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Abstract 

Coastal erosion poses a continuous threat to ecosystems, infrastructure, and property. To address these challenges and mitigate the 
effects of coastal changes, effective and current monitoring is essential. It is particularly important to monitor coastlines and coastal 
changes in Africa, where a significant portion of the population resides in coastal regions. While optical satellite imagery has been 
used for large-scale annual coastlines and change monitoring for Africa, its availability and quality are largely limited by the 
presence of cloud and cloud shadow. In comparison, using radar satellite observations such as Sentinel-1 data can provide consistent 
coastal mapping and change detection regardless of cloud presence. 

This paper outlines a fully automated supervised machine learning workflow using Sentinel-1 data and training samples extracted 
from Sentinel-2 data. It also explores the performance of the workflow for different coastal morphology types across the African 
coast. The workflow has proved to perform better and produced results that were visually more consistent with Sentinel-2 data 
compared to thresholding methods. While challenges exist to distinguish between land and water over smooth sandy beaches and 
rough near-shore water surfaces, our workflow provides an alternative method for coastal change mapping where optical satellites 
provide insufficient observations free from clouds. Python code of the proposed methodology has been made publicly available. 

1. Introduction

1.1 Coastal Changes and SDGs 

Coastal changes, especially erosion, are an ongoing threat to 
ecological habitats, infrastructure, and properties. The 
Sustainable Development Goals (SDGs) 14 and 15 outline the 
importance of protecting coastal ecosystems and halting coastal 
land degradation and biodiversity loss. To achieve the goals and 
help minimise the impacts of coastal changes, efficient and up-
to-date coastal change monitoring is needed. Monitoring 
coastlines and coastal changes for Africa is important as a large 
population is hosted by coastal areas. 

1.2 Earth Observation for Coastal Mapping 

Optical satellite imagery, typically from Landsat and Sentinel-2, 
has been used for large-scale annual coastlines and changes 
monitoring for Africa (Bishop-Taylor et al., 2021; Digital Earth 
Africa, 2021a). However, the presence of cloud and cloud 
shadow largely limited the availability and quality of data. In 
comparison, radar satellite observations such as those from 
Sentinel-1 provide valid observations regardless of cloud 
presence. By developing a workflow to implement land/water 
classification with Sentinel-1 data, it is possible to identify 
shorelines and detect coastal changes even in cloudy regions. 

Currently, most of the existing research work on water detection 
and shoreline mapping using Sentinel-1 data employed an 
unsupervised threshold-based method (Li et al., 2020; Liang and 

Liu., 2020; Pelich et al., 2020; Chen and Zhao, 2022). However, 
the performance of the method depends largely on the 
histogram distribution, or the proportion of land/water pixels 
within the defined area of interest. Besides, thresholding-based 
methods mostly only use single band of the Sentinel-1 data. 

Supervised image classification including stochastic methods 
(Tan, 2023) and deep learning based methods (Philipp et al., 
2022; Zhang et al., 2022) have also been proposed and 
employed. However, the methods mostly require in-situ or 
manually digitised training data, which can be challenging to 
obtain, especially at a continental scale. In addition, current 
studies are mostly focused on a local study area without analysis 
at a continental scale. 

Aiming for a more robust fully automated method for coastal 
classification and change mapping, this paper outlines a 
supervised machine learning workflow using Sentinel-1 data 
and training samples extracted from Sentinel-2 data. It also 
explores the performance of the workflow for different coastal 
morphology types across the African coast. 

1.3 Contribution of This Work 

In summary, this work makes the following contributions to the 
community: 

 A supervised workflow of annual coastal mapping 
using Sentinel-1 as the main data source is proposed.
Instead of requiring ground-surveyed training data, it
automatically extracts training data from Sentinel-2
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data. It has shown better performance than a 
traditional unsupervised thresholding method. 

 The workflow accounts for the dynamic nature of the 
shorelines through tidal filtering and the use of 
backscatter temporal variability as features. 

 We explored the performance of the workflow for 
different coastal geomorphology types across African 
coast and identified advantages and challenges of the 
workflow relevant to the types. 

 The Python code for the workflow is available to the 
public. It is based on Digital Earth (DE) Africa 
Analysis Sandbox, a free cloud computing 
environment. 

 
The structure of the remainder of the paper is as follows. 
Section 2 introduces our proposed workflow and experiment 
data used. Results, comparisons and discussions are presented 
in Section 3. Lastly, Section 4 concludes the paper and outlines 
future work.  
 

2. Data and Methodology 

2.1 Experiment Locations and Data 

150 locations (50 for each of the three coastal geomorphology 
types, i.e. Wetland, Beach and Bedrock) were randomly 
selected across the African coast (Figure 1), using the coastal 
geomorphology data (Mao et al., 2022). The spatial extent for 
each selected location is a square of approximately 2 km by 2 
km.  
 
Sentinel-1 Radiometrically Terrain Corrected (RTC) Gamma-0 
normalised radar backscatter data (Digital Earth Africa, 2021b; 
Yuan et al., 2022) at 20 m spatial resolution from 2018 to 2022 
were acquired for all the locations as the main data for the 
workflow. Sentinel-2 Level 2A Surface Reflectance bands 
acquired within the same period and locations were also used in 
the workflow, and were resampled to the same spatial resolution 
as the Sentinel-1 data. Both datasets were sourced from DE 
Africa platform which provides various satellite imagery and 
derived products for Africa. The workflow was developed on 
the DE Africa Analysis Sandbox, a free cloud computing 
environment. 
 

 
Figure 1. Experiment locations map. Basemap: Google Satellite. 

 

 
2.2 Annual Coastal Mapping Workflow 

The annual coastal mapping workflow is illustrated in Figure 2. 
Python scripts and Jupyter Notebooks of the methodology have 
been made publicly accessible on GitHub: 
https://github.com/frontiersi/DEAfrica_coastlines_s1. The 
workflow can be divided into five major steps as follows. 
 

 
Figure 2. Flowchart of proposed annual coastal mapping 
workflow. 
 
2.2.1 Sentinel-1 Data Pre-processing 
 
A few pre-processing steps were applied to Sentinel-1 data: 
tidal filtering, orbit track filtering, and conversion to decibel 
(dB). Firstly, a per-pixel filtering was implemented to keep only 
observations from the dominant orbit direction, i.e. either 
ascending or descending. This was expected to minimise the 
effects of inconsistent looking angles and obit directions. 
Secondly, to reduce effects of extreme tides, only Sentinel-1 
observations within 25 percent of entire tidal range below or 
above Mean Sea Level were kept (Bishop-Taylor et al., 2019). 
The FES 2014 global tide model (Carrere et al., 2015) was 
employed. The filtered observations were then converted to dB. 
 
2.2.2 Land/Water Training Samples Identification 
 
Training samples of the two classes of interest, i.e., water and 
land, were identified from Sentinel-2 data. The tidal filtering 
applied to Sentinel-1 was also applied. To further improve 
reliability of the training samples, experiment locations with 
median tidal height difference between Sentinel-1 and -2 
observations higher than 0.5 m were excluded from the analysis. 
The Modified Normalised Difference Water Index (MNDWI) 
(Xu, 2006) was calculated for each Sentinel-2 observation to 
distinguish between land and water, based on the band 
calculation equation: 
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where Green and SWIR1 represent green and short-wave 
infrared 1 bands. Annual median composites of the MDNWI 
were then calculated to reduce cloud/cloud shadow effects of 
single-time acquisitions. A pixel was identified as water when 
the annual median MNDWI was higher than zero, and land 
class otherwise.  
 
Additionally, a simple coastal zone mask was calculated based 
on annual frequency of being classified as water and 
morphological processing. Only training samples within the 
mask were sampled as they were expected to be more helpful in 
building the classification model than pixels from inland or 
deep ocean regions. To derive the coastal zone mask, a zero 
thresholding was first applied to classify each single MNWDI 
images as land/water, from which the frequency of being 
classified as water was calculated. An initial coastal mask was 
derived as pixels with water frequency between 20 percent and 
80 percent throughout the study period. A 5-pixel binary 
dilation of the initial mask was then applied to include adjacent 
land and water pixels. Finally, connected regions smaller than 
three pixels were removed. 500 samples per class were 
randomly extracted for each location. 
 
2.2.3 Sentinel-1 Feature Extraction 
 
Available Sentinel-1 bands include vh and vv polarisation 
bands, local incidence angle, normalised scattering area and 
nodata mask bands. In order to explore features that could 
potentially capture nonlinear and complex patterns of the data, 
ten features in total were calculated, consisting of: 

 median vh: annual median of vh band 
 std vh: annual standard deviation of vh band 
 median vv: annual median of vv band 
 std vv: annual standard deviation of vv band 
 median vv+vh: annual median of the sum of vh and 

vv bands 
 std vv+vh: annual standard deviation of the sum of vh 

and vv bands 
 median vv-vh: annual median of the difference 

between vv and vh bands 
 std vv-vh: annual standard deviation of the difference 

between vv and vh bands 
 median area: annual median of normalised scattering 

area 
 median angle: annual median of local incidence angle 

 
 
2.2.4 Model Training and Prediction 
 
A Random Forest model was trained for each location using the 
extracted training data. The number of trees for the model was 
set as 200. The fraction of samples used to build each individual 
tree was set as 0.5. Each trained model was then applied to 
predict classes and probabilities for all pixels within the location 
extent. 
 
2.2.5 Post-processing and Assessment 
 
To reduce noise observed from the predicted results, a median 
filter with 3 by 3 pixels window size was applied to the 
probability results. Final land/water classification results were 
derived by thresholding the filtered probability results using a 
50 percent threshold. The results were assessed using all pixels 

within the coastal zone mask. In addition, classification results 
derived through thresholding the annual median vh band were 
generated for comparison, using minimum threshold 
determination method (Glasbey, 1993; Prewitt and Mendelsohn, 
1966). The method smooths the histogram until there are only 
two maxima; the minimum in between is then derived as the 
threshold value. 
 

3. Results and Findings 

3.1 Feature Importance 

79 locations were excluded from the analysis due to significant 
tidal height difference between Sentinel-1 and -2 data or 
insufficient training samples. Figure 3 shows the overall ordered 
importance of all features used for the model training across all 
locations. Median vh, median vh+vv and median vv were found 
to be the most important features on average. This indicated that 
other than the medians of the two polarisation bands, the 
combination of the two bands and standard deviations are also 
helpful in building the models. Median angle is the least 
important feature. 
 

 
Figure 3: Overall feature importance. 

 
Figure 4 shows feature importance for each of the coastal 
geomorphology types. Consistent across all geomorphology 
types, median vh, median vh+vv and median vv were found to 
be the most important features. Meanwhile, std vv is 
consistently amongst the top four or five important features. In 
addition, median angle is consistently least important to the 
models, confirming that the incidence angle effect is minimised 
in the Sentinel-1 RTC backscatter product. Median area was 
amongst the least important features for Bedrock and Wetland 
locations, while relatively more important for Beach locations. 
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Figure 4. Feature importance by coastal geomorphology type. 
 
3.2 Model Performance 

Confusion matrices of the overall classification results are 
shown as Figure 5, where normalisation was applied to each 
row. The Overall Accuracy (OA) for the supervised results 
(0.92) is significantly higher than the thresholding results 
(0.78). Judging from the recall scores of land (0.82) and water 
(0.74), the minimum thresholding method tend to misclassify 
more water as land pixels. 
 

 
Figure 5. Confusion matrices (normalised along each row) for 
the supervised results (left) and minimum thresholding results 
(right). 

 
Improvement of accuracies was also observed for all three 
coastal geomorphology types (see confusion matrices in Figure 
6). OAs for all three types are presented in Table1. The 
supervised workflow has the best performance for Wetland type 
(OA=0.92) and worst for Bedrock type (OA=0.87). In contrast, 
the thresholding method has relatively the best performance for 
Bedrock type (OA=0.83) and worst performance for Beach type 
(OA=0.71). This indicates that distribution of pixel values is 
more consistent and easier to classify through image 
thresholding for Bedrock coastal regions. The most significant 
improvement was on Beach locations (from 0.71 to 0.90) 
compared to Wetland (0.76 to 0.92) and Bedrock (0.83 to 0.87) 
locations.  

 
Figure 6. Confusion matrices (normalised along each row) by 
geomorphology type. Left column: proposed supervised results. 
Right column: minimum thresholding results. 

 
 Beach Bedrock Wetland 
Supervised 0.90 0.87 0.92 
Thresholding 0.71 0.83 0.76 

Table 1. OAs of the proposed supervised workflow and 
thresholding methods by coastal geomorphology type. 

 
3.3 Classification Results 

Figure 7 shows example classification results of year 2021 for 
the three coastal geomorphology types. Annual median RGB 
composites of the Sentinel-2 images are included in the figure 
(top row) for visual reference. Overall, it can be observed that 
the supervised workflow produced more consistent results with 
the Sentinel-2 classification than the thresholding method. Note 
that for some locations (not displayed here) the thresholding 
method was not able to identify a suitable threshold, resulting in 
all pixels classified as land. This demonstrates the advantage of 
the supervised workflow which is more robust.  
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Figure 7. Example classification results. Top row: Annual 
median RGB composites of Sentinel-2 data. Second row: 

classified results from Sentinel-2 data. Third and fourth rows: 
Sentinel-1 classification results using the proposed supervised 

workflow and minimum thresholding respectively. Dark purple 
and yellow on the results represent land and water classes 

respectively. Each column represents an example location for 
one geomorphology type. 

 
Figure 8 shows a challenging sandy beach example where 
significant confusion between flat and smooth sandy beaches 
and water presented on the Sentinel-1 results. The land-water 
boundaries on the Sentinel-1 results were generally more 
landward compared to Sentinel-2 image and result, as some land 
pixels were misclassified as water, e.g. the sandbar as marked in 
the green circle. This was due to the smooth and flat sandy 
surface which reflected very low backscattering signals. On the 
other hand, small regions of water pixels were misclassified as 
land class even with post-processing applied. This was likely 
due to the breaking waves of the near shore water. 
 
While the result from thresholding method appears less noisy, 
more sandy beach pixels were missed in land class prediction, 
such as the sandbar (marked in green circle) and the landward 
beach areas (marked in red circle). In comparison, the 
supervised workflow was able to better classify these areas. 
 

 
 
Figure 8. Example classification results of a challenging 
location for Sentinel-1 data. Red and green circles mark typical 
areas where misclassification presents on Sentinel-1 results. 
Dark purple and yellow on the results represent land and water 
classes respectively. 
 
3.4 Discussions 

A global classification model was also explored, with the 
expectation that a single model could be trained and applied to 
all locations, which would ensure consistent mapping results 
regardless of study area. However, significantly poorer results 
were derived. This was likely due to the complexity of feature 
distribution across locations with inconsistent feature 
distributions. Nevertheless, there is a possibility that a more 
advanced model, or a workflow with other datasets integrated 
might help improve the performance of a global model. 
 
Spatial filtering was widely applied as one of the pre-processing 
steps to remove speckling noise on the Sentinel-1 data. In this 
work no spatial filtering was applied to avoid degradation of the 
resolution and potentially losing small features in the 
classification results. Meanwhile, it was observed that the 
annual aggregation helped to reduce speckle noise. 
Nevertheless, in the case when the proposed workflow is 
applied or adapted to seasonal or even finer temporal scale 
analysis, spatial filtering may be needed. 
 
The workflow extracts training samples from Sentinel-2 data, 
which avoids the efforts to source or create manually training 
data. However, it should be noted that misclassification exists in 
the Sentinel-2 data, which could also affect the reliability of the 
Sentinel-1 results. Validation of the results using other reference 
data is encouraged. 
 
Due to the difference in satellite orbits and subsequently 
different overpassing times, tidal height distributions are 
different between Sentinel-1 and -2 observations. In this work a 
significant number of initially randomly selected experiment 
locations were excluded from the analysis due to significant 
tidal difference. This indicates that in the annual coastal or 
shoreline change analysis, tidal bias needs to be considered if 
comparison of the changes is made between the two datasets. 
 
Our workflow provides an alternative method for coastal change 
mapping where optical satellites provide insufficient 
observations free from cloud, e.g. over small tropical islands. 
While the shorelines to be extracted from Sentinel-1 may be 
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different from Sentinel-2, it is expected that long-term changes 
can also be identified from the Sentinel-1 timeseries data. 

4. Conclusion and Future Work 

A supervised workflow was proposed to improve coastal land-
water classification on Sentinel-1 data. The supervised 
workflow had both higher OAs and produced results that were 
visually more consistent with Sentinel-2 data. As the training 
labels are extracted from Sentinel-2 classifications, the 
workflow is fully automated. Nevertheless, it is still challenging 
to combine or compare Sentinel-1 with Sentinel-2 results, as 
SAR backscattering signals are affected by various factors 
including incidence angle, surface roughness and moisture. 
Consequently, distinguishing between land and water can be 
problematic over smooth sandy beaches or breaking waves.  

Our workflow provides an alternative method for coastal change 
mapping where optical satellites provide insufficient 
observations free from cloud, e.g. over small tropical islands. 

Future work will include developing a continentally applicable 
workflow to detect coastal changes and coastlines mapping 
using Sentinel-1 data.  It is expected that spatially adaptive 
thresholding and multi-band thresholding methods may also be 
helpful. 
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