1. Introduction 

Air pollution from transportation in urban areas presents a 
significant challenge, exacerbated by the dense configuration of 
cityscapes which impedes the dispersal of contaminants (Rossi et 
al., 2020). Worldwide efforts are being made to decrease 
greenhouse gas emissions. The International Energy Agency 
reports that the transportation sector is responsible for 23% of 
global CO2 emissions, with road transport contributing 74% of 
that total (IEA, 2023). Introducing electric vehicles (EVs), which 
use clean energy, in urban areas can significantly reduce urban 
carbon footprint (Bieker, 2021).  
 
 However, a recent issue has been the sensitivity of EV batteries 
to temperature, leading to battery failures (Senol et al., 2023). 
This problem is compounded by the limited number of 
designated charging stations, causing significant congestion 
when these stations are needed the most (Fan et al., 2023). In this 
context, Solar-powered vehicles (SPVs), or Vehicle-Integrated 
Photovoltaics (VIPVs) which can generate power even while 
driving, could be the long-term solution to such pressing urban 
issue. 
 
In cities like Seoul, where parking spaces are scarce and charging 
while parked is not always feasible, waiting times at charging 
stations can be excessively long. Nevertheless, SPVs can serve 
as a valuable supplementary power source. By generating power 
during transit, they can utilise this auxiliary power effectively. 
However, commercial viability is hindered by their inefficiency. 
The effectiveness of these vehicles is heavily dependent on the 
urban environment—specifically, shading from surrounding 
buildings can significantly reduce their solar energy generation 
capabilities (Yoo, 2011). 
 
This study explores the impact of shading from buildings in urban 
environments on the solar energy generation capabilities of SPVs. 
Specifically, it investigates how shadows cast onto urban roads 
which can reduce the power output of solar panels installed on 
vehicles. The analysis will focus on identifying which urban 
roads experience significant shadow variations throughout the 
day, potentially affecting solar energy harnessing. 
 

Regarding vehicles, previous studies have utilised Geographic 
Information Systems (GIS) technology to predict photovoltaic 
(PV) power generation by considering factors like the vehicle's 
location, surrounding terrain, buildings, and the sun's movement. 
For instance, Oh et al. (2020) analysed the shadows reaching 
buses, and Kim et al. (2022) studied shadows on trains, utilising 
terrain information for solar power generation calculations. 
However, these studies only considered the predefined routes of 
buses and trains. Chalkias et al. (2013) created a Digital Terrain 
Model (DTM) and used GIS to calculate shadows but did not 
conduct detailed analyses for each spatiotemporal case of road 
shadows in urban settings.  
 
Therefore, our research builds on these foundations by 
employing a Digital Surface Model (DSM) that includes terrain 
and building heights to study how shadows affect urban roads 
over time. We analyse the variations in shadow at one-hour 
intervals throughout the year, utilising the positions derived from 
splitting the roads at regular intervals as input values. 
 
Understanding these shadow dynamics is crucial, as it directly 
influences the efficiency and practicality of SPVs in densely built 
areas. By mapping and modelling these variations, the research 
aims to contribute to the optimisation of urban planning and 
vehicle routing to enhance solar energy utilisation. This approach 
not only aids in maximising the potential of solar-powered 
transportation but also supports broader environmental goals by 
optimising renewable energy usage in urban settings. 
 

2. Study area 

The study focuses on Seoul, the capital city of South Korea, 
characterised by its dense urban architecture and heavy traffic. 
Seoul features a total of 707,292 buildings and approximately 
10,260 km of roadways (MOLIT, 2021; NGII, 2023). This 
diversity in building heights and densities creates significant 
variations in shadow patterns across the roads. In parts of the city, 
like shown in Figure 1.b, large buildings cast long shadows over 
these roads, and as depicted in Figure 1.c, the varied orientation 
of Seoul's roads alongside the surrounding buildings significantly 
influences these shadow effects. 
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Figure 1. Study area: (a) Building heights and major roads with high traffic,  

(b) Zoomed-in view with measurement points along the road, (c) Distribution of road azimuths. 
 
 

3. Methods 

In this study, the analysis of shadows on roads was conducted 
using through three main phases: (i) A DSM was created to 
include the elevation of both natural and man-made features to 
analyse shading effects. (ii) The top 25% of the busiest roads in 
Seoul over 2022 and 2023 were selected, and measurement points 
were set at 10 m intervals along these roads, totalling 50,849 
points. (iii) The hillshade tool was used to determine shadow 
occurrence hourly throughout the year when the sun's elevation 
was above 0 degrees, categorising the results into fully shaded or 
not shaded. Lastly, daily standard deviations were calculated to 
assess shadow variability, grouping the roads by vertices into 
2,072 segments for detailed analysis. 
 
3.1 Digital Surface Model construction 

The DSM was constructed to precisely capture the urban 
landscape of Seoul. For this analysis, ArcGIS Pro, a leading GIS 
analysis software, was utilised. DSM integrates detailed data on 
building heights. Building data, including the number of floors 
and area were sourced from the Ministry of Land, Infrastructure 
and Transport (MOLIT, 2021). Each building's height was 
calculated by multiplying the number of floors by an average 
floor height of 2.7 m. These data were then combined with DEM 
from the ASTER GDEM, which provides a base elevation at a 30 
m spatial resolution (METI and NASA, 2023). The resolution 
was further refined to 3 m to enhance the accuracy of shadow 
modelling. 
 
3.2 Extracting Measuring Points 

For this analysis, top 25% of roads by traffic volume over the 
recent years 2022 and 2023 were selected (TOPIS, 2023). Having 

520 km length in total (NGII, 2023). Measurement points were 
strategically placed at 10 m intervals along these roads to ensure 
comprehensive coverage and detailed data collection. This 
approach allowed for a granular analysis of shadow impacts 
across different times of the day and varying traffic conditions. 
 
3.3 Shading analysis 

3.3.1 Hillshade algorithm: Hillshade, used for illustrating 
shaded relief from a DSM, requires the altitude and azimuth of 
the light source for computation (Esri, 2023). By modelling 
shadows, it is possible to determine which cells are shaded at any 
given time via equation 1. Cells in shadow are marked with a 
value of 0, while those not shaded are marked from 1 to 255. For 
simplicity, values greater than 1 are reclassified to 1, creating a 
binary output. For instance, if the sun's elevation angle is bigger 
than the angle between a building and a measurement point, the 
area is non-shaded (value 1); otherwise, it is shaded (value 0) as 
illustrated in Figure 2. 
 

𝐻𝑖𝑙𝑙𝑠ℎ𝑎𝑑𝑒 = 255 ×  {[cos(𝑍) × cos(𝑆)]                       
 +[sin(𝑍) × sin(𝑆) × cos(𝛾 − 𝐴)]}          (1) 
 
where  Z =  Solar zenith angle (radian) 
 S  = Surface slope angle (radian) 

 𝛾 = Solar azimuth angle (radian) 
 A = Surface aspect angle (radian) 
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3.3.2 Shadow Variability on urban roads: Shadow data, 
captured using the hillshade method, was collected hourly only 
during sunlight hours over the year. By 2023, this totaled 4,421 
hours. To understand shadow variability, the standard deviation 
of shadow intensity was computed from data points along Seoul's 
major roads, which were recorded every 10 m, totaling 50,849 
points. These points were grouped by road vertices into 2,072 
road segments, to calculate daily standard deviations. This 
analysis providing insights into how often and how significantly 
vehicles might be impacted by reduced solar exposure by 
shading.  
 

 
 

Figure 2. Illustration of building shadows due to the relative 

difference between the sun's altitude angle (𝛼) and the angle 

from buildings to the measuring point (𝜃𝐵): (a) Measuring point 

non-shaded (𝛼 > 𝜃𝐵), (b) Measuring point shaded (𝛼 < 𝜃𝐵). 
 

4. Results 

4.1 Standard deviation throughout the year 

To assess the year-round impact of shadows, this study analysed 
the variability of shadows on urban roads using standard 
deviation, and shadow intensity using mean values. Table 1 
presents a statistical summary of daily shadow values, 
showcasing standard deviations and means by month. The table 
also includes statistical observations such as the minimum, first 
quartile (Q1), median, and third quartile (Q3) to provide a 
comprehensive view of the data. 
 
The standard deviation, representing the variability in daily 
shadow, indicated notable differences across the months. Higher 
standard deviations were observed in February, April, August, 
October, suggesting a greater variability in shadow intensities 
during these months. This higher variability aligns with seasonal 
transitions where the sun’s angle changes significantly, affecting 
the length and intensity of shadows cast by urban structures. 
 
Across all months, the minimum standard deviation values 
consistently registered at zero, indicating complete consistency 

of shadows. This consistency points to predictable periods each 
day, likely around solar noon, when shadows are minimal due to 
the sun's high position. Alternatively, when shadows are 
continuously present, the standard deviation can still be 0. 
However, as shown in Table 1, the distribution of the average 
shadow values indicates that the Q1 of the mean is higher than 
0.9 (1 indicating no shadows). Therefore, when the standard 
deviation is 0, it likely corresponds to a period without shadows. 
 
The analysis of shadow variability throughout the year indicates 
a clear seasonal pattern. During the summer months of May, 
June, and July, the Q1 results of standard deviation were near 
zero, suggesting consistent shadow values conducive to optimal 
solar energy harvesting. In contrast, during the transitional 
months of February, August, October, and November, the 
standard deviation values were significantly higher. This increase 
reflects a greater variability in shadow presence, influenced by 
the sun’s lower elevation, which results in more pronounced 
fluctuations in shadows throughout the day.  
 
Figure 3 clearly delineate the seasonal variations in shadow 
intensity, with summer months showing lower variability, 
conducive to solar energy use. Transition months exhibited 
higher variability and intensity, posing challenges for consistent 
solar power generation. These findings are crucial for urban 
planning and the deployment of SPVs, highlighting the need to 
consider seasonal and monthly shadow patterns to optimise the 
placement and operation of solar energy systems in urban 
environments. 
 

Figure 3. Monthly and seasonal variations of daily shadow 
standard deviations. 

 
The results were stratified using a heatmap that categorised 
annual standard deviations and averages, divided into ten class 
quantiles (Figure 4). The heatmap reveals a distinct inverse 
relationship between the average shadow presence and its 
variability. In this study, shadow values were calculated such that 
a value of 0 indicates fully shaded conditions, whereas a value of 
1 represents no shade. Smaller average shadow values imply a 
significant presence of shadows, corresponding to clusters near 1 
on the mean axis. These areas typically lie close to the 10th 
quantile on the standard deviation axis, indicating high shadow 
variability. Conversely, when there are fewer shadows, as 
indicated by mean clusters close to 10, there is low shadow serial 
variability. This pattern highlights the impact of shadow presence 
on variability, illustrating that broader shadow coverage tends to 
accompany higher fluctuations in shadow length. 
 
 
 
 

  Stats Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. 
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Std. 
Dev 

Mean 0.053 0.060 0.047 0.056 0.041 0.036 0.038 0.058 0.039 0.062 0.058 0.056 

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Q1 0.013 0.022 0.012 0.024 0.000 0.000 0.000 0.023 0.003 0.026 0.020 0.012 

Med 0.047 0.054 0.041 0.050 0.034 0.027 0.030 0.052 0.031 0.056 0.052 0.052 

Q3 0.075 0.081 0.066 0.074 0.060 0.052 0.056 0.078 0.056 0.082 0.079 0.080 

Max 0.484 0.484 0.492 0.484 0.474 0.469 0.476 0.480 0.495 0.503 0.490 0.497 

Mean 

Mean 0.960 0.957 0.971 0.976 0.982 0.985 0.983 0.976 0.978 0.960 0.953 0.948 

Min 0.000 0.318 0.508 0.679 0.702 0.714 0.696 0.687 0.566 0.489 0.000 0.000 

Q1 0.946 0.947 0.963 0.968 0.975 0.978 0.976 0.967 0.972 0.951 0.941 0.931 

Med 0.974 0.975 0.983 0.982 0.988 0.991 0.989 0.981 0.988 0.976 0.973 0.967 

Q3 0.994 0.992 0.996 0.993 1.000 1.000 1.000 0.994 0.999 0.991 0.993 0.992 

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table 1. Monthly statistical overview of daily shadow metrics: standard deviation and mean intensity 
 

 
Figure 4. Heatmap of relationships between daily shadow mean 

and standard deviation, grouped into deciles. 
 
4.2 GIS results spatially overviewed 

4.2.1 Urban shadow dynamics -spatial variability: To explore 
urban shadow dynamics spatially, Figure 5.a shows the ArcGIS 
Pro-generated annual average of daily standard deviation, 
presented with a five-class quantile legend evenly distributing 
data values across each class. In this classification, section b 
exhibits low shadow variability, whereas section c displays high 
shadow variability. The impact of shadow variability is further 
examined in Figures 5.b and c, focusing on October—identified 
previously as having the highest variability. For presentation, 
October 15th was designated, and observations taken at three-
hour intervals starting from 8 AM 
 
Figure 5.b shows a road with low shadow presence and low 
shadow variability. On this road section, shadows were observed 
only in the early morning (8 AM) due to one tall building. For the 
other time of the day, there were no shadows since the distance 
between the road and buildings was wide, and the buildings were 
low, resulting in shorter shadows. Additionally, in October late 
afternoon (5 PM), when the sun is at a low angle, shadows appear 

horizontally. Given that this section of the road also runs 
horizontally, it is less affected by shadows. 
 
Figure 5.c depicts road sections where shadows were prevalent at 
low sun altitudes (8 AM and 5 PM), resulting in longer shadows 
and consequently higher variability. In contrast to Figure 5.b, the 
distance between the road and buildings in this area is narrower, 
and the buildings are relatively taller, leading to a greater impact 
from shadows. Moreover, shadows extend horizontally in the 
morning and evening, and since the road runs vertically, it is 
more affected by these shadows. 
 
4.2.2: Influence of road direction: The study also explores how 
road direction affects shadow variability. It analysed the shadow 
patterns of 2,072 roads, which were categorised into eight distinct 
directions: North-South (NS), Northeast/Southwest (NE/SW), 
East-West (EW), and Southeast/Northwest (SE/NW). Monthly 
patterns are displayed in Figure 6.  
 
From April to August, roads oriented in the NS and NE/SW 
directions exhibited higher shadow variability compared to other 
road orientations. Despite this period generally having lower 
shadow intensity and variability on average, the NS and 
particularly the NE/SW oriented roads experienced more 
frequent changes in shadow presence due to the buildings on right 
and left side. This suggests that buildings block the sunlight more 
effectively when the sun is positioned in the east or west, rather 
than directly south. 
 
During the winter months of October, November, and December, 
roads oriented in the EW and SE/NW directions had higher 
shadow variability than other orientations. This period is 
characterised by generally stronger shadow intensity and higher 
variability. During these months, buildings obstruct the sunlight 
when it is in the south, leading to greater variability of shadows 
cast on the roads.  
 
This comprehensive analysis of shadow variability not only 
provides insights into the daily and seasonal dynamics of urban 
shadows but also emphasises the critical influence of built 
environment configurations, such as building proximity and road 
orientation, on shadow behavior. 
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Figure 5. Spatial distribution of annual daily shadow variability: (a) Annual daily shadow variability on high-traffic roads, (b) Road 
belonging to a cluster with low shadow presence and low variability, (c) Road belonging to a cluster with high shadow presence and 

high variability. 
 
 

 
Figure 6. Monthly distribution of daily shadow variability by 

road direction clusters. 

5. Conclusions  

This research provides critical insights into temporal and spatial 
shadow variability, which have significant implications for urban 
planning, especially in the context of the impending 
commercialisation of SPVs. By combining a database of shadow 
measurements developed through this research with real-time 
weather data, it will be possible to precisely predict the solar 
power generation of SPV in urban area. This predictive capability 
can enhance route planning for SPVs by recommending paths 
that optimise solar energy generation based on time-specific and 
date-specific production variations. 
 
The analysis reveals that shadow variability is profoundly 
influenced by seasonal changes and can also be affected by the 
directional orientation of roads. This highlights the crucial 
interplay between sun positioning and urban architectural 
dynamics, stressing the importance of managing sun exposure 
and shadows effectively in urban design. Such considerations are 
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vital for optimising the urban environment for both comfort and 
energy efficiency, particularly for the functioning of SPVs. 
 
The use of spatial GIS analysis in this study emphasises its 
importance in enhancing the accuracy and understanding of 
urban shadow. By leveraging GIS, planners and designers can 
visualise the impacts of urban form on sunlight accessibility and 
shadow casting in different time scenarios. This is particularly 
important in narrow urban spaces, such as alleys, where buildings 
are closely spaced. Although this study focused primarily on 
high-traffic roads, the implications for narrower streets, often 
shadowed by both buildings and vegetation, are significant.  
 
Further studies should consider the effects of tree shadows, which 
vary seasonally. Trees, closer to roads than buildings in many 
cases, cast extensive shadows in summer due to foliage but less 
so in winter when the leaves fall. This dynamic aspect of urban 
vegetation plays a critical role in the spatial and temporal patterns 
of shadow casting, thus affecting solar energy generation. Future 
research could also incorporate Light Detection And Ranging 
(LiDAR) scans to obtain higher-resolution DEM. The current 
DEMs used in this study have a resolution limit of 30 m due to 
civilian restrictions in South Korea (MOLIT, 2017). LiDAR 
technology could overcome these limitations by providing more 
detailed elevations, including those of trees, enhancing the 
precision of shadow and solar access calculations. 
 
By addressing these elements, urban planners can better harness 
GIS tools to adapt city layouts for the optimal use of solar energy, 
thereby enhancing the performance of energy-efficient SPVs in 
urban environments. 
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