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Abstract 

The Aedes albopictus mosquito, known for its role in transmitting diseases such as dengue fever, Zika virus, and chikungunya, poses 

a significant public health threat globally. Understanding its distribution patterns is crucial for effective disease surveillance and 

control. This study employs machine learning techniques, specifically MaxEnt modeling, to elucidate the relationship between 

environmental factors and the distribution of Aedes albopictus. Using presence-only data and a suite of environmental variables, we 

trained MaxEnt models to predict the potential distribution of Aedes albopictus across a geographical region. The models were 

validated using independent datasets and evaluated for their predictive accuracy and robustness. Our results reveal significant 

associations between Aedes albopictus presence and environmental factors such as temperature related variables. Furthermore, we 

employed spatial analysis techniques to identify areas at high risk of Aedes albopictus presence, aiding in targeted vector control 

strategies and disease prevention efforts. MaxEnt models demonstrated high predictive performance, effectively capturing the 

complex relationships between environmental variables and mosquito distribution in Nepal, India and Myanmar, along with Spain 

and Italy. By integrating machine learning algorithms with environmental data, this study provides valuable insights into the 

ecological drivers of Aedes albopictus distribution, enhancing our ability to mitigate the risk of mosquito-borne diseases in affected 

regions. 

1. Introduction

Vector-borne diseases (VBDs) are continuously impacting the 

world health on annual basis accounting 17% of the global 

disease burden due to parasites (Townson et al., 2005), for 

example, 50-100 million dengue cases (WHO, 2009a) and 300 

million malaria cases (WHO 2009b) are recorded every year 

worldwide. The VBDs pose great threat to human health and are 

important as they have ever impacted, especially in developing 

nations. The contributing factors responsible for exponential 

rise in such cases in recent years are sue to unplanned 

urbanization, commensalism with humans, globalization of 

travel and trade, and environmental changes such as 

biodiversity loss and deforestation. The transmission and 

outbreak of VBDs are complex cycles due to essential 

interaction between vectors, pathogens, animal hosts and 

humans under the prerequisite of environmental factors with 

spatial and temporal permutations. The pathogens within 

vectors are environmentally sensitive because they exhibit 

distinct seasonal and regional patterns. The vector survival and 

vectorial capacity is greatly influenced when they interact with 

humidity in certain temperatures. Similarly, precipitation and 

seasonality in an area strongly encouraged the availability of 

breeding sites for mosquitoes as well as other species having 

aquatic immature stages. The Intergovernmental Panel on 

Climate Change listed VBDs that are more prone to change due 

to climate change and climate variability (IPCC, 2007). Recent 

studies highlighted that climate change is one of the most 

influential factors in vector-borne disease epidemiology 

(Dobson and Carper, 1992; Martens 1998; Epstein, 2000; 

Paaijmans et al., 2010; Rohr et al., 2011). This could be 

understood through an example of arthropod vectors, who are 

ectothermic, so if temperature fluctuates then its development 

time will be directly affected which may change their 

reproduction, behaviour, and population dynamics. This calls 

for understanding the ecology of the habitats, breeding grounds, 

and vector behaviours. The key components of this global fight 

involve identifying, tracking, and assessing the environmental 

elements linked to vector-borne illnesses. In the past 20 years, 

there has been a significant advancement in the field of spatial 

technologies, enabling individuals to swiftly and accurately 

identify and track environmental targets at a wide scale, 

including certain vectors' habitats and breeding grounds. Spatial 

information technologies offer a novel and potent way to 

analyse and forecast the spatiotemporal patterns of vector-borne 

diseases when combined with other statistical analysis 

toolboxes and algorithms.  

Machine learning algorithms have proven adept at unravelling 

the complex relationships between environmental conditions 

and the distribution of the vector species. In recent years, 

statistical algorithms are being used in two ways to model 

species-distribution – one that predicts distribution using both 

presence and absence data of species, and other one is based on 

presence-only data (Gormley et al., 2011; Witten et al., 2005). 

Maximum Entropy (Maxent) is one of the popular algorithm for 

species distribution modelling, since its publish in 2006 by 

Phillips (et al., 2006). This algorithm ensemble background data 

by accounting environmental factors across the given space and 

fitted highly complex responses (Elith et al., 2011; Peterson et 

al., 2011). Furthermore, the Maxent’s ability is extended by 

mapping the limiting factor and surface-mapping for range-

shifting of species (Elith et al., 2010). This paper is focussing 

on implementing Maxent algorithm on understanding the 

distribution responses of one of primary vectors, Aedes 

albopictus mosquito, responsible for various diseases such as 

Zika, dengue, and chikungunya. Several studies have been 

carried out on assessing the role of environment in the 

distribution of Aedes albopictus. By feeding geospatial data on 

factors such as temperature, precipitation, land cover, and 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-431-2024 | © Author(s) 2024. CC BY 4.0 License. 431



 

elevation into sophisticated predictive models, researchers have 

been able to generate highly accurate maps of where this 

invasive mosquito species is most likely to thrive. These models 

not only enhance our fundamental understanding of Aedes 

ecology, but also provide public health officials with crucial 

insights to guide targeted surveillance and control efforts in 

regions at high risk of Aedes-borne disease outbreaks. 

 

Several studies considered environment as an effective 

surrogate in defining large scale-species distributions 

(Holdridge, 1947; Pearson & Dawson, 2003; Guisan et al., 

2013; Braunisch et al., 2013) with a stronger predictive 

capability than biophysical parameters. For the growth of alpine 

plants, low temperature has been considered as one of the most 

significant limiting climatic factors (Na et al., 2011). The study 

on the distribution of Chinese sea buckthorn on the Tibetan 

Plateau found that precipitation was the key climate that 

affected its distribution (Jia et al., 2016). 

 

The rapid spread of Ae. albopictus in continental Europe are 

responsible for the cases of several diseases such as 

chikungunya fever in France (Gould et al., 2010), dengue in 

Croatia, Spain and France (Gjenero-Margan et al., 2011) and 

chikungunya in Italy (Rezza et al., 2007).  Ae. albopictus is a 

rural invasive mosquito that can transmit more than 22 different 

viruses, experimented under laboratory conditions (Kamgang et 

al., 2012; Gratz 2004). These factors include temperature, 

humidity, vegetation cover, and water. Researchers have found 

that temperature plays a crucial role in the distribution of Aedes 

albopictus. At higher temperatures, the mosquito species tends 

to have a wider distribution range, while at lower temperatures, 

their distribution becomes more limited. The distribution of 

Aedes albopictus, commonly known as the Asian Tiger 

mosquito, is influenced by various environmental factors. 

Several studies have also shown that humidity is an important 

factor in the distribution of Aedes albopictus. Higher levels of 

humidity create favorable breeding and survival conditions for 

the mosquito species, leading to an increased distribution range. 

Furthermore, the availability of water sources is another 

essential factor influencing the distribution of Ae. albopictus. 

Areas with abundant water sources, such as stagnant ponds, 

puddles, and containers, provide ideal breeding habitats for 

Aedes albopictus. The Ae. albopictus raised an interest in 

estimating the probable risk and potential distribution, 

considering its invasiveness and public health threat. Machine 

learning (ML) techniques can be employed to model and predict 

the distribution of Ae. albopictus based on these environmental 

factors. Using historical data on mosquito populations and 

environmental variables, a machine learning model can be 

trained to identify patterns and relationships between these 

factors. By analysing and processing large datasets, machine 

learning algorithms can learn to accurately predict the 

distribution of Ae. albopictus based on environmental factors. 

Therefore, habitat suitability models could be used to 

investigate the risk and distribution at continental scale by 

evaluating its vulnerable environment variables. 

 

The purpose of this study is to examine the relevant 

environmental factors dominating the ecology of Ae. albopictus 

in European continent and to simulate its suitability for other 

continents by incorporating the maxent algorithm on species 

occurrence and climatic datasets. The goals of this study are to: 

(1) identify the key climate factors and where these factors 

affect the species' distribution boundaries; (2) identify the 

climatic thresholds and locate Ae. albopictus habitats that are 

climatically suitable; and (3) explain the distribution patterns 

based on an understanding of the climates that are suitable in 

various geographic regions. 

 

2. Materials and Methods 

The habitat suitability model is constructed using maximum 

entropy modelling approach (MaxEnt) on the updated 

occurrence of Ae. albopictus species in Europe. Then, habitat 

suitability map is created demonstrating the low, medium and 

high risk of populations of Ae. albopictus in the country. 

 

2.1 Occurrence data 

According to the Global Invasive Species Database and 

Delivering Alien Invasive Species Inventories for Europe 

websites (www.iucn.org and www.europe-aliens.org), the 

prevalence of this Asian tiger mosquito is marked in top 100 

worst invasive species in the Europe and the worldwide. This 

was first documented in Europe in 1979 in Albania and again in 

1990 in Northern Italy, where it managed to establish itself in 

later years. These days, the species primarily inhabits Northern 

and Central Italy, however it is found throughout the 

Mediterranean (Medlock et al., 2006). Climate change is 

predicted to provide Ae. albopictus with more favourable 

habitat conditions in Central Europe, allowing it to expand its 

range farther north in Europe (Fischer et al., 2011; Koch et al., 

2016). Therefore, occurrences of Aedes albopictus, sighted by 

humans in European continental, is obtained from Global 

Biodiversity information Facility (GBIF) repository (GBIF.org, 

2024) whose total number was 20,749 including duplicate 

records of latitude and longitude. After, removal of duplicated 

records, the final number of occurrence records left for model 

construction is 15,383. 

 

2.2 Environmental data 

An important aspect influencing the spread of species is the 

environment. The bioclimatic dataset is obtained at the spatial 

resolution of 2.5 arc-minutes (~4.5 km at the equator) (Hijmans 

et al., 2005) from world climate repository (WorldClim, 

accessed at www.worldclim.org) for habitat suitability 

modelling. This dataset encompasses nineteen raster files as 

bio-climatic variables (bio1-bio19) representing temperature 

and precipitation for time series 1970-2000. 

 

2.3 Model Construction 

Maxent approach is insensitive to the spatial uncertainties, 

suitable for constructing a significant suitability model in few 

locations only and better than any other presence-only 

modelling approaches (Baldwin, 2009). These features may be 

useful in predictive the prevalence of invasive species in both 

native and non-native regions. The maxent is chosen over other 

ML algorithms because it is well versed in predicting the 

species distributions and tops other reputable methods (Dicko et 

al., 2014; Elith et al., 2011; Thibaud et al., 2014). Maxent 

(version 3.4.4) is used in this study for modelling through 

“dismo” package in R software. The occurrence data is divided 

into two sets – one is training set with 75% of records and 

remaining 25% is reserved as test set for testing the model’s 

predictive capability. The Maxent’s default setting is used for 

linear, quadratic and product features. The resulting model is 

then projected onto the wide geographical landscape of Europe 

and India to predict the prevalence of Ae. albopictus.  

 

The ability of Maxent model is used to interpret the limiting 

climatic factors of novel species’ habitat by increasing the 
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similar surface mapping of range-shifting species (Elith et al., 

2010). The limiting mapping technique is then used to 

determine the climatic factors limiting the distribution range of 

species in predicted habitat. The output of this mapping are 

considered to examine which climatic factors are limiting 

physiological and ecological processes. 

 

To validate the robustness of the model, threshold-independent 

receiver-operating characteristic analysis (ROC) is used for 

calibration. For more precise analysis, the receiver-operating 

characteristic curve's area under the curve (AUC) is opted. The 

range of AUC is used to measure the probability of occurrence 

point ranked above the randomly chosen background point. The 

AUC closer to 1.0 for better correlation and 0.50 for random 

selection. The ROC is to trade-offs between true positive rates 

(sensitivity) and false positive rates (specificity) with respect to 

model’s probability threshold values. Then, jackknife test is an 

additional test to determine each variable's predictive 

performance. The high impact variables in model are 

determined by permutation importance. The model results are 

then projected to build suitability maps showing prevalence of 

species within study extent and worldwide to understand the 

distribution of Ae. albopictus mosquitos. The suitability maps 

are generated with probability scale bar which is customized as 

continuous dichotomy. The areas probability values close to 0 

depicted with unsuitable state for mosquitos and areas with 

higher values indicated higher degree of prevalence for this 

species. 

 

3. Results 

The AUC value of trained model on 15,383 is 0.863 (Figure 1) 

depicting that the model is performing reasonable. The 

dominant environmental variables as per the percent 

contribution are annual mean temperature (bio1), temperature 

annual range (bio7), mean temperature of wettest quarter (bio8), 

and mean diurnal range (bio2) with 31.6%, 27.3%, 9.7% and 

7.9% respectively. 

 

 

Figure 1. ROC AUC test of Maxent model 

 

The mean temperature of warmest quarter (bio10) and mean 

temperature of coldest quarter (bio11) shares same percent 

contribution with 5.3%. According to permutation importance, 

the most influential variables are mean temperature of coldest 

quarter (bio11), mean diurnal range (bio2), temperature 

seasonality (bio4), and annual mean temperature (bio1) with 

33.5%, 11.3%, 9.2%, and 9.1% respectively. 

 

The suitability assessment obtained through maxent model at 

European level has accurately predicted the present distribution 

of species and depicted the high risk of populations in Spain, 

France and Italy. The cities in northern Italy predicting medium 

level of suitability of Aedes ecology are Turin, Milan, and 

Trento, as shown in Figure 3. The highest suitable sites are 

predicted in following regions of Spain - Deltebre, Riumar, El 

Poble Nou del Delta, Els Muntells, LEucaliptus, and Parc 

Natural del Delta de l'Ebre (nature preserve), as shown in Figure 

3. 

 

The trained Maxent model is projected to global scale, depicted 

in Figure 4, that predicted major suitability in border regions of 

Nepal and Bihar (India), and Rakhine state of Myanmar 

v(Burma). These are Siliguri (West Bengal, India), Janakpur 

and Koshi Tappu Wildlife Reserve (Nepal), and few rehgions in 

centroid of Bihar state of India. 

 

 

Figure 2. Jackknife test to demonstrate the impacts of 

environmental variables on the distribution gain of Aedes 

albopictus 

 

 

Figure 3. Potential distribution (prevalence) of Aedes albopictus 

in Europe 

 

The limiting mapping of 19 bioclimatic variables for Ae. 

albopictus is shown in Figure 5 and 6. The results indicated that 

influential climatic variables, generated by permutation and 

percent importance, are limiting the potential distribution of 

Asian tiger mosquitos.  
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Figure 4. Predicted potential distribution (prevalence) of Aedes 

albopictus in different geographical regions 

 

 

Figure 5. Limiting factor mapping of climates for distribution of  

Aedes albopictus in Europe 

 

 

Figure 6. Spatial distribution of limiting mapping of climates 

for Aedes albopictus in India 

  

4. Discussion 

One of the key findings of this study is the identification of 

environmental factors significantly associated with the 

distribution of Aedes albopictus. The analysis reveals that 

variables such annual mean temperature (bio1), temperature 

annual range (bio7), mean temperature of wettest quarter (bio8), 

mean diurnal range (bio2), mean temperature of warmest 

quarter (bio10) and mean temperature of coldest quarter (bio11) 

play crucial roles in shaping the habitat suitability for the 

mosquito species. These findings are consistent with existing 

literature on Ae. albopictus ecology, confirming the importance 

of environmental drivers in determining its distribution patterns 

in Europe and India.  

 

The utilization of MaxEnt modeling in this study proves to be a 

valuable tool for predicting the potential distribution of Aedes 

albopictus. MaxEnt's ability to handle presence-only data and 

integrate multiple environmental variables allows for a 

comprehensive analysis of the ecological niche of the mosquito 

species. The high predictive performance of the models 

underscores the effectiveness of machine learning approaches in 

understanding complex ecological systems and informing public 

health interventions. However, it is essential to acknowledge the 

limitations of the study. Despite the robustness of MaxEnt 

modeling, the accuracy of the predictions may be influenced by 

factors such as the quality and resolution of environmental data, 

as well as the spatial scale of analysis. Additionally, while the 

study identifies associations between environmental factors and 

Ae. albopictus distribution, it does not account for potential 

interactions with other ecological or socio-economic variables, 

which could further refine our understanding of mosquito 

habitat suitability.  

 

Future research in this area could focus on refining the 

modeling framework by incorporating additional variables and 

employing more sophisticated machine learning techniques. 

Furthermore, longitudinal studies tracking changes in 

environmental factors and mosquito distribution over time could 

provide insights into the dynamics of Ae. albopictus populations 

and their response to environmental perturbations, including 

climate change. Overall, the integration of machine learning and 

MaxEnt modeling offers a promising approach for elucidating 

the complex relationship between environmental factors and the 

distribution of Aedes albopictus. By leveraging these advanced 

analytical tools, researchers can enhance our understanding of 

mosquito-borne disease transmission dynamics and inform 

targeted interventions to mitigate public health risks. 

 

5. Conclusion 

The application of machine learning in studying Ae. albopictus 

distribution represents a significant advancement in 

epidemiological research. It enhances our understanding of 

vector ecology, supports proactive public health measures, and 

contributes to global efforts in combating infectious diseases 

transmitted by mosquitoes. This study has demonstrated the 

effectiveness of machine learning in elucidating the distribution 

patterns of Ae. albopictus based on environmental factors. By 

leveraging advanced computational techniques, we have 

identified significant correlations between habitat characteristics 

and the presence of this mosquito species. 

 

Through rigorous analysis and model validation, our findings 

underscore the complex interplay of variables such as 

temperature, precipitation, vegetation cover, and human 

settlement patterns in shaping the spatial distribution of Aedes 

albopictus. This knowledge is crucial for informing targeted 

mosquito control strategies and public health interventions, 

particularly in regions susceptible to vector-borne diseases like 

dengue fever and Zika virus. 
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The monitoring of Ae. albopictus is highly relevant in 

prevention and control of vector-borne diseases by mapping its 

potential distribution. The recommend action to study for the 

risks is to regularly update models using updated occurrence 

and climatic data. This information will be useful in controlling 

operations of mosquito by the authorities, especially at the 

predicted sites. The special measures should also be considered 

at breeding sites where species may inhibit artificial containers 

and catch basins. 

 

Moving forward, further refinement of machine learning models 

and incorporation of additional environmental variables could 

enhance predictive accuracy and facilitate proactive mitigation 

efforts. By harnessing these technological advancements, we 

can better anticipate and respond to the ecological and 

epidemiological challenges posed by Aedes albopictus, 

ultimately contributing to improved public health outcomes 

globally. 
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