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Abstract 
 
Rapid analysis of surface deformation is crucial for rescue operations following natural disasters. However, the lack of recent terrain 
data and the discrepancy between data types and field-collected data often hinder timely surface deformation analysis. To enhance data 
usability, this paper proposes an analytical method that integrates multiple sources of remote sensing data, including satellite data, 
oblique photography data, and LiDAR data. By merging oblique images with grayscale point clouds, true-color point clouds are 
generated. The method optimizes old data through threshold segmentation and median filtering, then converts and unifies the resolution 
of multi-source data via data interpolation. Elevation interpolation matrices are employed for overlay analysis, and a combination of 
bilateral filtering and threshold processing is used. This groundbreaking approach enables the completion of surface deformation 
analysis in emergency geospatial surveys and has been validated in various typical regions, demonstrating its application potential 
across different surface environments. Experimental results indicate that this method can quickly utilize multi-temporal and multi-
source remote sensing data to effectively identify surface deformations following natural disasters. 
 
 

1. Background  

In the current context of globalization, the frequent occurrence of 
natural disasters poses a great challenge to human society. 
Disasters not only cause loss of life and property, but also have a 
profound impact on regional economic development. Moreover, 
there is an optimal time period for disaster relief, and in order to 
save as many lives as possible, it is especially important to 
quickly and accurately analyze the surface deformation caused 
by natural disasters. 
 
Emergency mapping after natural disasters is the basic support 
for all kinds of public emergencies to provide geographic 
information and modern surveying and mapping technology, is 
an important part of the national emergency response system, is 
the command decision-making and rescue and disaster relief 
guarantee and basis, is through the whole process of public 
emergencies prevention, response, disposal and restoration of the 
importance of the basic work. 
 
Disaster analysis relies on multi-period topographic data, so it is 
necessary to obtain multi-period data from previous periods and 
the scene. By comparing the multi-period data and analyzing the 
information such as surface subsidence is the main analysis 
method at present (Zheng, et al., 2022). Firstly, historical data 
often present numerous challenges. For instance, in remote 
mountainous regions, past terrain data may have been collected 
manually due to the absence of UAVs and other advanced 
equipment, resulting in poor data quality due to outdated 
cartographic techniques. Furthermore, in emergency surveying 
scenarios, the high demands for speed and timeliness mean that, 
even if high-precision data are available from other sources, field 
personnel often do not have the time to obtain them and must rely 
on the historical data they have at hand. Additionally, due to 
technological limitations and communication difficulties, it is 
challenging to obtain externally transmitted data at disaster sites. 

At the disaster site, in order to facilitate situational awareness, 
emergency responders need instant access to maps of the site 
(Opach, et al., 2023). Conventional methods typically involve 
manual investigation within the disaster zone, which is not only 
inefficient and limited in scope but also exposes responders to the 
risks of secondary hazards. 
 
Combining drones with various sensors offers the advantages of 
rapid, automated, and non-contact spatial data collection, 
providing high resolution and accuracy (Kovanič, et al., 2023). 
In recent years, UAV remote sensing has gradually attracted the 
attention of scientific researchers and industry, due to its broad 
application prospects. It has been widely used in agriculture, 
forestry, mining, and other industries. UAVs can be flexibly 
equipped with various sensors, such as optical, infrared, and 
LIDAR, and become an essential remote sensing observation 
platform (Zhang, et al., 2023). Consequently, they are commonly 
used in emergency surveying scenarios. UAV remote sensing 
methods produce more detailed maps, which can expedite rescue 
and relief operations in disaster-affected areas (Singh, et al., 
2023).  
 
Furthermore, the long intervals between multiple datasets mean 
that the sensors used for data collection at disaster sites may 
differ from those used in historical data. This results in highly 
complex multi-temporal and multi-source data scenarios in 
emergency surveying, increasing the difficulty of terrain analysis 
and often causing delays in rescue operations. The most common 
application of drones is their effective creation of spatial models 
based on photogrammetry and LiDAR data (Kovanič, et al., 
2023). UAV Light Detection Ranging (UAV-LiDAR) and UAV 
photogrammetry are currently common ground monitoring 
techniques (Zhan, et al., 2024).  
 
Photogrammetry stands out for its mobility, flexibility, and 
intuitiveness, particularly its ability to visually represent disaster 
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scenes through color models, aiding in swift assessment and 
disaster relief coordination. However, in areas with vegetation 
cover such as forests, photogrammetry is limited by its passive 
measurement nature, which cannot penetrate the vegetation layer 
to directly obtain surface data (Kim, et al., 2023). UAV-mounted 
LiDAR, with its continuous operation and high-precision data, is 
widely used in terrain surveying and 3D modeling (Jiang, et al., 
2022). In complex terrains such as forests, LiDAR technology, 
with its high precision and active measurement capabilities, 
excels in vegetation penetration through multi-echo technology, 
allowing it to directly obtain accurate surface data. In extreme 
environments, such as snow-covered forests, UAV-mounted 
LiDAR can effectively provide information about both the 
canopy and the sub-canopy snow surface (Koutantou, et al., 
2022). Despite these advantages, the grayscale point clouds 
produced by LiDAR lack true color and texture information, 
limiting their application in disaster site assessment. Previous 
studies have alternated between these two technologies, 
overlooking their correlation, or have compared them solely on 
an individual basis (Zhan, et al., 2024). Combining the 
advantages of these two technologies through multi-sensor data 

fusion has become an urgent need to enhance disaster relief 
efficiency. 
 
In summary, emergency surveying is a crucial component of the 
emergency response system for public incidents, providing 
geographic information support and decision-making 
foundations. Faced with the complexity of disaster sites, the key 
challenge is how to rapidly and comprehensively utilize multi-
temporal, multi-source remote sensing data to resolve surface 
deformation analysis difficulties and provide both intuitive and 
high-precision visual data. Traditional methods are inefficient 
and pose secondary disaster risks. By integrating multi-temporal 
and multi-sensor data, it is possible to enhance disaster relief 
efficiency, achieve rapid and accurate surface deformation 
analysis, and optimize the overall effectiveness of emergency 
surveying. 
 

2. Methodology 

To address these challenges, this paper proposes an innovative 
method. The technical approach is illustrated in Figure 1. 

 

 
Figure 1. Technology approach. 

 
The entire roadmap is divided into three main sections: 
processing of data before disaster, processing of data after 
disaster, and surface deformation analysis. The analysis process 
also includes the step of generating true-color point clouds. This 
method comprehensively utilizes multiple data sources such as 
satellite imagery, photogrammetry, and LiDAR. Through a series 
of technical processing steps, it not only optimizes old data but 
also effectively integrates data from different sources to enhance 
the speed of surface deformation analysis. 
 
The pre-disaster data collected from the database is optimized 
using methods such as threshold segmentation and median 
filtering, primarily aimed at improving data in anomalous areas 
and enhancing the accuracy of subsequent analysis. For post-
disaster on-site data, nearest-neighbor coordinate matching and 
texture mapping are used to merge photogrammetric data with 
LiDAR point cloud data, producing true-color point clouds. The 
multi-source data is then converted into DSM models, enabling 

the integration of various types of pre-disaster and on-site 
collected data.  
 
Considering the differences in data from different time periods, 
data interpolation is used to unify the resolution, followed by 
geographic coordinate matching for regional alignment. The 
processed multi-source, multi-temporal data undergoes overlay 
analysis using elevation interpolation matrices. Techniques such 
as bilateral filtering and threshold processing further optimize the 
results. Experimental validation in multiple typical regions 
demonstrates the method's effectiveness and practicality. 
 
2.1 Raw Data Preprocessing 

In emergency surveying, the quality of historical data often 
presents issues, making the rapid processing of raw data essential. 
One of the most common problems is the presence of anomalies 
in elevation data. 
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For data before disaster, optimization is carried out using 
methods such as threshold segmentation and median filtering. 
The specific process is illustrated in Figure 2. 
 

 
Figure 2. Processing of data before disaster. 

 
Firstly, since surface data falls within a normal range, threshold 
segmentation is initially used to screen the data. This step 
identifies anomalies such as elevation issues, effectively isolating 
data points that do not conform to natural terrain variation 
characteristics, thereby laying the foundation for further 
processing. Further, the median filtering algorithm is applied for 
data optimization. A median filter is a nonlinear filter that 
eliminates digital signal noise while preserving signal edges. This 
technique has been widely used in two-dimensional digital 
filtering. It involves selecting an odd-numbered template window, 
moving it along the rows or columns of the two-dimensional 
digital matrix, and replacing the values within the window with 
the median value (An, et al., 2024). 
 
The formula for the median filter used in this paper is shown in 
Equation 1: 
 

𝑔𝑔(𝑥𝑥,𝑦𝑦) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑥𝑥 − 𝑚𝑚,𝑦𝑦 − 𝑗𝑗)}, (𝑚𝑚, 𝑗𝑗) ∈ 𝑆𝑆, (1) 
 
where  f(x,y) = preprocessed pixel matrix 
 g(x,y) = the post-processing pixel matrix 
 S = window area 
 
The larger the template for median filtering, the more noise is 
filtered out. However, the deviation of the center value of the 
template window from the observed value can lead to wrong 
results. Therefore, a 3*3 template is used for filtering in this 
paper. The median filtering schematic is shown in Figure 3. 
 

 
Figure 3. Schematic diagram of the median filter principle. 

 
Regardless of whether the area is flat or a complex mountainous 
region, terrain data should exhibit good continuity between 
ground points on a global scale. The median filtering method is 
highly effective at removing extremely high or low anomalous 
points in continuous terrain, while preserving terrain features and 
edge information. This achieves optimization of data in 
anomalous regions. 
 
2.2 True Color Point Cloud Generation 

In disaster scenes, high-precision data that allows for intuitive 
assessment of surface deformation is extremely valuable. The 
fusion of 3D LiDAR point clouds with 2D imagery is a current 

research hotspot in the field of photogrammetry and remote 
sensing.  
 
By combining the high precision of 3D LiDAR point clouds with 
the high observability of 2D image texture data, on-site personnel 
can quickly assess the disaster situation. 
 
The 3D model obtained from oblique photogrammetry is 
converted into a Digital Orthophoto Map (DOM). Since the 
current data has the same geographic coordinate system, 
matching the same regions becomes possible, forming the basis 
for data fusion. Then, the converted DOM and the LiDAR-
derived LAS format files are merged using nearest-neighbor 
coordinate matching and texture mapping. This process 
integrates the photogrammetric data with the LiDAR point cloud 
data, resulting in the output of true-color point clouds. 
 
Specifically, the converted DOM files and LAS files are used to 
extract pixel data and point cloud data, respectively. After 
extraction, the two types of data are matched using the nearest-
neighbor method based on their coordinates. Post-matching, the 
point cloud is processed to attach the texture from the image data 
to the grayscale point cloud. Finally, this results in the output of 
true-color point clouds, achieving the goal of multi-sensor data 
fusion. 
 
Moreover, since the reference factor for texture attachment is the 
geographic coordinate system, there is no need for joint 
calibration of the multi-sensors involved in the fusion. As long as 
the coordinate systems of the original data are consistent, the 
fusion process can be realized. This characteristic significantly 
enhances data production efficiency in post-disaster emergency 
surveying scenarios where timeliness is critical. 
 
2.3 Surface Deformation Analysis 

In disaster sites where rapid surface deformation analysis is 
required, the diversity of raw data types can negatively impact 
the workflow. Therefore, it is necessary to integrate multi-
temporal, multi-sensor, and multi-source data to lay the 
foundation for data analysis.  
 
To standardize satellite imagery data, oblique measurement data, 
and LiDAR point cloud data into a unified format, a series of 
processing and standardization steps are essential. By converting 
multi-source data into DSM models, we achieve the integration 
of various types of data from pre- and post-disaster scenes over 
multiple time periods.  
 
Subsequently, the integrated multi-temporal, multi-sensor, and 
multi-source data undergo surface deformation analysis. The 
specific technical approach is illustrated in Figure 4. 
 

 
Figure 4. Processing of data before disaster. 
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The process is mainly divided into three parts: data preprocessing, 
surface deformation analysis, and result output. Firstly, 
considering the different resolutions of various data, we unify the 
data resolution through interpolation. Anomalous points are then 
removed using threshold analysis and median filtering, as 
described in Equation 1. Geographic coordinates are used to 
match the regions, preventing discrepancies due to varying 
extents of the original data from affecting the analysis results.  
Next, elevation difference matrices are used to analyze the same 
locations across multiple datasets. The results are optimized 
using bilateral filtering. In practical surface deformation analysis, 
minute deformations may be disregarded, so thresholding is 
applied to extract areas that have undergone significant changes.  
These extracted areas represent the disaster-affected regions. 
Finally, the surface deformation analysis results are generated. 
 
The calculation formula for extracting elevation information at 
the same location from two-period DSM data in the same region 
is shown in Equation 2: 
 

∆𝐻𝐻𝑖𝑖,𝑗𝑗 =  𝐻𝐻2(𝑚𝑚, 𝑗𝑗) −  𝐻𝐻1(𝑚𝑚, 𝑗𝑗)  𝑚𝑚 = 1 ⋯𝑀𝑀, 𝑗𝑗 = 1 ⋯𝑁𝑁, (2) 
  
where  H(i, j) = the elevation value of data 

∆H(i, j) = the elevation difference of data 
 M = location ranges 
 N = location ranges 
  
By reading the elevation information from two-period DSM data, 
we perform pixel-by-pixel elevation differencing to obtain the 
difference DSM elevation matrix.  
 
The entire experimental area is traversed, and the elevation 
differences in the DSM data are calculated to form the elevation 
difference matrix. The size of the elevation difference matrix, 
like the experimental area of the DSM data, is M×N. The 
elevation difference matrix is shown in Equation 3: 
 

𝑚𝑚𝐻𝐻 = �
∆𝐻𝐻11 … ∆𝐻𝐻1𝑁𝑁
⋮ ⋱ ⋮

∆𝐻𝐻𝑀𝑀1 … ∆𝐻𝐻𝑀𝑀𝑀𝑀
� , (3) 

 
If Hij is less than 0, the location is an elevation decrease point. If 
Hij is larger than 0, it means that the location is an elevation 
increase point. Difference DSM data information is easily 
affected by the accuracy of DSM data before and after the time-
phase, so when using DSM data to extract the change information, 
the elevation threshold t can be set. 
 
If the absolute value of the extracted elevation difference is 
greater than t and the elevation difference is positive, the grid 
point is considered an elevation increase point. If the absolute 
value of the extracted elevation difference is less than t and the 
elevation difference is negative, the grid point is considered an 
elevation decrease point. If the absolute value of the extracted 
elevation difference equals t, it is considered unchanged 
information. 
 
Bilateral filtering is a nonlinear filter used in image processing to 
remove noise, such as Gaussian noise, while preserving edges. 
This effect is achieved through two main functions: determining 
the filter coefficient based on geometric spatial distance and the 
difference between adjacent grid values. In the bilateral filtering 
algorithm, the output grid value is a weighted combination of 
adjacent grid values. 
 
It combines both spatial proximity and pixel value similarity to 
smooth the image while preserving edge information. This filter 

reduces image noise while avoiding the edge blurring problems 
commonly associated with traditional filtering methods such as 
Gaussian filtering. 
 
In the bilateral filtering algorithm, the output grid value is a 
weighted combination of adjacent grid values. The ability of the 
bilateral filter to smooth noise while preserving edges is due to 
its filter kernel being generated by two functions: the kernel 
domain and the value range kernel. 
 
The kernel domain, the template weights d(i, j, k, l) determined 
by the Euclidean distance of the pixel positions, is shown in 
Equation 4： 
 

𝑚𝑚(𝑚𝑚, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙) = 𝑚𝑚𝑥𝑥𝑒𝑒 �−
(𝑚𝑚 − 𝑘𝑘)2 + (𝑗𝑗 − 𝑙𝑙)2

2𝜎𝜎𝑑𝑑2
� , (4) 

 
Value range kernel, determined by the difference in pixel values, 
assigns weights to the template values r(i, j, k, l). The specific 
formula is shown in Equation 5: 
 

𝑟𝑟(𝑚𝑚, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙) = 𝑚𝑚𝑥𝑥𝑒𝑒 �−
‖𝑓𝑓(𝑚𝑚, 𝑗𝑗) − 𝑓𝑓(𝑘𝑘, 𝑙𝑙)‖2

2𝜎𝜎𝑟𝑟2
� , (5) 

 
where  (i, j) = the grid position 

(k, l) = the range centered on (i, j)(2N+1)(2N+1) 
 f(k, l) = the grid value involved in the calculation 
 σ2 

d = the variance of the grid position distance 
σ2 

r = the variance of the grid value 
 
Multiplying the two templates gives the template weights of the 
bilateral filter, is shown in Equation 6: 
 

𝑤𝑤(𝑚𝑚, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙) =

𝑚𝑚𝑥𝑥𝑒𝑒 �−
(𝑚𝑚 − 𝑘𝑘)2 + (𝑗𝑗 − 𝑙𝑙)2

2𝜎𝜎𝑑𝑑2
−  
‖𝑓𝑓(𝑚𝑚, 𝑗𝑗) − 𝑓𝑓(𝑘𝑘, 𝑙𝑙)‖2

2𝜎𝜎𝑟𝑟2
� , (6)

 

 
Therefore, the data equation for the bilateral filter can be 
expressed as Equation 7: 
 

𝑔𝑔(𝑚𝑚, 𝑗𝑗) =
∑ 𝑓𝑓(𝑘𝑘, 𝑙𝑙)𝑤𝑤(𝑚𝑚, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙)𝑘𝑘,𝑙𝑙

∑ 𝑤𝑤(𝑚𝑚, 𝑗𝑗,𝑘𝑘, 𝑙𝑙)𝑘𝑘,𝑙𝑙
, (7) 

 
Considering the difference between the value domain and the air 
domain, compared with the difference between the traditional 
Gaussian filter or the mean filter of a single spatial domain and/or 
value domain, it can better remove noise while retaining 
characteristics (An, et al., 2024). 
 
By using the above methods, different sensor data can be fused, 
and the required DSM can be obtained from the data acquired by 
various sensors. Processing the data from multiple periods and 
different sensors allows for detailed surface elevation difference 
analysis. This comparison can reveal surface changes such as 
landslides, ground subsidence, and other deformations. 
 

3. Experiments 

An experiment was conducted to validate the optimization 
method for historical data proposed in this paper. The 
experimental results are shown in Figure 5. 
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Figure 5. Optimization results of problem data. 

 
Figure a shows the acquired historical data, where clear 
anomalies can be observed due to earlier collection methods and 
time periods. Figure b presents the optimized results, where the 
previously evident anomalies have been successfully mitigated. 
 
The median filtering method is highly effective at removing 
extremely high or low anomalous points in continuous terrain, 
while preserving terrain features and edge information. By 
comparing the data before and after optimization, the 
experimental results demonstrate that this method effectively 
eliminates anomalous regions in the data. 
 
Subsequently, to verify the feasibility and applicability of 
achieving true-color point clouds through data fusion, typical 
regions were selected for the true-color point cloud generation 
experiment. The results are shown in Figure 6. 
 

 
Figure 6. Generation of colored point cloud. 

 
The main process involves converting the oblique model 
obtained from photogrammetry into a Digital Orthophoto Map 
(DOM) and fusing it with LiDAR point cloud data that only 
contains grayscale information, resulting in the output of true-
color point clouds with color texture. 
 
Oblique photography and LiDAR data collection are conducted 
in the selected area, ensuring that both data sets share a consistent 
geographic coordinate system. Then, the collected data 
undergoes denoising, filtering, and format conversion to ensure 
data quality. 
 
The photographic data is processed to generate the DOM. Since 
the geographic coordinate systems are consistent, the nearest-
neighbor coordinate matching method can be used to attach the 
color texture information from the DOM to the grayscale LiDAR 

point cloud. This fusion technique produces true-color point 
clouds. 
 
The integration of multiple sensors, such as cameras and LiDAR, 
successfully provides intuitive and high-precision visual data for 
disaster relief efforts. 
 
Finally, to validate the feasibility and applicability of the surface 
deformation analysis techniques proposed in this paper, we 
conducted analyses in mining and industrial areas. By processing 
and analyzing data from these typical regions, we confirmed the 
overall scheme and algorithm's feasibility and applicability. The 
experimental process and results are shown in Figure 7. 
 

 
Figure 7. Typical area experiment. 

 
Figure a shows the analysis conducted in the mining area, while 
Figure b illustrates the analysis in the industrial area. In Figure a, 
the analysis of models obtained from two periods of oblique 
photogrammetry successfully yielded surface deformation results. 
In Figure b, surface deformation analysis was achieved by 
combining the previously generated true-color point cloud data 
with historical DSM data. 
 
Data collection was carried out in both mining and urban areas, 
including oblique photography and LiDAR scanning. The 
collected raw data was processed and converted into the 
appropriate formats. Using the preprocessed data, true-color 
point clouds were generated, and DSMs were subsequently 
created. By employing comparative analysis techniques, the 
surface deformation in both areas was assessed. 
 
Mining areas typically have complex terrain and significant 
surface changes, providing an ideal environment for testing the 
effectiveness of techniques in analyzing subsidence and other 
geological activities. Urban areas, with dense buildings and 
varied surface changes due to construction, traffic development, 
and other factors, test the method's application in highly complex 
and dynamically changing environments. 
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To evaluate the accuracy and precision of the methods proposed 
in this paper, multiple elevation points within the experimental 
areas were measured using GPS-RTK. The analysis results were 
then compared with the data obtained from GPS-RTK 
measurements. The comparison results are shown in Table 1: 
 

Measure 
points 

Observatory 
data 

Analyzed data Error 

1 16.592 m 16.644 m 0.052 m 
2 16.642 m 16.609 m -0.033 m 
3 17.705 m 17.753 m 0.048 m 
4 17.658 m 17.689 m 0.031 m 
5 17.121 m 17.084 m -0.037 m 

Table 1. Results validation data 
 
The error range is between 0.031m and 0.052m, with a difference 
of less than 0.06m, and a standard deviation of 0.039m. These 
results meet the practical accuracy requirements for surface 
deformation detection. This outcome validates the effectiveness 
and practicality of our research methods, confirming that the 
results fully satisfy the demands of real-world applications. 
 

4. Conclusion 

This paper proposes a method for surface deformation analysis 
under disaster emergency conditions by integrating multi-
temporal and multi-source data. The method aims to quickly and 
accurately assess surface changes caused by natural disasters, 
providing reliable support for rescue decision-making. 
 
The main contributions of this paper are as follows: 
 
In the context of globalization, frequent natural disasters pose 
significant challenges to human society. Post-disaster emergency 
surveying is fundamental to rescue efforts, and quickly obtaining 
accurate information on terrain changes is crucial for saving lives 
and property. 
 
This paper proposes a comprehensive analytical method that 
integrates satellite imagery, oblique photogrammetry, and 
LiDAR data. Through true-color point cloud generation, data 
preprocessing, and surface deformation analysis, effective 
integration and rapid analysis of multi-source data are achieved. 
 
Historical data are optimized using threshold segmentation and 
median filtering to enhance data quality. Oblique imagery and 
LiDAR point clouds are fused to generate point cloud data with 
true colors and textures. Elevation interpolation matrices and 
bilateral filtering techniques are employed to perform multi-
temporal data overlay analysis and extract surface deformation 
information. 
 
Experiments conducted in multiple typical regions validate the 
method's potential for application in various surface 
environments. The results demonstrate that the method can 
quickly apply multi-temporal, multi-source remote sensing data 
to effectively identify surface deformations following natural 
disasters. 
 
This method significantly improves the efficiency and accuracy 
of post-disaster emergency surveying, providing strong support 
for emergency response and disaster relief decision-making. By 
integrating multi-source remote sensing data, it optimizes data 

utilization and analytical flexibility, offering new perspectives 
and tools for future disaster response and other applications. 
 
This study offers an innovative solution for surface deformation 
analysis, holding significant practical implications and 
application prospects in the field of emergency surveying. 
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