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Abstract

With the rapid advancement of science and technology, autonomous driving technology has been widely applied in various fields
such as the automotive industry, intelligent warehousing, and emergency rescue. Traditional 2D path planning has limitations in
dealing with the complex and dynamic environments of the real world, making it difficult to meet the high precision and complex
path planning requirements of autonomous vehicles. With the development of data acquisition technology, large-scale point cloud
data has become easily accessible, which can better extract the three-dimensional complex of the environment. Nevertheless,
the unstructured nature and vast amount of point cloud data make path planning on it extremely challenging. Voxel models can
effectively compress point cloud data and provide neighboring topological structures. In view of this, we propose a voxel-based
framework for the path planning of autonomous vehicles in dynamic and complex 3D environments, which involves converting
point cloud data into voxels and extracting navigation spaces. Subsequently, deep reinforcement learning techniques are utilized to
achieve obstacle avoidance and navigation on the voxel map. It is expected that this framework will contribute to the development
of 3D path planning and enhance the utilization of point cloud data in the navigation field.

1. Introduction

In recent years, with the rapid development of computer science
and information technology, autonomous driving has become
a emerging technology and been applied in various fields.
In the early stages, autonomous vehicles (AVs) and portable
robots were primarily used in simple, static environments,
characterized by straightforward spatial structures, fixed
obstacles, and minimal interference factors (Guo et al., 2023;
Karaman and Frazzoli, 2011).These early implementations
focused on controlled settings where the complexity of
navigation and decision-making was relatively low. However,
as the sensor technology advances, autonomous driving
technology has been increasingly employed in complex and
dynamic environments, such as urban settings and intelligent
warehousing environments. These environments often feature
complex terrains, multi-layered free spaces, and numerous
static and dynamic obstacles.Urban environments, in particular,
present significant challenges due to their unpredictable nature
and the need for real-time responsiveness. Consequently,
developing effective methods for spatial representation and path
planning in three-dimensional complex spaces has become a
critical research.

One of the key technologies facilitating autonomous navigation
in these environments is the use of point clouds. Point
clouds can directly assign 3D coordinates to the measured
objects. Compared to indirect data sources that use only 2D
projection points or 1D measured distances, the use of point
clouds can greatly simplify surface modeling and geometric
reconstruction. Therefore, point clouds are considered the most
suitable data for 3D visualization in urban scenarios for various
applications (Huang et al., 2020). Taking advantages of point
clouds, the reconstruction of infrastructure or buildings in urban
scenes has seen widespread development. However, several key
challenges remain in using raw point clouds for autonomous
driving scenarios:

• Unstructured Nature: Point clouds obtained through

LiDAR are inherently unstructured and consist of discrete
data points. Unlike structured data formats, point
clouds lack an intrinsic organization or connectivity
between points, making it difficult to provide the spatial
relationships and topological structures of the environment
directly from the raw data.

• Uneven Density: Due to differences in data collection
methods and the structural characteristics of the buildings
or environments, the density of point clouds would vary
significantly . For instance, areas closer to the LiDAR
sensor might have a higher density of points with more
precise coordinates, while more distant areas might have
sparser data with lower accuracy.

• Massive Volume: During data collection in urban
environments, point cloud data encompasses three-
dimensional spatial coordinates, color, and other diverse
information, resulting in an enormous volume of data.
The vast amount of point cloud data poses significant
challenges for real-time or efficient computational
analysis.

In this study, we use the voxel-based method to address the
issues of unstructured point cloud data and challenges in
efficient computation. Considering the excellent performance
of deep reinforcement learning in path planning, we propose a
path planning framework for autonomous vehicles in dynamic
and complex environments. The framework involves voxelizing
large-scale point cloud maps, constructing a deep reinforcement
learning grid model on the voxelized map, and incorporating
constraints for dynamic and static obstacles to achieve path
planning in complex scenarios. The rest of the paper is
organized as follows: Section 2 introduces previous work that
is relevant to the present study. Section 3 describes the main
methods. Section 4 presents the experiments performed and
their preliminary results, and section 5 provides a summary of
the work.
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2. Related Work

2.1 Voxel Representation in 3D Space

Grid-based methods can convert the representation of a point
cloud into grid cells, with each cell storing spatial information,
thereby compressing a large amount of point data. Grid-based
spatial representation method can save a significant amount
of memory while preserving as much spatial information as
possible, making it an effective technique for sensor data
representation in intelligent vehicles and robots. Herbert et
al. (1989) has proposed a 2.5D grid model that adds height
information to a two-dimensional grid, simplifying information
along the Z-axis. However, this method may lose some critical
3D information, making it difficult to accurately represent
complex terrains or obstacles. Gadelha et al. (2018) involved
constructing a KD-tree for point cloud data to establish
topological relationships between discrete points, enabling
rapid neighborhood-based searches. However, when the point
cloud is too dense, the KD-tree is hard to partition the space
effectively, and once built, updating the KD-tree becomes very
challenging. Hornung et al. (2013) proposed the OctMap which
based on an octree structure to map three-dimensional space
by dividing it into eight equal cubic parts, significantly saving
storage space and supporting dynamic addition and deletion of
nodes. Nevertheless, in dynamic environments, OctMap needs
real-time updates as the environment changes, and the complex
structure of the octree increases data access and computation
costs.

Voxel models can explicitly represent the positions of discrete
points and their neighboring topology, providing an informative
way to compress and store data. Additionally, voxel models use
a regular grid representation, which simplifies and enhances
the efficiency of processing three-dimensional data. Park
et al. (2010) applied the KD-tree algorithm to voxelize point
cloud data, achieving 3D visualization of trees. Bitelli et
al. (2016) proposed a method to generate voxel models with
variable resolution from scanned point clouds for historical
building modeling and structural analysis. By generating
voxel models at different resolutions, their method flexibly
adapts to the application needs of building analysis, which
is particularly useful for dealing with the complexities of
historical building structures. Wang et al. (2020) introduced
a method to voxelize BIM models and create a cell-based
environment for path planning.Xiong et al. (2017) used a voxel-
based method to extract free multi-level indoor spaces from 3D
building models described by CityGML LoD4, converting the
complete extraction results into voxel models using geometric
and semantic relationships. Bonczak and Kontokosta (2019)
utilized voxelization to model large-scale, heterogeneous, high-
density urban environments from aerial LiDAR point cloud
data, facilitating the analysis of urban settings. In this study, the
voxel-based approach has bee used to represent the 3D complex
environment and to support path planning for UGV.

2.2 3D-Voxel based Path planning

Most of the existing research and applications of voxel
navigation technology are primarily focused on indoor
environments. Staats (2017) proposed a method for identifying
walkable surfaces within indoor buildings using a voxel
model derived from point cloud analysis and corresponding
Mobile Laser Scanning (MLS) trajectories. Their approach
effectively segments the indoor environment into navigable

and non-navigable areas, facilitating safe and efficient indoor
navigation.Fichtner et al. (2018) introduced an octree-based
method for extracting navigable spaces in multi-story buildings.
Their method enhances the voxel model with semantic
information, which is particularly useful for multi-level indoor
pedestrian navigation.Li et al. (2018) developed a method
for planning general Unmanned Aerial Vehicle (UAV) paths
in known indoor environments using voxel models. They
utilized the A* algorithm to generate both the safest shortest
path and the safest lowest-cost path for UAVs. This
approach ensures that the UAV can navigate efficiently while
minimizing risk.However, this method only considers static
indoor environments. Compared to indoor environments,
outdoor structures are often more complex and subject to more
frequent and unpredictable dynamic interferences, presenting
greater challenges for voxel-based navigation. Schulze
(2010) constructed voxel maps in agricultural environments
and performed path planning for mobile robots, but this
method did not account for the interference of dynamic
obstacles. Asvadi et al. (2016) proposed a voxel-based
method for representing obstacles above the ground using
point cloud data and an inertial navigation system, constructing
a static map that distinguishes between moving parts and
the environment. Soilán et al. (2018) utilized voxel-based
methods to automatically extract and label road networks in
urban environments. The methods mentioned above lack
consideration of dynamic obstacles and are not applicable in
UGV navigation in 3D complex dynamic urban envionment

2.3 DRL-based Path Planning

Deep Reinforcement Learning (DRL) has emerged as a
cutting-edge approach to solving 3D path planning problems,
offering substantial advancements over traditional methods.
DRL leverages the powerful representation capabilities of
deep neural networks to effectively manage high-dimensional
state spaces, making it particularly well-suited for navigating
intricate and dynamic environments. By interacting with the
environment, employing trial-and-error methods, and utilizing
a reward mechanism, DRL agents progressively learn optimal
behaviors. These agents continually adjust and refine their
strategies based on real-time feedback, enabling them to adapt
to changing conditions and improve their performance over
time.Wang et al. (2018) proposed a modular DRL algorithm for
complex dynamic maze environments, dividing the navigation
task into an obstacle avoidance module and a navigation
module. The obstacle avoidance module handles dynamic
obstacle information, nabling the agent to react in real-time
to moving obstacles and prevent collisions. Meanwhile,
the navigation module explores and searches for optimal
paths. By separating these functionalities, the modular design
allows the algorithm to effectively manage the complexities
of dynamic environments, ensuring both safety and efficiency
in navigation. Zhao et al. (2020) introduced an autonomous
local path planning algorithm based on the Twin Delayed
Deep Deterministic Policy Gradient (TD3) strategy, leveraging
UAV autonomous decision-making to address local obstacle
avoidance and path planning in unfamiliar environments.The
TD3 strategy enhances the stability and performance of the
DRL agent by addressing overestimation bias in Q-learning,
allows the UAV to make more accurate and reliable decisions
in real-time. However, the algorithm performs poorly in
the presence of dynamic obstacles. Huang et al. (2023)
proposed a DRL-based path planning method that achieves
a good balance between distance and energy consumption
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in 3D environments.By balancing these two factors, the
proposed method ensures that the planned paths are both
efficient and practical for long-term operations in complex
environments. The application of DRL in 3D path planning
shows significant potential for handling complex, dynamic, and
uncertain environments. The ability of DRL to learn and adapt
in real-time offers a substantial advantage over traditional path
planning algorithms.

3. Methodology

In this section, we will elaborate on the comprehensive
framework designed for Autonomous Vehicles operating
within a 3D urban environment. The complexity of urban
environment, with dynamic obstacles and intricate structures,
requires a robust and adaptive approach to navigation
and decision-making.. To address these challenges, our
framework is divided into two components: voxel-based spatial
representation and Deep Reinforcement Learning (DRL)-based
path planning.

3.1 Voxel-based Spatial Representation

3.1.1 Proprocessing of Point Cloud: The preprocessing
of point cloud data primarily involves spatial filtering and
point cloud simplification, aiming to facilitate the subsequent
transformation of the point cloud map into a voxel-based
representation.

Due to some limitations such as the equipment used for data
collection and environmental conditions, point cloud data may
contain certain levels of noise and outliers. Failure to filter
the data could significantly impact the subsequent voxelization
process. Hence, spatial filtering of the point cloud data is
necessary. In this study, we employed a three-dimensional
statistical filtering algorithm. This algorithm involves two
steps: Step 1 calculates the average distance of each point to its
k nearest neighbors and determining a distance threshold equal
to µ±α·σ, where µ and σ are the mean and standard deviation
of these distances. Step 2 classifies points as outliers or inliers
based on whether their average neighborhood distance falls
below or above this threshold. We utilized a statistical filtering
algorithm with parameters α=1 and k=30 to remove outliers
from the point cloud. This algorithm has been demonstrated
effective in removing outliers.

Point cloud simplification refers to the process of reducing or
lowering the data volume of point cloud data while preserving
key information. It aims to decrease the number of points in the
point cloud, thereby facilitating data processing and reducing
computational costs associated with voxelization.

3.1.2 Point Cloud Semantic Segmentation : We perform
semantic segmentation on the preprocessed point cloud data to
extract road labels and delineate areas accessible to autonomous
vehicles. We employ the PointNet++ (Qi et al., 2017), a
deep learning model specifically designed for handling 3D
point cloud data. PointNet++ captures the spatial structure and
semantic information of point cloud data effectively through
hierarchical local feature extraction. Using PointNet++, each
point is classified and assigned to predefined semantic labels,
such as roads, buildings, and vehicles. Only the points labeled
as roads are retained, providing a foundation for subsequent
voxel-based navigation space extraction and path planning.

3.1.3 Navigation Space Construction: After completing
the semantic segmentation phase, we proceed to standard
voxelization of the segmented point cloud data to construct
the navigation space for autonomous vehicles. The point
cloud data is divided into a standard voxel grid using a fixed
resolution, with each voxel unit being a cube whose edge length
is determined by the predefined resolution. Each point is then
assigned to its corresponding voxel unit, forming a standard
voxel representation.

During the process of point cloud data acquisition, some issues
such as scanning procedures and occlusions caused by vehicles
may result in the loss of certain portions of road point cloud
data. Additionally, the preprocessing of point cloud data
and voxel semantic segmentation may lead to the presence
of numerous holes in the extracted navigation space, thereby
affecting the subsequent path planning to some extent. To
address this, hole repair is performed through directed voxel
fusion, followed by convergence optimization using various
partial differential equations based on the surface information
of the hole neighborhood.

3.2 3D Path Planning

3.2.1 Path Presentation: In voxel maps, paths are depicted
as a set of voxels with specific occupancy states. When an
agent occupies specific voxels in the voxel map at the current
time step, the occupancy states of these voxels are represented
as a path. Voxels marked as part of the path maintain their
occupancy states even after the agent has moved away. Thus,
paths in voxel maps represent the historical trajectory of agent
movement.

Considering the constraints of real physical laws and vehicle
driving conditions, the path must satisfy the following
constraints:

1. The value of all voxels in each path point must be 0. That
is, the path cannot pass through obstacles. For any voxel
vi in path R, ∀vi ∈ r, vi = 0.

2. The voxels at the bottom of the path must be located on
the ground. For path R, let the bottom voxel be Vb =
v(xb, yb, zb), and the voxels representing the ground below
be Vg = (xg, yg, zg) = (xb, yb, zb − 1). ∀vi ∈ Vg, vi = 1

3.2.2 DRL model In the voxel map, the agent is represented
as a cube comprising multiple voxels. We use the agent’s
movement trajectory within an episode to represent the path.
At time t given that the occupancy state set of all voxels in the
voxel map is Et, the occupancy state of a voxel is denoted as
e(x, y, z, t), where x, y, z are the coordinates of the voxel in
the map. In the voxel map, the occupancy state e can take the
following values:

0: Unoccupied. This state indicates that the voxel is free space.

1: Obstacle. This state indicates that the voxel is an obstacle or
part of an obstacle.

2: Path. This state indicates that the voxel is part of a path.

We use the set of occupation states of all voxels in the voxel
map as the state space of the model.

st = [e(x, y, z, t)|e ∈ Et] (1)
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Figure 1. The study framework.

We use the change in the agent’s position incrementally as the
actions.

at = [∆x,∆y,∆z],∆x,∆y,∆z ∈ [−1, 0, 1] (2)

When the action a = [∆x,∆y,∆z] is taken, the position of the
agent changes from (x, y, z) to (x+∆x, y +∆y, z +∆z).

This action space allows the agent’s range of movement as
shown in Figure 2:

Figure 2. For an agent size of l = 3, the range of movement is
depicted. The green areas represent the current positions of the
agent, while the gray areas indicate the possible positions the

agent can move towards.

In essence, this position change increment represents the
direction of the agent’s movement. Therefore, we encode this
increment into 26 states and transform at into an integer in the
range 0 to 26.

The reward function is a critical component that directly
impacts the agent’s learning effectiveness within the
environment, guiding its actions and decisions towards
achieving optimal performance. Our reward function comprises
several key components, each contributing to different aspects

of the agent’s navigation and decision-making process. The
reward function is mathematically expressed as follow:

r = αd1 + βd2 + C1 + C2 (3)

The reward function includes the distance components αd1 and
βd2. Here, d1 is the distance from the agent’s current position
to the starting point, and d2 is the distance from the agent’s
current position to the endpoint. α and β are the coefficients
for these distances. C1 and C2 are constant components. C1 is
awarded when the agent reaches the endpoint, and the episode
terminates. C2 is a penalty given when the agent is located in
an obstacle voxel, i.e., when the agent collides with an obstacle,
causing the episode to terminate.

4. Preliminary Results

As the first step in our study, we used the point cloud dataset
from the Lands Department of the Government of the Hong
Kong Special Administrative Region to evaluate our spatial
representation. Figure 3 is a point cloud environment data of
a certain area in Kowloon, Hong Kong. It contains different
objects including buildings, roads, trees and cars, offering a
detailed and diverse urban landscape for our analysis. After the
preprocessing, we classified the point cloud and extracted the
navigable space. After that, we extracted the part with semantic
labels including buildings, trees and roofs to generate navigable
space point cloud data (Figure 4). With the voxel size l = 0.5,
we voxelized the navigable space to generate the final voxel
map. Figure 5 is the voxel map generated from navigable space.

5. Conclusions and Future Work

In this paper, we propose a framework that leverages voxel
models and deep reinforcement learning (DRL) algorithms to
achieve path planning in dynamic and complex environments.
Our approach begins with semantic segmentation of point
clouds, followed by voxelization to generate the navigable
spaces. We then employ a DRL algorithm to perform path
planning on the voxel maps, generating routes that effectively
avoid obstacles. Currently, we are implementing the DRL-
based path planning and are building diverse training datasets
to train our model for robust performance in various settings.
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Figure 3. The original point cloud data

Figure 4. Road point cloud

Figure 5. Voxel maps generated from road point cloud
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Semantic Enrichment of Octree Structured Point Clouds for
Multi-Story 3D Pathfinding. Transactions in GIS, 22(1), 233–
248.

Gadelha, M., Wang, R., Maji, S., 2018. Multiresolution Tree
Networks for 3D Point Cloud Processing. 11211, Cham, 105–
122.

Guo, H.-X., Hong, T.-T., Zhang, Y.-W., 2023. Path
Planning Simulation and Research of Mobile Robot in
Static Environment Based on Genetic Algorithm. 2023 8th
International Conference on Automation, Control and Robotics
Engineering (CACRE), 226–230.

Herbert, M., Caillas, C., Krotkov, E., Kweon, I., Kanade,
T., 1989. Terrain Mapping for a Roving Planetary Explorer.
Proceedings, 1989 International Conference on Robotics and
Automation, 997–1002.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C.,
Burgard, W., 2013. OctoMap: An Efficient Probabilistic 3D
Mapping Framework Based on Octrees. Autonomous Robots,
34(3), 189–206.

Huang, R., Hong, D., Xu, Y., Yao, W., Stilla, U., 2020.
Multi-Scale Local Context Embedding for LiDAR Point Cloud
Classification. IEEE Geoscience and Remote Sensing Letters,
17(4), 721–725.

Huang, S., Wu, X., Huang, G., 2023. Deep Reinforcement
Learning-Based Multi-objective 3D Path Planning for Vehicles.
Proceedings of 2023 Chinese Intelligent Systems Conference,
867–875.

Karaman, S., Frazzoli, E., 2011. Sampling-Based Algorithms
for Optimal Motion Planning. The International Journal of
Robotics Research, 30(7), 846–894.

Li, F., Zlatanova, S., Koopman, M., Bai, X., Diakité, A., 2018.
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