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Abstract 

Cameras are typically used at road intersections to collect data to perform object detection but struggle in low-light and 

harsh weather. On the other hand, Light Detection and Ranging (LiDAR) is used as a key technology in 3D vision systems. It gives the 

3D point cloud, which includes accurate depth information, but its resolution is cost-dependent, with higher resolutions being 

more expensive. Deep learning-based method requires large, labelled dataset which increases the cost, time and accuracy depending on 

the model trained on labelled dataset. To perform object detection in point cloud data is a challenging task due to the 

incomplete representations, data sparsity and unavailability of training data. To overcome this by using an unsupervised approach, it is 

important to identify the static scene and then detect the moving object. This work incorporated a novel approach to construct 

static scene using azimuth angle and laser channel information using an unsupervised clustering approach. This work incorporates 

two modules I)  data collection using VLP-16 LiDAR, and II) static scene construction using DBSCAN (density-based 

spatial clustering and  noise) clustering-based approach. Data is collected at a 4-legged intersection and pre-processed to 

extract aggregated distances  corresponding to the unique pair of azimuth angle and laser channel. DBSCAN is used to 

perform clustering on the aggregated  distances, based on the highest silhouette score and lowest intra distance between points 

in cluster, static points are identified, and  static scene constructed. The qualitative evaluation of method demonstrates that 

the algorithm effectively and accurately filters out  background points.

1. Introduction

In recent decades, intersection safety and efficiency have 

become focal points for researchers, driving the implementation 

of cutting-edge technologies. Road intersections are essential 

parts of transportation infrastructure since they are the locations 

at which automobiles, pedestrian and cyclists interact, making 

them potential hotspots for accidents and congestion. At 

intersections, objects differ in size, including smaller objects 

such as road boundaries, curbs, and statues, as well as larger 

objects such as trees, poles, and buildings. Accurate and timely 

detection of these objects are critical for ensuring safe and 

efficient traffic flow. These objects are categorized as static and 

part of the static scene. Constructing static scene can provide 

traffic engineers and city planners valuable information to 

optimize traffic flow and improve safety. In static scenes, 

objects show minimal or no motion over the observed 

timeframe, and their spatial characteristics remain constant. 

Various sensors are used to capture static object data such as 

cameras, RADAR (radio detection and ranging), and LiDAR 

(light detection and ranging). Among these, LiDAR stands out 

as a pivotal tool within vision systems, enabling the detection of 

road objects in three-dimensional space. LiDAR sensors are 

widely used in autonomous driving applications for object 

detection and mapping, with the scope of the application 

currently limited to a road intersection. Although cameras are 

typically used at road intersections to collect data to perform 

object detection, provide high-resolution images but struggle in 

low-light and harsh weather (Al-Haija et al.,2022). On the other 

hand, LiDAR gives the 3D point cloud, which includes accurate 

depth information, but its resolution is cost-dependent, with 

higher resolutions being more expensive (Benedek et al.,2021). 

LiDAR boasts the ability to provide precise 3D point cloud data 

under varying weather conditions and lighting scenarios, 

offering comprehensive 360-degree coverage of intersections. 

Within this captured point cloud data, both static and dynamic 

objects are present. To enhance intersection safety and 

efficiency, roadside systems can potentially use this data to 

detect road objects and track their movements, extracting 

valuable trajectory information. However, the density of the 

point cloud presents a challenge, as the moving object point 

density changes when the object is far from sensor. This 

variability affects the performance of moving object detection 

algorithms, increasing computational costs, processing times, 

and affecting overall accuracy (Liu et al.,2022). To address this 

issue, a common approach involves identifying static object 

points and constructing a static scene (Zhao et al., 2019). 

Objects in point cloud data can be identified using machine 

learning (ML) techniques, such as supervised, unsupervised, 

and deep learning (DL) (Charles et al., 2018). Supervised and 

DL methods need training data (such as labelled objects) to train 

algorithms to perform object detection (Zhang et al., 2015) 

(Sakkos et al., 2017) (Babaee et al., 2018). The challenges 

associated with the training data is limited availability, sensor, 

and location specific. On the other hand, instead of using 

training data unsupervised methods used cluster-based approach 

(K-means clustering (Tonini et al.,2014), DBSCAN, spectral 

clustering etc. (Murugesan et al.,2021)) to identify objects. 

DBSCAN is advantageous over K-means clustering as it does 

not require predefined number of clusters and instead depends 

on two parameters which is minimum number of points and the 

radius. The point clouds are sparse and unstructured and very 

few points represent the object of interest in a frame.  

Static scene construction plays a vital role in identifying object 

of interest from the point clouds. There are various methods 

used to identify static points like azimuth-height table (Zhao et 

al., 2019), vertical angle and horizontal azimuth angle of the 

LiDAR beam (Lee et al., 2012), background difference method 

(Zheng et al., 2021), variable-dimension background filtering 

method (Wu et al., 2021), elevation azimuth matrix (Zhang et 

al., 2022), adaptive grid (Wang et al., 2022). Static scene 
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construction typically involves three main approaches: 

reference-based methods (Zhang et al., 2022), voxelization-

based methods (Asvadi et al.,2016), and point-based methods, 

with the latter subdivided into raw point cloud (Zhao et al., 

2019) and image-based methods (Chen et al.,2023). Reference-

based methods (Zheng et al., 2021) involve manual choice of 

frames devoid of moving objects, where all points are 

considered as background points. However, this approach 

struggles to accurately find background points due to point 

fluctuation. It is overcome by aggregating multiple frames, but 

it is not possible to find multiple frames without any moving 

object (Tarko et al.,2018). Reference-based methods are the 

simplest methods. The voxelization-based method (Asvadi et 

al.,2016), also known as rasterization methods, converts 3D 

space into small cubes within aggregated frames and constructs 

static scenes based on voxel density. 3D-DSF (Wu at al.,2017), 

voxel-based background filtering method uses aggregated 

LiDAR frames which converts the 3D space into the small 

cubes and based on the point distribution, static points are 

identified using predefined threshold. It experiences 

performance degradation in congested scenarios or when 

moving objects come to a halt, with accuracy depends on the 

size of the cubes. Voxel-based methods work well in free flow 

traffic conditions also it solves the problem related to manual 

selection of frames by choosing random frames, but challenge is 

the number of voxels directly proportional to the computational 

load. Selection of voxel size also impacts the accuracy of the 

methods. Raw point-based method identifies background point 

directly from the raw data without any conversion which 

reduces the computational load, cost, and time. It uses the 

nearest neighbours (NN), azimuth-height table (Zhao et al., 

2019), and laser channels to map the static point across the 

frames but performance reduces in adverse weather conditions. 

Range Image-based method (Chen et al., 2023) converts the raw 

point cloud in the form of range image and analyses the change 

pixelwise to create background scene. Depth information is 

missing from the image-based methods (Wu et al.,2022).  

 

Based on the literature, several research gaps have been 

identified that impact the field of static scene construction from 

sensor data. Firstly, there is an ambiguity in frame selection, 

which hinders the transferability of methods due to parameter 

selection challenges, affecting the accuracy of static scene 

construction. Additionally, the absence of methods for 

constructing static scenes using multi-sensor data limits the 

ability to conduct comprehensive analyses. This is further 

compounded by the lack of well-defined ground truth, which 

impedes the quantification of results and makes it difficult to 

assess the effectiveness of different approaches.  

 

This paper aims to develop and evaluate a novel method for 

constructing 3D static scenes that requires minimal parameter 

fine-tuning, eliminating the necessity for manual parameter 

adjustment for the LiDAR point cloud data. This method 

directly processes raw 3D point cloud by selecting points from a 

randomly chosen set of frames within the LiDAR data. We 

extract the point distance for each azimuth angle and laser 

channels. This information is used to create a 2D matrix with N 

rows, representing the number of laser channels (C) and M 

columns represents azimuth values (α), effectively spanning 

360° at an interval of 0.2°. The distances are aggregated across 

frame and clustered using DBSCAN to identify static scene. 

The paper presents a novel approach based on azimuth angle 

and laser channel for 3D static scene creation without the need 

for manual parameter finetuning and the results will undergo 

precise qualitative evaluation and comprehensive comparison to 

ensure the method's accuracy and reliability. 

 

The remainder of this paper is structured into following 

sections: Section II gives the overview of the related works. 

Section III presents the methodology which includes the data 

collection, data preprocessing and static scene construction 

using DBSCAN clustering. Section IV evaluates and compares 

the accuracy of the proposed methodology. Section V concludes 

the paper and discusses the future scope of this research work.  

 

2. Methodology 

To construct a static scene from the LiDAR point cloud data, 

the methodology adopted is illustrated in Figure 1. It processes 

LiDAR data, beginning with data collection using LiDAR 

sensors to measure distances by reflecting laser light off objects. 

The process includes data preprocessing to clean and 

standardize the incoming data, followed by frame segmentation 

to analyse each frame individually. An elementwise 2D distance 

matrix is then formed for each frame, capturing distance 

measurements based on azimuth angle and laser ID. Subsequent 

steps involve aggregating distance data across frames and 

 

Figure 1.  Flow Chart of LiDAR-Based Clustering and Background Point Filtering Using DBSCAN 
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applying the DBSCAN clustering algorithm to identify dense 

clusters and outliers within the data. Silhouette score and 

distance between points in cluster is calculated to identify static 

points. In the next section detailed description of each step is 

given. 

 

2.1 Data Collection 

LiDAR is the only sensor used for data collection in this work. 

There are multiple types of LiDAR sensor available in the 

market which are used for vision tasks. In this work velodyne 

VLP-16 model is used for data collection. VLP-16 is a 16-

channel small, cylindrical sensor installed at the corner of a road 

intersection. It offers 360-degree horizontal field-of-view 

(HFOV) and 30-degree (-15 to +15 degree) vertical field-of-

view (VFOV) with a range of up to 100 meters shown in Figure 

2A. It captures up to 3,00,000 points per second and has 

horizontal resolution 0.1-0.4-degree, vertical resolution 2-

degree and operating frequency varies between 5-20Hz. It 

collects data in challenging environmental conditions and is 

suitable for outdoor conditions for extended periods of data 

collection. VLP-16 uses the time-of-flight (ToF) method to 

measure distance. As shown in Figure 2b, LiDAR emitter emits 

the laser at a horizontal angle α (top view) and vertical angle ω 

(front view), receiver receives the transmitted signal and 

calculates the distance R by equation 1 where c is the speed of 

the light already known and ∆t is the time taken by the laser 

pulse between the emitted to reflected by the target. 

 

                                                                                    (1) 

 

By using the formula given in figure 2B, point coordinate value 

in X, Y, Z direction is calculated. VLP-16 has its own 

coordinate frame in which origin lies 3.77 cm above the base 

and X, Y are the horizontal axis and Z is the vertical axis 

(Figure 2b). 

 

 
 

Figure 2. a) LiDAR Properties (FOV) and b) Coordinate Frame  

 

Figure 3 shows the sensor suite used for the data. The hardware 

part consists of 1 velodyne vlp-16 LiDAR sensor, 1 tripod on 

which sensor is mounted, LiDAR interface box, 1 power bank 

60000 mAh, 1 DC-to-AC converter for constant power supply 

to VLP-16 and 1 laptop. The software part uses a Linux-based 

operating system (Ubuntu 20.04) compatible with ROS (robot 

operating system) noetic which provide interface to control 

LiDAR sensor, visualize data in real time and store the collected 

data. Data are stored in the form of rostopic pointcloud2 

messages which contains X, Y, Z, I, and timestamp. As the 

vertical angle is fixed to 2°, distance and azimuth angle is 

calculated using the formula given in Figure 2b.  

 

Two types of intersections are selected shown in Figure 4, one 

is a 4-legged intersection (Figure 4a) which is used for analysis 

in this paper and other is a 3-legged intersection (Figure 4b). 

Data is collected during peak hours, daytime, and nighttime. 

Duration of data collection is more than 5 hours. Data is 

collected in static mode wherein sensor is fixed on the tripod 

and located at the corner of the intersection. 

 

 
 

Figure 3. Sensor setup 

 

 
 

Figure 4. Location a) 4-legged Intersection b) 3-legged 

Intersection  

 

2.2 Data Extraction 

Data collected from the velodyne VLP-16 is saved using ROS 

in the .bag file format. In .bag format each scan from the vlp-16 

recorded in the form topic point cloud2. Raw file contains the 

point cloud information (X, Y, Z, and I), horizontal angle (α), 

vertical angle (ω) and timestamp of the scan. Each value of 

point occupies 16 bytes memory. It is difficult to process all 

points at a once, so we extract each frame from the raw data. 

At each azimuth angle, 16 lasers fired by the sensor and the 

corresponding values are recorded by the sensor and stored. The 

vertical angle of the laser id is fixed, and azimuth resolution 

depends on the rotation speed of sensor. Figure 5 shows the raw 

frame which is generated after sensor completes one rotation. In 

total 16,178 frames are used to construct a static scene.  

 

Figure 6 shows the extraction of distances (m) for each pair of 

laser id and azimuth angle for each frame. The number of 

elements calculated based on the laser channel (C), sensor 

rotation speed (or azimuth resolution, αres) and calculated using 

the following formula. 

 

                                         
(2) 
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Based on the formula, VLP 16 fires 16 lasers in 0.2° azimuth 

resolution when its rotation frequency is 600 rpm, resulting in  

1800 elements. 

 

 
 

Figure 5. Raw Point Cloud Frame 

 

 
 

Figure 6. Framewise distance extraction  

 

 
 

Figure 7. Elementwise aggregated distance matrix  

 

A frame-wise distance matrix is developed as shown in figure 6. 

This will further process to get static cluster value for each 

element of distance matrix. Further frames are aggregated to get 

aggregated distance matrix shown in Figure 7.  

 

2.3 Static Scene Construction 

The main purpose of static scene construction is to retain the 
points of object of interest in the point cloud data as much as 
possible. As shown in Figure 8, the process to construct static 
scene using DBSCAN clustering begins with selecting and 
analysing each element of aggregated distance matrix for the 
given channel data (C, α) and iterate through all the elements 
individually.  
 

 
Figure 8. Flow Chart to Identify Static Scene 

 
The next step involves determining the appropriate parameters 
for the DBSCAN algorithm, specifically the radius (ε) and the 
minimum number of points (MinPts) required for forming a 
cluster. Once the parameters are set, the DBSCAN clustering 
algorithm is applied to the selected element. The results from 
DBSCAN are then used to assign labels to the data points, 
categorizing them into either a single cluster or multiple 
clusters. If a single cluster is detected, the intra-cluster distance 
is calculated to understand the compactness of the cluster. If 
multiple clusters are detected, the silhouette score for each 
cluster is computed to assess the clustering quality and the 
separation between clusters. Outliers within the clusters are 
identified as data points that do not fit well into any cluster. An 
elementwise 2D distance static clusters matrix is then 
constructed, incorporating both the identified clusters and 
outliers. The identified clusters are combined to construct static 
scenes from the aggregated frames. This structured approach 
ensures a thorough analysis of the 2D distance matrix, enabling 
effective clustering and outlier detection using the DBSCAN 
algorithm. After selecting an element from the aggregated 
distance matrix, next step is to select the appropriate parameters 
which is used in DBSCAN clustering to get clusters. The next 
section explains the selection of parameters. 
 

2.3.1 Parameter Selection and Clustering 

 

This section explains the selection of parameters. Initially, 

aggregated distance element corresponding to unique pair of 

azimuth angle and LiDAR channel is selected. Parameters such 
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as total number of points and minimum sample points are 

calculated subject to 1% of total points or minimum of 100 

points to form a cluster, and initial values for eps (eps_initial= 

0.08 and eps_max= 0.4) are set. Since the divergence of laser 

beam increases with the increase in distance because of azimuth 

resolution and fired laser can hit anywhere on the arc length (S) 

as shown in the Figure 9 . The permissible deviation for laser 

hitting at the prescribed arc length is 3.49 mm/m. 

 

                                                             (3) 

 

 
Figure 9. Laser Beam Divergence  

 

The best radius (eps) is found by iterate through the eps, 

applying DBSCAN, fitting the model, and getting labels based 

on the best combination of eps and MinPts (Figure 10). If 

multiple clusters are identified (Figure 11), the intra-cluster 

distance and silhouette score are calculated, and the best eps is 

updated based on these metrics. Multiple clusters are observed 

when objects like trees are present in the scene, as their 

movement causes the laser to intermittently hit the trees or 

objects beyond them. Figure 12 shows the spread of aggregated 

distances for the multiple clusters case.  If only one cluster is 

detected (Figure 13) and all iterations have multiple clusters is 

set to False, then the intra-cluster distance is calculated. Figure 

14 shows the spread of aggregated distances for the single 

cluster case. If all iterations have multiple clusters, the loop 

through eps_values are repeated, and the best eps is updated 

based on silhouette scores. Minimum eps are selected 0.08 and 

maximum is 0.4. Methods evaluate the cluster at each eps value 

with the interval of 0.01 Once the best parameters are 

determined, DBSCAN is applied with this value and 

min_samples, the model is fitted, and labels are obtained. To 

find the best value of parameters, the number of clusters is 

evaluated, and if multiple clusters are present, the silhouette 

score and intra-cluster distance are calculated; if only one 

cluster is present, only the intra-cluster distance is calculated. 

 

 
 

Figure 10 DBSCAN Parameter Selection  

 

To select the best parameter, maximum silhoutte score is 

selected in case of multiple cluster and minimum intra-cluster 

point distance is selected in case of single cluster. 

 

After identifying the suitable parameters, DBSCAN clustering 

is performed to get clusters of the aggregated distances. Figure 

15 shows the multiple clusters formed for the laser id 10 and 

azimuth angle 36 and Figure 16 shows the single cluster formed 

in laser id 0 and azimuth angle 36. 

 

 
 

Figure 11. Multiple Clusters Laser Hitting Object (10,36) 

 

 

 
 

Figure 12. Multi Cluster Distribution of Aggregated Distance 

Element (10,36)  

 

 
 

Figure 13. Single Cluster Representation Laser Hitting Object 

(10,36) 

 

 
 

Figure 14. Distribution of Aggregated Distance Element (0,36) 

 

3. Results and Discussion 

DBSCAN is performed on each element of aggregated distance 

matrix and combining them into a frame represents a static 

scene. Outliers are removed from the combined matrix and 

remaining points represents static points. Figure 17 is the static 
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scene generated from the method and Figure 18 shows the 

outlier points identified in single frame. Static points are 

represented in white colour and outlier in red. 

 

 
 

Figure 15. DBSCAN Clustering output (10,36) 

 

 
 

Figure 16. DBSCAN Clustering output (0,36) 

 

 
 

Figure 17. Static Scene Single Frame 

 

By creating static scene framewise from the aggregated frames, 

there is a problem of occlusion in single LiDAR case as shown 

in the Figure 19. Qualitative evaluation is done to check the 

method performance. 

  

Aggregated  static points are then identified to construct static 

scene and Figure 20 shows the static scene generated which 

shows that the occluded points appeared in the scene and few 

more points are there (shown in Figure 20 in red box) because 

of duration of data collection is less. Data collected for longer 

duration in different traffic scenarios can solve the problem of 

few outlier points appearing in the static scene. 

 

 
 

Figure 19. Occlusion in Single Frame 

 

 
 

Figure 20. Combined Frames Static Scene 

 

4. Conclusion and future works 

In this paper, we developed a novel algorithm to construct static 

scene using roadside LiDAR based on unsupervised clustering. 

Static scene construction using unsupervised methods advances 

the accuracy enhancement of object detection and tracking by 

reducing unnecessary points. Algorithm removes the ambiguity 

in frame selection and manual selection of parameters like 

voxel-based methods by automatically selecting the best 

parameter for each element (C, α), which increases the 

transferability of the method. The results show the method 

effectively and accurately filters out background points. In this 

work, a single LiDAR is used which offers simplicity, 

straightforward setup, and cost-effectiveness. But it faces 

challenges such as limited coverage, and blind spots. Future 

work includes overcoming the challenges of single LiDAR 

sensor, multi-lidar setups for enhanced coverage, resolution, and 

redundancy. Due to the lack of ground truth data, this paper 

does not include a quantitative evaluation. Future work will 

address this by creating a static scene using high-resolution 

LiDAR for such analysis. Future works also include fully 

automating the process to construct static scene for multiple 

LiDAR and different type of intersection by considering 

different traffic scenarios in mixed traffic conditions. 

 

5. Acknowledgements 

This work is partially supported by TIH-IoT Chanakya 

fellowship, and partial support from SERB (Science and 

Engineering Research Board) and IIT Kanpur. The authors 

would like to acknowledge the support received from these 

sources. 

 

References 

Al-Haija, Q. A., Gharaibeh, M., & Odeh, A. (2022). Detection 

in adverse weather conditions for autonomous vehicles via deep 

learning. AI, 3(2), 303-317. https://doi.org/10.3390/ai3020019 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-381-2024 | © Author(s) 2024. CC BY 4.0 License.

 
386

https://doi.org/10.3390/ai3020019


 

Asvadi, A., Premebida, C., Peixoto, P., & Nunes, U. (2016). 3D 

Lidar-based static and moving obstacle detection in driving 

environments: An approach based on voxels and multi-region 

ground planes. Robotics and Autonomous Systems, 83, 299-311. 

https://doi.org/10.1016/j.robot.2016.06.007 

Babaee, M., Dinh, D. T., & Rigoll, G. (2018). A deep 

convolutional neural network for video sequence background 

subtraction. Pattern Recognition, 76, 635-649. 

https://doi.org/10.1016/j.patcog.2017.09.040 

Benedek, C., Majdik, A., Nagy, B., Rozsa, Z., & Sziranyi, T. 

(2021). Positioning and perception in LIDAR point clouds. 

Digital Signal Processing, 119, 103193. 

https://doi.org/10.1016/j.dsp.2021.103193 

Chen, Z., Xu, H., Zhao, J., & Liu, H. (2023). A Novel 

Background Filtering Method with Automatic Parameter 

Adjustment for Real-Time Roadside LiDAR Sensing System. 

IEEE Transactions on Instrumentation and Measurement. 

https://doi.org/10.1109/TIM.2023.3300457 

Lee, H., & Coifman, B. (2012). Side-fire lidar-based vehicle 

classification. Transportation Research Record, 2308, 173–183. 

https://doi.org/10.3141/2308-19 

Liu, H., Lin, C., Gong, B., & Wu, D. (2022). Extending the 

detection range for low-channel roadside LiDAR by static 

background construction. IEEE Transactions on Geoscience 

and Remote Sensing, 60, 1-12. 

https://doi.org/10.1109/TGRS.2022.3155634 

Murugesan, N., Cho, I., & Tortora, C. (2021). Benchmarking in 

cluster analysis: A study on spectral clustering, DBSCAN, and 

K-Means. In Data Analysis and Rationality in a Complex World 

(Vol. 16, pp. 175-185). Springer International Publishing. 

https://doi.org/10.1007/978-3-030-60104-1_20 

Qi, C. R., Liu, W., Wu, C., Su, H., & Guibas, L. J. (2018). 

Frustum pointnets for 3D object detection from RGB-D data. In 

Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition (pp. 918-927). 

https://doi.org/10.48550/arXiv.1711.08488 

Sakkos, D., Liu, H., Han, J., et al. (2018). End-to-end video 

background subtraction with 3D convolutional neural networks. 

Multimedia Tools and Applications, 77, 23023–23041. 

https://doi.org/10.1007/s11042-017-5460-9 

Tarko, A., Romero, M., Ariyur, K., Bandaru, V., & Lizarazo, C. 

(2018). Detecting and tracking vehicles, pedestrians, and 

bicyclists at intersections with a stationary LiDAR. In 18th 

International Conference Road Safety on Five Continents 

(RS5C 2018), Jeju Island, South Korea, May 16-18, 2018. 

Tonini, M., & Abellan, A. (2014). Rockfall detection from 

terrestrial LiDAR point clouds: A clustering approach using R. 

Journal of Spatial Information Science, 8, 95-110. 

Wang, L., & Lan, J. (2022). Adaptive Polar-Grid Gaussian-

Mixture Model for Foreground Segmentation Using Roadside 

LiDAR. Remote Sensing, 14(2522). 

https://doi.org/10.3390/rs14112522 

Wu, J., Xu, H., & Zheng, J. (2017). Automatic background 

filtering and lane identification with roadside LiDAR data. In 

2017 IEEE 20th International Conference on Intelligent 

Transportation Systems (ITSC) (pp. 1-6). IEEE. 

https://doi.org/10.1109/ITSC.2017.8317723 

Wu, J., Lv, C., Pi, R., Ma, Z., Zhang, H., Sun, R., & Wang, K. 

(2021). A Variable Dimension-Based Method for Roadside 

LiDAR Background Filtering. IEEE Sensors Journal, 22, 832-

841. https://doi.org/10.1109/JSEN.2021.3125623 

Zhang, Y., Wang, J., Wang, X., Li, C., & Wang, L. (2015). 3D 

LIDAR-Based Intersection Recognition and Road Boundary 

Detection Method for Unmanned Ground Vehicle. In 2015 

IEEE 18th International Conference on Intelligent 

Transportation Systems (pp. 499-504). Gran Canaria, Spain. 

https://doi.org/10.1109/ITSC.2015.88 

Zhao, J., Xu, H., Xia, X., & Liu, H. (2019). Azimuth-Height 

background filtering method for roadside LiDAR data. In 2019 

IEEE Intelligent Transportation Systems Conference (ITSC) 

(pp. 2421-2426). IEEE. 

https://doi.org/10.1109/ITSC.2019.8917369 

Zhang, T., & Jin, P. J. (2022). Roadside lidar vehicle detection 

and tracking using range and intensity background subtraction. 

Journal of Advanced Transportation, 2022. 

https://doi.org/10.1155/2022/2771085 

Zheng, J., Yang, S., Wang, X., Xiao, Y., & Li, T. (2021). 

Background Noise Filtering and Clustering With 3D LiDAR 

Deployed in Roadside of Urban Environments. IEEE Sensors 

Journal, 21, 20629-20639.          

 

 

 

 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-381-2024 | © Author(s) 2024. CC BY 4.0 License.

 
387

https://doi.org/10.1016/j.robot.2016.06.007
https://doi.org/10.1016/j.patcog.2017.09.040
https://doi.org/10.1016/j.dsp.2021.103193
https://doi.org/10.1109/TIM.2023.3300457
https://doi.org/10.3141/2308-19
https://doi.org/10.1109/TGRS.2022.3155634
https://doi.org/10.1007/978-3-030-60104-1_20
https://doi.org/10.48550/arXiv.1711.08488
https://doi.org/10.1007/s11042-017-5460-9
https://doi.org/10.3390/rs14112522
https://doi.org/10.1109/ITSC.2017.8317723
https://doi.org/10.1109/JSEN.2021.3125623
https://doi.org/10.1109/ITSC.2015.88
https://doi.org/10.1109/ITSC.2019.8917369
https://doi.org/10.1155/2022/2771085



