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Abstract 

The instability of construction waste pile bodies, as an increasingly concerning disaster, poses significant risks to the safety of people's 
lives and property. Currently, there is limited research on high-precision 3D modeling techniques for construction waste pile bodies, 
which significantly hinders the accuracy and reliability of early detection and risk assessment of pile body instability. Therefore, 
constructing high-precision 3D models of construction waste pile bodies using multi-source data plays a crucial role in improving the 
accuracy and timeliness of early warning systems for pile body instability, offering significant theoretical research and practical 
application value. Building 3D models of construction waste pile bodies solely based on unmanned aerial vehicle (UAV) oblique 
photography data faces challenges, such as various degrees of data voids and insufficient model completeness, and few methods 
currently address the construction of 3D models of construction waste pile bodies through the fusion of multi-source data. This paper 
attempts to use the Iterative Closest Point (ICP) algorithm, combining SLAM laser point cloud data with UAV oblique photography 
data to fill data voids, and utilizes the fused point cloud to reconstruct the triangulation network, achieving the transformation from 3D 
point cloud models to 3D surface models. On the basis of texture mapping, a high-precision 3D model of the construction waste pile 
body is constructed. The research results show that the 3D model of the construction waste pile body, integrated with multi-source data, 
has a planar error of 0.0187m and an elevation error of 0.0368m, meeting the corresponding model accuracy requirements. It can more 
realistically restore the fine 3D features of the construction waste pile body, effectively compensating for the shortcomings of single-
source data in 3D modeling of construction waste pile bodies, providing a new method for the 3D model reconstruction of construction 
waste pile bodies, and offering effective data support for construction waste research. 

1. Introduction

According to the statistical data from (Sirimewan et al., 2024) 
and (Sivashanmugam et al., 2023), rapid urbanization has led to 
a significant amount of solid waste generated by construction 
activities worldwide, with approximately 35% of global solid 
waste being attributed to the construction industry. For instance, 
in the United States, the generation of construction and 
demolition waste (CDW) reached 534 million metric tons in 
2016 (Guerra & Leite, 2021), accounting for 67% of the total 
solid waste (Wang et al., 2024). In the United Kingdom, CDW 
amounted to 138 million metric tons in 2018 (Petrović & 
Thomas, 2024), representing 62% of the total solid waste 
(Segara et al., 2024). Germany produced 230.9 million metric 
tons of CDW in 2019, accounting for 55.4% of the total waste 
production (Liang et al., 2024). In China, demolition of existing 
buildings and new construction contribute to 30% to 40% of 
urban solid waste (Liu et al., 2023). According to (Li et al., 2022), 
on average, every 10,000 square meters of building area 
generates 550 tons of construction waste, accounting for 35% of 
urban construction waste. Currently, landfilling is the most 
efficient and cost-effective method for disposing of construction 
waste. However, in practice, in order to handle larger volumes, 
construction waste piles often approach the critical threshold of 
instability. Under external influences, this can lead to slope 
failures, landslides, and collapses, resulting in severe casualties 
and environmental pollution. Timely monitoring of construction 
waste piles is crucial for their safe management. Presently, the 
deformation monitoring methods for construction waste piles 

mainly rely on manual field inspections and remote sensing 
techniques. The distribution of construction waste piles is 
uneven, irregular in quantity, and complex in scope, making 
field surveys resource-intensive and inefficient. In recent years, 
traditional surveying has transitioned from two-dimensional to 
three-dimensional, spurring the development of various three-
dimensional remote sensing monitoring methods, such as 
aerospace and ground laser scanning. Three-dimensional models 
can greatly restore the true surface conditions, providing a data 
foundation for achieving comprehensive digital monitoring of 
construction waste piles. 

UAV oblique photography enables the automatic and efficient 
acquisition of sub-centimeter to millimeter-scale remote sensing 
images through drones, thereby achieving detailed three-
dimensional modeling of ground objects (He et al., 2024). 
(Onososen et al., 2023) proposed using UAV photogrammetry 
technology to overcome obstacles in the digitization of the built 
environment. (Forcael et al., 2023) demonstrated the use of UAV 
photography to capture digital images for the assessment of 
bridge cracks and fissures. In practical measurement processes, 
UAV oblique photography technology is susceptible to 
influences from terrain, climate, and other factors, and has 
limitations in modeling small objects. 

Three-dimensional laser scanners can quickly obtain the three-
dimensional coordinates of target points using laser ranging 
technology (LiDAR), characterized by high automation, high 
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resolution, and high accuracy. (Zhao et al., 2023) applied three-
dimensional laser scanning technology to tunnel engineering, 
finding it more efficient and accurate than traditional methods 
for obtaining deformation results and spatial evolution 
conditions. (J.-w. Zhou et al., 2024) utilized ground laser 
scanning technology for the discontinuous automatic 
identification and quantitative monitoring of unstable landslide 
blocks, enabling the rapid and accurate acquisition of slope 
terrain and geological information. However, ground laser 
scanner results may suffer from significant point cloud noise, 
uneven density distribution, ghosting phenomena, and 
inaccurate synthesis of color information. 
 
Both single data sources have their respective limitations. The 
most widely applied method for constructing high-precision 3D 
models currently involves the fusion of multiple data sources. 
Researchers both domestically and internationally employ 
various data acquisition methods and 3D modeling techniques, 
investigating refined reconstruction methods based on multi-
source data. (Zeng et al., 2023) used oblique photogrammetry 
and vehicle-mounted laser point clouds as data sources in urban 
high-precision modeling, finding that fused data addressed 
issues of texture blurring and model deformation inherent in 
single data sources. By integrating UAV photogrammetry with 
3D laser scanning, (Terryn et al., 2022) constructed detailed 3D 
models of forest structures. (Jo et al., 2024) obtained external 
images and internal point clouds of wooden pagodas, completing 
precision analysis for deformation monitoring. (Chen et al., 2024) 
building on the integration of both methods, used TIN matching 
algorithms to optimize and reconstruct the complete structure of 
forests. However, regarding the 3D modeling of construction 
waste piles, few studies have addressed how to unify LiDAR 
point clouds with UAV imagery coordinate systems, thereby 
resolving issues of data voids and model distortion caused by 
single data source modeling. 
 
In summary, the current stage of refined 3D reconstruction based 
on multi-source data primarily achieves this through the 
combination of oblique photography and 3D laser scanning, 
mostly employing point-to-point matching fusion methods for 
detailed 3D model reconstruction. The research subjects mainly 
include vegetation and buildings, with few applications in the 3D 
modeling of construction waste piles. Addressing the limitations 
of current UAV oblique photogrammetry and LiDAR scanning 
modeling technologies, this paper proposes a 3D real-scene 
fusion modeling method based on the integration of these two 
technologies. First, UAV oblique photogrammetry is used to 
capture multi-angle high-resolution images. Second, laser point 
clouds are used to provide dense point clouds for extracting edge 
information of construction waste. Finally, the ICP (Iterative 
Closest Point) algorithm is employed for precise registration and 
model construction, transforming the fused point cloud from a 
point cloud model to a surface model. This method constructs 
the complete geometric shape and texture information of 
buildings, achieving refined 3D modeling of construction waste 
piles. 
 

2. Data and Methods 

2.1 Research Area 

The construction waste pile is located within Zhuozhou City, 
Hebei Province. It stands approximately 30 meters high and 
covers an area of about 62,128.2 square meters. The disposal site 
is used for storing mixed waste, predominantly consisting of 
construction debris. It consists of a single main mound 
surrounded by protective fences. There is a single cement-

hardened road leading to the top of the mound. The surrounding 
area of the mound is farmland without any other interfering 
objects. However, the research indicates that there are small-
scale collapses within the waste mound, and as the level of 
activity increases, there is a potential risk of instability in the 
mound. Therefore, the site exhibits good representativeness. 
 

 
Figure 1. Overview of Construction Waste Piles 

 
2.2 UAV Oblique Photography for 3D Modeling 

To create a 3D model of the construction waste pile using UAV 
oblique photogrammetry, the collected images are first 
preprocessed to remove borders and correct distortions. Next, 
aerial triangulation is performed to ensure the accuracy and 
authenticity of the calculated results. Finally, the 3D modeling is 
completed using Context Capture software. 
 

model parameter indicator 

Camera 
Maximum resolution 

of image 
4864*3648（4：3） 
5472*3648（3：2） 

Type of image JPEG 

GNSS 

Satellite 
GLONASS: L1/L2 

BeiDou: B1/B2 
Galileo: E1/E5 

Positioning accuracy 

Vertical 
1.52cm+1ppm(RMS) 

horizontal 
1cm+1ppm(RMS) 

Table 1. Parameters of the UAV 
 
The internal data values of the construction waste pile region are 
extracted, with the exterior orientation elements of multi-view 
images provided by POS data serving as initial values. The SIFT 
(Scale-Invariant Feature Transform) algorithm is employed to 
extract and match overall point features. By identifying target 
objects in the images, tie points between images are obtained to 
complete the image matching process. The matched images are 
connected to the internal coordinate points of the experimental 
area using a free-network bundle adjustment method. Through 
adjustment calculations, multi-view image adjustment iterative 
calculations are achieved, resulting in densified point cloud data. 
Context Capture is selected as the 3D reconstruction software 
application. Using the overall image matching algorithm, images 
are matched based on feature points to establish links between 
different images. The generated point cloud data is then used to 
construct a TIN (Triangulated Irregular Network). The software 
calculates the texture corresponding to the model and maps it 
comprehensively to establish a white model mode with the TIN, 
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thus generating the 3D model of the construction waste pile. The 
parameters used during UAV flight are listed in Table 1. 
 
2.3 3D Modeling Using Laser Point Clouds 

For the acquired laser point cloud data, it is first necessary to 
preprocess the data, including steps such as point cloud 
denoising, stitching, and segmentation. This is to eliminate 
abnormal points caused by equipment errors or environmental 
factors, thereby improving the efficiency and accuracy of 
subsequent processing. Then, the SLAM algorithm is used for 
real-time motion estimation and data matching to efficiently 
obtain a 3D point cloud of the construction waste pile, ultimately 
completing the 3D reconstruction of the construction waste pile 
(Tysiac et al., 2023). The radar parameters we used are shown in 
Table 2. 
 

Devices Main indicators Parameters 

Laser 
scanner 

Scanning frequency/Hz 20 

Scanning distance/m 100 
Scanning angle/deg 360*30 

Angular resolution/deg 0.4 
Wavelength/nm 903 

Inertial 
measurement 

unit 

Stability of gyroscope 0.5 
Angle drift 0.15 

Angular velocity input 
range ±400 

Temperature deviation 
error of Gyroscopic 10 

Accelerometer zero shift 0.05 
Acceleration input range ±10 

Compute 
CPU i5 

Memory/GB 8 
Disk/GB 500 

Table 2. Parameters of the Lidar 
 
The SLAM algorithm is used to process the preprocessed point 
cloud data. SLAM optimizes iteratively to estimate the device's 
position and orientation and construct an environmental map. In 
each iteration, the algorithm predicts the next moment's point 
cloud data based on the current pose and matches it with the 
actually acquired point cloud data to estimate the device's motion 
trajectory and the geometric structure of the environment, 
thereby performing 3D reconstruction. By integrating point 
cloud data from different moments and perspectives, a 3D model 
of the target environment can be constructed. This 3D model 
includes information about the shape, position, and pose of 
objects in the environment, which can be used for subsequent 
analysis, visualization, and other applications. After the 3D 
reconstruction is completed, the model can be smoothed to 
reduce noise interference and texture information can be added 
to enhance the visual effect of the model, restoring the 3D shape 
of the pile itself. 
 
2.4 Refined 3D Modeling Method Based on Multi-Source 
Data Using the ICP Algorithm 

In practical operations, due to the scanning angle limitations of 
laser scanners, data loss may occur. Similarly, UAV aerial 
surveys may experience data loss due to obstructions like 
perimeter walls or excessive terrain tilt. Achieving precise 
monitoring of construction waste piles requires addressing data 
voids caused by single data sources. Common point cloud repair 
methods often struggle to produce satisfactory results for large-
area data voids, and using the data itself to repair 3D data can 
only ensure the data approximates reality, but the accuracy of the 

3D model remains significantly constrained. Therefore, this 
paper introduces the Iterative Closest Point (ICP) algorithm for 
data fusion to compensate for the shortcomings of both 
monitoring methods (Parente et al., 2021). 
 
The ICP algorithm solves for the rotation matrix and translation 
matrix between two sets of point clouds (Li et al., 2023). The 
principle is to use one point cloud as the reference point cloud 
and establish the relationship between the corresponding points 
in the point cloud to be registered and the reference point cloud 
using the least squares method. This process completes the 
calculation of the rotation matrix and translation matrix. The ICP 
algorithm iteratively acquires the set of corresponding points, 
and the termination condition can be set based on an error 
threshold or the number of iterations. 
 
If we denote the two sets of 3D point cloud data as point cloud 
data 𝐴𝐴(𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑛𝑛)  and point cloud data (𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑛𝑛) , 
where 𝐴𝐴 contains 𝑁𝑁 points that have corresponding points in  
𝐵𝐵, we designate one set as the reference point cloud group, such 
as specifying A as the reference point cloud group. Then, we 
rotate and translate 𝐵𝐵  to obtain the set of as many 
corresponding points 𝑁𝑁 as possible. The formula is as follows: 

𝐸𝐸(𝑅𝑅,𝑇𝑇) =
1
𝑁𝑁
�‖𝑎𝑎𝑖𝑖 − (𝑅𝑅𝑏𝑏𝑖𝑖 + 𝑇𝑇)‖2
𝑛𝑛

𝑖𝑖=1

(1) 

Here, 𝑅𝑅 is the rotation matrix, 𝑇𝑇 is the translation vector, 𝑁𝑁 
is the number of nearest point pairs, 𝑎𝑎𝑖𝑖 is a point in the target 
point cloud 𝐴𝐴, and 𝑏𝑏𝑖𝑖 is the nearest corresponding point in the 
source point cloud 𝐵𝐵 to 𝑎𝑎𝑖𝑖. Essentially, point cloud registration 
is about finding the minimum value of this expression. 
 
To achieve the fusion of multi-source data, first, three-
dimensional point cloud data based on drone oblique 
photography and SLAM lidar 3D modeling are acquired 
separately. Then, the ICP algorithm is introduced to complete 
the precise registration of point cloud data, unifying the point 
clouds obtained from the two data sources into the same 
coordinate system. Due to the alignment of the three-
dimensional model of the building debris heap with its texture, 
this study uses the three-dimensional point cloud of drone 
oblique photography as the registration reference. The SLAM 
lidar point cloud data is registered to the drone point cloud, and 
after matching the point clouds, the registered point cloud can be 
overlaid and fused with the reference point cloud. At this point, 
a completely new fused point cloud set is generated containing 
the characteristics of single-point cloud data, and it has a good 
repairing effect on the missing parts of the single data (Luo et al., 
2024). Using this fused point cloud to re-build the triangular 
mesh achieves the transformation from a 3D point cloud model 
to a 3D surface model. Based on this, by repeating the texture 
mapping process in the construction of the 3D model using drone 
oblique photography, a high-precision 3D model based on the 
fused point cloud data can be obtained (X. Zhou et al., 2024). 
 

3. Results 

3.1 3D Modeling of UAV Aerial Survey Data 

After extracting feature points and performing image matching 
on the photogrammetry data, a 3D model meeting the required 
precision standards is obtained. 
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Figure 2. UAV Aerial Point Cloud Result (a), Three-
Dimensional Model of Construction Waste Pile (b) 

During the accuracy evaluation, three samples are taken to 
calculate the mean as the model point value, which is then 
compared with the field-measured data. The error calculation 

results are as follows. The mean planar error of the 3D model is 
0.0194 m, and the mean elevation error is 0.0378 m. Based on 
the differences between the model measurements and the field-
measured verification points, the precision level of this 
experiment is demonstrated to meet the standards of the UAV 
CityGML model (Van et al., 2023). Among the 12 verification 
points, the maximum planar error is 0.0301 m, the minimum is 
0.0066 m, the maximum elevation error is 0.0610 m, and the 
minimum elevation error is 0.0004 m. Both the smallest planar 
error and the smallest elevation error are at the ground control 
point 4 (GCP 4). Analysis of the results indicates that points with 
larger planar errors also correspond to larger elevation errors, as 
seen in 3. 

GCP X 
Coordinate 

Y 
Coordinate Elevation Modeling 

Point 
X 

Coordinate 
Y

Coordinate Elevation Error in 
Plane 

Error in 
Elevation 

GCP1 413429.9290 4367439.3400 23.3940 GCP1c 413429.9163 4367439.3417 23.3694 0.0128 -0.0246 
GCP3 413597.3980 4367432.7850 22.7150 GCP3c 413597.4162 43674432.7941 22.7004 0.0204 -0.0146 
GCP4 413719.0460 4367427.4990 22.3940 GCP4c 413719.0495 4367427.4935 22.3936 0.0066 -0.0004 
GCP6 413822.0860 4367528.4070 22.6130 GCP6c 413822.1156 4367528.4073 22.6647 0.0296 0.0517
GCP7 413831.1790 4367636.0260 22.7340 GCP7c 413831.1906 4367636.0537 22.7135 0.0301 -0.0205 
GCP8 413489.6560 4367441.2720 23.3560 GCP8c 413489.6600 4367441.2799 23.3125 0.0089 -0.0435 
GCP9 413531.6340 4367444.7350 26.3950 GCP9c 413531.6346 4367444.7602 26.3553 0.0252 -0.0397 
GCP11 413509.9980 4367648.1920 23.0790 GCP11c 413509.9800 4367648.1856 23.1400 0.0191 0.0610
GCP15 413811.9350 4367625.1470 24.3070 GCP15c 413811.9371 4367625.1608 24.3297 0.0140 0.0227 
GCP16 413788.0580 4367633.8480 24.2150 GCP16c 413788.0452 4367633.8519 24.2423 0.0134 0.0273 
GCP18 413541.3920 4367596.6090 33.3090 GCP18c 413541.3788 4367596.6068 33.3597 0.0134 0.0507 
GCP20 413660.5810 4367554.8530 53.4170 GCP20c 413660.5915 4367554.8338 53.4638 0.0219 0.0468 

Table 3. Coarse Matching Point Cloud Error 

3.2 3D Modeling of Laser Point Cloud Data 

Figure 3. Three-dimensional Point Cloud Downsampling 
Result (a), Encapsulation Result (b), Gap Filling Result (c) 

In the process of obtaining the point cloud of the building debris 
pile, it is inevitable to have system noise and high point cloud 
density after trajectory calculation, which affects processing 
efficiency. Therefore, the point cloud is thinned and clipped to 
address these issues. After thinning and clipping, the point cloud 
of the building debris pile is encapsulated. The conversion from 
point to surface is achieved by constructing a TIN (Triangulated 
Irregular Network) plane from the point cloud, aiming to restore 
the three-dimensional morphology of the debris pile as much as 

possible. However, due to the presence of blind spots in the 
monitoring process, there are obvious data gaps in the 
encapsulated results of the point cloud. Compared to the data 
voids in drone-based data, the missing data in the three-
dimensional point cloud constructed using mobile backpack 
measurement data is more significant. This method has 
limitations when applied solely to the construction of three-
dimensional models of building debris piles. 

3.3 Ground-Aerial Fusion Modeling Based on ICP Point 
Cloud Fusion 

Figure 4. Unfused Point Cloud Overlay Results 

In order to unify the fused data in the projected coordinate 
system, the three-dimensional point cloud generated by drone 
oblique photography was chosen as the reference, and the SLAM 
lidar point cloud was fused to achieve the construction of a 
refined fusion model. The coarse matching of the point clouds 
used a method involving human-machine interaction, with a total 
of 4 control points selected. It can be visually observed from the 
data before fusion that there are significant discrepancies 
between the two different data sources of point clouds. 
The coarse matching of the point cloud yielded an RMS 
deviation of 1.12 meters, indicating a significant offset in the 
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point cloud. Subsequently, the ICP algorithm was used for 
iterative point cloud registration. Through the point cloud 
matching algorithm, the laser point cloud was transformed from 
the system coordinate system to the projected coordinate system. 
To validate the point cloud matching effect, nearest neighbor 
point cloud subtraction was performed to obtain the point cloud 
distance distribution, showing good alignment results for the 
debris pile. After registering the point cloud, the merged result 
effectively mitigated the data gaps caused by blind spots 
compared to the original, unmerged lidar point cloud. When 
compared with aerial survey data, the fused data exhibited richer 
details. For example, details such as dust-proof netting around 
the debris pile, which might be missing in the 3D reconstruction 
from drone aerial survey data, were well captured by the SLAM 
lidar measurement system point cloud data. The fused data 
successfully inherited these finer details. 
 

 
Figure 5. Laser Point Cloud with Completed Matching 

Calibration (a), Comparison Chart of Point Cloud Fusion 
Results (b) 

 
3.4 3D Reconstruction and Accuracy Verification Based on 
Fused Point Cloud 

The registered point cloud data is re-imported into the original 
oblique photogrammetry modelling project. For the layering 
phenomenon between different point clouds, manually selected 
connection points are used to address this issue. Since SLAM 
laser point clouds lack spectral information, connection points 
are not chosen based on texture information but rather on easily 
distinguishable corner points, such as wall edges. 
 
Comparison with the three-dimensional model generated from 
drone oblique photography shows significant improvement in 
the data void phenomenon in the fused three-dimensional model 
within the same area. The fused model exhibits richer details. As 
shown in Figure 6, (a) represents the original image of the 
bottom of the tree in the three-dimensional model from drone 
oblique photography, while (b) represents the improved result of 
data voids in the fused model. The details that were overlooked 
in the geographical reconstruction of aerial survey data are 
perfectly restored. The results indicate that the major changes in 

the entire model are mainly concentrated at the bottom of the 
debris pile and the surrounding trees near the wall. 
 

 
Figure 6. The Original Image (a), the improved result (b) 

 
The accuracy validation of the model was performed using the 
accuracy validation points used during the fusion process. The 
validation results showed a planar mean error of 1.87 cm and an 
elevation mean error of 3.68 cm in the fused model, which meets 
the corresponding model accuracy requirements. The model 
constructed based on the fused point cloud data can fully 
overcome the issue of incompleteness in the three-dimensional 
model based on a single data source. It also effectively solves the 
problem of the SLAM mobile measurement system generating 
point cloud models without projected coordinates. The fused 
model more accurately captures the features of the debris pile 
and exhibits richer details. This provides more effective data 
support for debris monitoring. 
 

4. Discussion and Conclusion 

Oblique photogrammetry using drones, as a common method for 
3D reconstruction, has been combined with other data sources to 
achieve refined 3D model reconstruction in many 
fields(Domingo et al., 2024). Currently, there are few instances 
of combining drone oblique photogrammetry with multiple data 
sources for 3D modelling of construction waste. This paper 
proposes combining drone oblique photogrammetry with 
LiDAR point cloud data, and through practical verification, the 
model accuracy shows a significant improvement compared to 
using a single data source. 
 
Drone oblique photogrammetry has been widely applied in 
various fields. The data accuracy obtained in this paper meets 
the relevant specifications and is consistent with the data from 
drone oblique photogrammetry models in various fields (Cheng 
et al., 2022). By introducing point cloud data, the accuracy is 
significantly improved compared to using a single data source. 
The accuracy of this study is at the same level as the planar 
accuracy of 3D modelling of railway bridges reported by (Li et 
al., 2023), with both achieving an accuracy of around 1.9 cm. 
Compared to the drone oblique photogrammetry model (Li et al., 
2018), the planar accuracy of this model is improved by 3.6%, 
and the elevation accuracy is improved by 2.6%. Compared to 
using only cyclic drone images, the method proposed in this 
paper improves the planar accuracy of 3D modelling by 53.25% 
and the elevation accuracy by 71.69%. 
 
Because the ground control points (GCP) and test points used in 
this paper are all located on a surface that has not been displaced, 
after introducing the ICP algorithm and manually partitioning 
the point cloud, we ensure accurate identification of construction 
waste in areas with poor data integrity. Compared to the church 
modelling by (Luhmann et al., 2020), which used only two types 
of data fusion, the planar error increased by 0.113 cm, and the 
elevation error increased by 0.134 cm. Compared to single-
source 3D modelling of construction waste, the model 
constructed based on fused point cloud data can fully address the 
incompleteness issues present in single-source 3D models and 
effectively resolve the problem of lacking projection coordinates 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-423-2024 | © Author(s) 2024. CC BY 4.0 License.

 
427



when generating point cloud models using SLAM mobile 
measurement systems. This method can more realistically 
restore the features of the piles, providing richer details and more 
effective data support for pile monitoring. 

The refined 3D model constructed in this paper has some texture 
loss due to the inclusion of color information in the drone 
oblique photogrammetry data, while the SLAM LiDAR point 
cloud does not have color information. If higher requirements 
for texture information are needed, it is recommended to replace 
the SLAM LiDAR point cloud data with colored point cloud data 
obtained from other ground point cloud measurement methods 
for fusion. It is suggested to use more GCPs when constructing 
the drone reference model and to add more connecting points 
after incorporating SLAM data to produce a more accurate 
model. 
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