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Abstract 

The introduction of the Bicycle-sharing System (BSS) has provided great convenience for residents for short travel in city. However, 
the parking lot planning and bicycle logistics distribution remain suboptimal, adversely affecting traffic order. Studying the spatial and 
temporal usage patterns can be helpful for better management of BSS. In this paper, we propose an analytical framework for detecting 
the bicycle-sharing pattern based on the community detection algorithms from complex networks to study the spatial-temporal patterns 
of usage.  
Firstly we identify the potential demand for bicycle among urban residents with a dataset from the BSS in Beijing downtown area. 
Then we construct a linkage network for modelling the BSS by applying community detection algorithms to identify regions of both 
high and low connectivity. Following this, based on the division of sub-areas, three indicators (graph density, cross-area travel demand, 
and confidence ellipses) are established for characterizing these sub-areas. Our findings include: (1) The usage pattern of the BSS 
within the downtown area consistently exhibits relatively stable clustering phenomena over time. (2) The usage pattern is related to the 
urban spatial structure, with significant differences between weekdays and weekends. (3) Residents tend to complete their cycling 
within the current sub-areas. (4) Generally, smaller sub-areas tend to have denser bicycle travel behaviour. These insights are vital for 
improving BSS parking lot planning and logistics distribution. 

1. Introduction

In recent years, Bicycle Sharing Systems (BSS) have emerged as 
a novel, eco-friendly solution for short-distance travel, garnering 

increasing attention and support in countries such as the United 
States, Australia, and Canada(Chen et al., 2022). These systems, 
reliant on fixed docking stations, have been instrumental in 
promoting sustainable urban mobility. However, their 
dependence on designated docks can inadvertently give rise to a 
"last mile" problem, impacting the seamless integration of 
bicycle sharing into the broader transportation network. Since 
2014, China has led the innovation in this field with the 

introduction of dockless BSS, a groundbreaking approach 
supported by internet technology that eliminates the need for 
bicycle docking stations(Gu et al., 2019). The updated BSS 
service facilitates convenient shared transportation for short 
urban journeys, connecting individuals' residences or workplaces 
with metro and bus stations, thus providing seamless door-to-
door transit (Yu et al., 2020). This system significantly boosts 
urban operational efficiency and presents a viable solution to the 
"last mile" challenge in city transportation. 

Advocating for the widespread adoption and promotion of BSS 
in urban offers numerous benefits, including improved travel 
efficiency for residents and the creation of cleaner environments. 
However, the issue of uneven spatial-temporal distribution is 
exacerbated by inadequate planning of parking facilities and 
poorly organized bicycle layouts. This severely impacts user 
experience and hinders the smooth operation of the city. In 

certain situations, the availability of bicycles exceeds the actual 
demand. This overabundance, particularly in specific areas, leads 
to street congestion(Ma et al., 2018), resulting in the wasteful use 
of public resources and negatively affecting residents' 
experience. Therefore, analyzing the spatial-temporal patterns of 
BSS is instrumental in understanding residents' travel behaviours 
and enhancing service provision. This is beneficial for the 
sustainable development of cities. 

Beijing, as the political, cultural, and economic center of China, 
is also among the first cities to introduce BSS. The downtown of 
the city, which includes the Dongcheng and Xicheng districts, 
plays a vital role in preserving historical and cultural heritage. 
Situated in the center of Beijing, the downtown is marked by 
limited space, relatively narrow roads, and a dense population 

with significant pedestrian traffic. Identifying and detecting the 
actual patterns of resident demand to enhance the efficiency of 
BSS services remains an unresolved challenge. 

With the advent of mobile internet and cloud computing 
technologies, the potential for better understanding the urban 
environments has significantly increased. The resulting 
geospatial big data is characterized by high spatial-temporal 

granularity and convenient sources of information, a marked 
improvement over the traditional method of gathering 
information through survey questionnaires. Many research has 
been conducted on the travel data of BSS, covering various 
aspects such as the integration behaviour between BSS and 
public transit systems (Yu et al., 2020), demand prediction for 
bicycles (Y. Li et al., 2015; B. Wang et al., 2022), factors 
influencing the usage of shared bicycles (Kim, 2018; X. Li et al., 
2020), and the spatial-temporal characteristics of cycling 

behaviour (R. Wang et al., 2022; Yang et al., 2019). However, 
few studies comprehensively consider cycling behaviour in 
relation to urban form and structure. BSS datasets, as a form of 
big data, possess greater universality and accuracy. By 
employing a data-driven approach, short-distance travel 
behaviours of groups are captured from the bottom up in both 
temporal and spatial dimensions. This provides valuable 
information for mining the spatial-temporal patterns of bicycle 

travel in cities. 

In this paper, we proposed an analytical framework for detecting 
bicycle-sharing patterns. Our initial study focuses on the analysis 
and extraction of data from BSS orders, aiming to accurately 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-437-2024 | © Author(s) 2024. CC BY 4.0 License.

 
437

mailto:2108570022090@stu.bucea.edu.cn


 

capture the travel behaviours. These materials are subsequently 

represented on the constructed grid. Subsequently, we employ 
community detection algorithm to identify areas characterized by 
significant cycling activity. To ensure the validity of our 
divisions, comparative analyses are conducted using various 
schemes to divide the cycling sub-areas. Three indicators, along 
with temporal distribution curves, are introduced to describe the 
spatial and temporal characteristics of the BSS across the 
identified sub-areas. Applying this method to the downtown of 

Beijing, it is possible to successfully excavate travel patterns 
among users and extract the interaction information hidden 
within the urban structure, solely through BSS data. 
 
The remainder of this paper is organized as follows. Section 2 
describes the study area and data. Section 3 presents the 
methodology of this work, including potential bicycle-sharing 
behaviour detection, sub-area division, and the bicycle-sharing 
pattern indicators. Section 4 presents the experimental results, 

and followed analysis and discussion. Finally, conclusions and 
future research directions are presented in Section 5. The paper 
can provide a reference for the better BSS service and urban 
planning. 
 

2. Study Area and Data 

2.1 Study Area 

According to the "Master Plan of Development for Beijing (2016-

2035)", the downtown area of Beijing includes the Dongcheng 
and Xicheng administrative districts. This region serves as the 
center for China's political, cultural activities, and international 
communication, playing a vital role in the protection of historical 
and cultural heritage and in representing the capital's image. 
Covering approximately 92.5 km2, the area has a permanent 
population of about 1.815 million. It is geographically located 

between 39°51′N to 39°58′N latitude and 116°20′E to 116°

26′E longitude. According to the "Detailed Plan for the Core 

Area of the Capital City of Beijing (Block Level) (2018-2035)", 
the downtown area consists of 32 streets and 183 blocks. The 
research area is depicted in Figure 1. 
 

2.2 Datasets 

2.2.1   BSS Data 
The bicycle data used in this study are from the dockless BSS, 
sourced from the BeiDou Navigation Positioning Service 

Platform. The dataset includes orders spanning seven 
consecutive days, with analyses primarily focusing on data from 
two specific days. The remaining data were used for comparative 
validation. The two days analyzed were March 24, 2018 
(Saturday) and March 26, 2018 (Monday), comprising a total of 
1,462,779 bicycle trip records. Each record contains the vehicle 
number, latitude, longitude, status, and time of the trip. The 
spatial distribution of these bicycle trips predominantly covers 

the downtown of Beijing, as depicted in Figure 2. 
 

2.2.2   Geographical Data 
(1) The vector boundary data of Beijing's downtown area are 
sourced from the Alibaba Cloud's DataV.GeoAtlas platform.  

(2) The vector data for the division of streets and blocks in 
Beijing's downtown area come from the website of The People’s 
Government of Beijing Municipality. 

 

 

Figure 1. Study area 

 

 

Figure 2. Spatial distribution of BSS data 

 

3. Methodology 

3.1 Overall Methodology and Process  

As outlined in Figure 3, the modelling process comprises five 
steps: 
 
(1) Detecting bicycle-sharing behaviours: This step involves 

selecting data that accurately reflects the temporal and spatial 
usage patterns of residents' bicycle use, setting the stage for 
subsequent modelling efforts. 
(2) Model construction: Construct a network within the study 
area, match Origin-Destination (OD) points to the corresponding 
grid, and aggregate them. Abstract the relationships between 
bicycle trips into a network of nodes and edges. 
(3) Applying the community detection algorithm: Utilize the fast 

unfolding algorithm to identify areas within the downtown that 
have a high density of cycling behaviours. 
(4) Measuring the structure of the network: Use modularity to 
measure the density of the divided sub-areas to ensure the optimal 
result of the area division. 
(5) Analysis of bicycle-sharing usage patterns: Validate the 
results by comparing different cycling sub-area division schemes 
and introduce indicators for the quantitative analysis of usage 

patterns. 
 

3.2 Detecting Potential Bicycle-sharing Behaviours 

This paper utilizes geospatial big data derived from BSS order 
data, as detailed in Table 1. This dataset includes information on 

bike usage, particularly the status of the bike lock. A single 
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journey involves a user starting at an origin point, unlocking a 

previously parked bike (where the lock status changes from 0 to 
1), cycling to a destination, and then re-locking the bike (where 
the lock status changes back from 1 to 0). This sequence 
constitutes one complete bicycle-sharing trip. 
 
Through calculating and visualizing the travel distances in the 
dataset, we extracted shared bicycle trips within a 3-kilometer 
range, which represents the typical usage scope for the vast 

majority of users. Based on this assumption, considering a 
reasonable distance of OD trips inferred from the BSS data, we 
define the spatial and temporal resolution for which cycling trips 
can be matched.  
 
On the spatial aspect, a grid is generated consisting of equal-
width grid cells, each measuring 50m by 50m, and OD trips are 
aggregated through the grid. The grid size used in this study was 
determined after multiple experiments. Appropriate cell size 

contribute to capturing the flow characteristics of bicycles 
between regions. While excessively large cells may increase 
traffic flow, they might obscure interactions between BSS at the 
neighborhood level within the city. Therefore, the chosen cell 
size in this study ensures both sufficient travel within cells and 
comprehensive representation of inter-regional movement. 
 
On the temporal aspect, excessively long biking times in trips 

might indicate erroneous data records. Assuming the biking time 
for each trip is Δ, we set the maximum acceptable range at 60 
minutes. By detecting bicycle-sharing behaviours, the mesh grids 
containing the extracted OD points are considered as nodes of the 
network, and the edges connecting two points are naturally 

constructed. 

When there are more trips with the same OD, the weight of the 
edge increases. The constructed linkage network can be denoted 

as 𝐺(𝑉, 𝐸,𝑊) , where 𝑉  represents the set of nodes, 𝐸 

represents the set of edges, and 𝑊 represents the edge-weights. 
 

3.3 Revealing of Cycling Areas 

Community detection algorithms from the field of complex 

networks offer an effective method for identifying areas with 
dense bike-sharing connections directly from BSS data, without 
the need for additional information. The discipline of complex 
networks primarily investigates the structure of network systems 
composed of a large number of interacting nodes and reveals 
hidden information such as the structural features of the network 
and dynamic processes. Community detection methods are 
among the widely recognized approaches suitable for studying 

complex networks. They can reveal correlations between implicit 
information resources, fully mine the intrinsic structure within 
the network, and identify tightly connected groups of nodes, 
which are referred to as "community". Within a community, the 
connections between nodes are relatively tight, while the 
connections between nodes from different communities are less 
frequent. Various methods have been developed to discover 
community structures within networks. Given the large scale 

characteristic of networks constructed based on geospatial big 
data, the efficiency of community detection algorithms is 
significantly challenged. Aiming for an approach that is also 
perfectly applicable to large-scale networks, this study adopts the 
fast unfolding algorithm (Blondel et al., 2008). 
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Figure 3. Flowchart of the study 

 

Bike id Area code Longitude Latitude Status Time 

42749738 110101 116.391146 39.907457 0 2018-03-24 00:00:04 
19571059 110101 116.406359 39.916268 0 2018-03-01 00:00:08 
17016899 110102 116.355734 39.893544 1 2018-03-05 08:48:43 
106607757 110102 116.371922 39.890631 1 2018-03-12 21:41:00 
106674679 110102 116.331205 39.920799 1 2018-03-26 18:12:58 

Table 1. Examples data of the BSS 
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The key points of the fast unfolding algorithm is the optimization 

of modularity. Modularity is a benefit function that measures the 
density of edges inside communities compared to edges between 
communities(Girvan & Newman, 2002). If the modularity is 
high, it can be interpreted as the community detection algorithm 
successfully grouping nodes into communities with tighter 
connections (Rustamaji et al., 2024). Conversely, the resulting 
modularity is low. The formulation can be denoted as: 
 

Q =
1

2𝑚
∑[𝑤𝑖𝑗 −

𝑘𝑖 − 𝑘𝑗
2𝑚

𝑖,𝑗

]𝛿(𝑐𝑖 , 𝑐𝑗) (1.) 

 

Where 𝑄 represents the modularity, 𝑤𝑖𝑗  is the weight of the 

edge between nodes 𝑣𝑖 and 𝑣𝑗, 𝑘𝑖 is the sum of the weights of 

the edges connected to node 𝑣𝑖, 𝑐𝑖 is the community assigned 

to node 𝑖, and 𝛿(𝑢, 𝑣) = 1 when 𝑢 = 𝑣, otherwise 𝛿(𝑢, 𝑣) =
0. 
 
To quickly maximize modularity, the fast unfolding algorithm 
employs two iterative steps that are repeated: 
Step 1. Modularity Optimization. This step initially treats each 
node as a separate community. It then reassigns each node to the 

community of its adjacent nodes, using the increase in modularity 
before and after the reassignment to determine whether to 
complete this step of the division. 
Step 2. Community Aggregation. After traversing all nodes in the 
network, all nodes belonging to the same community are treated 
as a single new node, and Step 1 is repeated. 
 
These two steps are iterated continuously until the modularity 

achieves an optimal result and ceases to increase, at which point 
the calculation stops, yielding the division result of closely 
connected sub-areas.  

 

3.4 Indicators for the Bicycle-sharing Patterns 

To describe bicycle-sharing patterns more accurately, this study 
employs three indicators to analyze and characterize bicycle 
usage within sub-areas. 
 

3.4.1   Graph Density: 
In network science, graph density is an index to measure the 
density of edges within a network. Through the graph density 

metric, one can understand the proportion of actual to potential 
edges within sub-regions, thereby quantitatively characterizing 
the degree of connectivity within the network. It is defined as 
Equation (2): 
 

𝐷𝑘 =
2𝑚

𝑛(𝑛 − 1)
(2.) 

 

In which 𝑛 represents the number of grids in a sub-region, and 

𝑚 represents the number of edges within a sub-region. A higher 

𝐷𝑘 indicates more dense network connectivity within the sub-
region, a higher frequency of bicycle usage, and an increased 
demand for transportation connectivity within the area. 

 

3.4.2   Proportion of Cross-area Bicycle-sharing Trips: 
By extracting trips within subareas where both origin and 

destination (OD) are inside the area 𝑄𝑖𝑛𝑠𝑖𝑑𝑒, trips with only the 

destination (D) inside 𝑄𝑖𝑛 , and trips with only the origin (O) 

inside 𝑄𝑜𝑢𝑡 , the proportion of cross-regional bicycle-sharing 
trips is calculated. The calculation formula is given by Equation 
(3): 
 

𝑃𝑘 =
𝑄𝑖𝑛 + 𝑄𝑜𝑢𝑡

𝑄𝑖𝑛 +𝑄𝑜𝑢𝑡 + 𝑄𝑖𝑛𝑠𝑖𝑑𝑒
(3.) 

 
A higher value implies that, compared to intraregional trips, the 
proportion of trips entering into and exiting from the region is 
greater. In other words, a higher value indicates a larger 
proportion of interactions between the region and external areas 
among all trips, which implies a higher demand for rebalancing 
bicycles between different subareas. 
 

3.4.3   Spatial Distribution Patterns of Bicycle Usage: 
The study employs 95% confidence ellipses to characterize the 
spatial distribution of bicycle trips within sub-communities, 
where the length of the ellipse's major axis a  and the length of 

its minor axis b  represent the direction of data distribution and 

the scope of demand distribution, respectively. The size of the 
ellipse indicates the area of concentrated bicycle demand; the 
ellipse's flatness measures the difference between the major and 
minor axes, describing the spatial orientation of the demand 
distribution area, as calculated by Equation (4): 

 

𝑂𝑏 =
𝑎 − 𝑏

𝑎
(4.) 

 
When the confidence ellipse's flatness approaches zero, it 
indicates that bicycle usage is distributed more evenly across 
different directions; a greater flatness signifies a higher 

directionality in cycling demand, with a majority of citizens using 
shared bicycles in similar directions. 
 

4. Results and Discussion 

4.1 Results of Community Detection 

4.1.1   Result of Cycling Sub-area Division 
By applying the aforementioned method to the dataset, we 
identified 28,598 nodes and 210,011 edges on the 24th 

(Saturday), and 30,034 nodes and 281,967 edges on the 26th 
(Monday), leading to the construction of two linkage networks. 
The fast unfolding algorithm, iterated twice on both networks, 
achieved maximum modularity values of 0.66105 and 0.65996, 
respectively. Modularity is a metric that ranges from [-1, 1] 
(Gouvêa et al., 2021), and in practical network analysis, it 
typically falls between 0.3 and 0.7. This indicates that the fast 
unfolding algorithm successfully and reliably identified densely 

used areas within the bicycle-sharing network. The increasing 
number of nodes and edges suggests a higher quantity and 
likelihood of bicycle usage during weekdays. The decreased 
modularity of the linkage network suggests that residents' travels 
encompass more dispersed popular locations, reflecting 
differences between weekdays and weekends. Consequently, it is 
evident that the role of the BSS in connecting the "last mile" of 
urban transportation is more pronounced on weekdays. 
 

Figure 4 visually depicts the two linkage networks; the blue lines 
represent trips between two nodes, with darker shades indicating 
higher traffic volumes. The diagram illustrates that the utilization 
of shared bicycles creates patterns resembling diverging rays that 
connect surrounding neighborhoods. This pattern is consistent 
across both weekdays and weekends, displaying distinct 
clustering characteristics and relatively stable structures, with 
higher trip volumes observed on weekdays compared to 

weekends. It is noteworthy that some areas, marked with red 
circles, show inconsistencies. This variation can be attributed to 
a higher proportion of commute-related trips during workdays. 
 
As depicted in Figure 5, the downtown area is segmented into 
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nine sub-areas on both analyzed days, with each sub-area 

averaging 3,171 and 3,330 mesh grids, covering 7.92 km² and 
8.33 km² respectively. Overlaying the sub-community divisions 
with the downtown boundaries reveals a high degree of 
correspondence. This indicates a significant relationship between 
the spatial usage patterns of shared bicycles and the urban layout. 
This alignment suggests that the arrangement of BSS facilities 
within these areas is logically structured, enhancing the 
efficiency and convenience of urban travel. The high match rate 

underscores how resident travel habits and route selections are 
intricately linked to the street layout, affirming the integral role 
of spatial planning in influencing mobility patterns within the 
city. 
 

 

Figure 4. Linkage networks displayed (a) 24th (b) 26th 

 

 

Figure 5. Division of sub-areas (a) 24th; (b) 26th  

 

 

Figure 6. Comparison of other dates by community detection 

 

4.1.2   Comparisons on Different Division Schemes 
(1) Comparative analysis over different days. This study 
employed community detection techniques based solely on BSS 
data to identify highly interconnected regions within a network 
of links. The reliability of this approach is significantly 
influenced by the quality of the data used. To validate the 
accuracy of the identified areas, BSS data from five additional 

days (the 22nd, 23rd, 25th, 27th, and 28th) were analyzed to 
evaluate the logic of the partitions. For each of these days, 
distinct connection networks were constructed, and the fast 
unfolding algorithm was applied to reveal areas of strong 
connectivity. The modularity values obtained from these 

analyses consistently ranged from 0.65 to 0.67, indicating 

significant clustering patterns in the usage of shared bicycles, 
which were persistent across both weekdays and weekends. 
 
Figure 6 displays the results of the cycling community divisions 
in five sub-figures ordered by date. It highlights the clustering 
pattern in the daily usage of BSS, showing only minor variations. 
The high consistency in cycling area divisions across different 
dates underscores the effectiveness of this method in delineating 

spatial structures from the BSS in downtown Beijing. Notably, 
the three communities within the Dongcheng district on the 
eastern side exhibited remarkable stability, with little variation in 
patterns between weekdays and weekends. These areas are 
characterized by a dense mix of residential and commercial 
functions—including housing, shopping centers, leisure, and 
cultural facilities—which ensures that the travel behaviours of 
residents are not significantly influenced by whether it is a 
workday or a rest day. This blending of functions supports a 

consistent level of mobility regardless of the day of the week. 
Consequently, similar travel demands and behavioural patterns 
are observed during weekdays and weekends, with minimal 
changes in community morphology. 
 
However, an exception was noted on Sunday, the 25th, when the 
cycling linkage network was divided into 9 sub-areas, compared 
to 8 on the other dates. On the 24th, 25th, and 28th, Guang'anmen 

Outer Street was categorized as a distinct area. This 
differentiation reflects notable variances in the residents' lifestyle 
rhythms and scopes of activities between weekdays and 
weekends, potentially due to a higher density of residential zones 
in this area. On weekdays, the frequent interactions with adjacent 
communities for work, schooling, and other activities often result 
in the integration of this street with neighboring communities into 
a single sub-area. Conversely, on weekends, the inclination 

towards localized leisure activities led to its recognition as an 
independent sub-area. 

 
(2) Comparative analysis over different periods. To ensure the 
precision of temporal sub-area divisions, this study conducted a 
statistical analysis of bicycle usage over 24 hours on the 24th and 
26th. The daily cycle was segmented into four distinct time 
periods based on the volume characteristics of bicycle usage 

(Chai et al., 2021): morning (05:00-09:00), noon (10:00-14:00), 
afternoon (15:00-19:00), and night (20:00-04:00). For each day, 
sub-networks corresponding to these time slots were created, and 
community detection algorithms were subsequently applied. The 
results are presented in Figure 7, with panels (a) and (b) 
displaying the cycling sub-areas on the 24th and 26th, across the 
four time periods, respectively. 
 
Segmenting the data into these time periods provides a more 

granular insight into residents' travel behaviour. Figure 7 
confirms that the usage of shared bicycles consistently shows a 
clustering pattern, which is robust across different days and times 
within a day, corroborating the trends observed in Figure 5. On 
the 24th, variations in sub-areas structures at different times are 
evident, with denser clusters during the noon and afternoon 
periods (10:00-14:00 and 15:00-19:00) suggesting more active or 
clearly defined communities. In contrast, the morning (05:00-

09:00) and night (20:00-04:00) intervals exhibited more 
dispersed and indistinct cycling area configurations. 
 
On the 26th, a similar trend is observed but with a notable 
distinction in the morning segment. The cycling sub-areas during 
this time appear more compact and well-defined compared to the 
24th, likely reflecting the morning rush on workdays when BSS 
is heavily utilized for commuting purposes within a concentrated 
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time period. This analysis not only underscores the variability of 

community structures based on time but also highlights how 
these structures can vary significantly on workdays versus 
weekends, thereby providing valuable insights into the dynamic 
usage patterns of shared bicycles. 

 

4.2 Analysis of Bicycle-sharing Pattern 

4.2.1   Discussion of the Blank Areas  
The identification of underutilized areas within sub-regions, as 
delineated by community detection algorithms, is primarily due 
to the low frequency of bicycle use in these zones. These areas 
were identified through visual analysis and corroborated by 
survey studies. An analytical overlay of these sub-regions on 
maps showed that boundaries change minimally, primarily 

reflecting variations in cycling habits between weekdays and 
weekends. The demarcation of community borders is largely 
influenced by natural barriers such as rivers and parks. Notably, 
regions including the Forbidden City and similar locales, which 
are highlighted in Figures 8(a), (b), and (c), are characterized by 
their restricted access, making them unsuitable or prohibited for 
cycling and thereby naturally forming the peripheries of sub-
areas. 

 
Moreover, urban expressways and major thoroughfares, such as 
Gulou Outer Street and analogous areas depicted in Figures 8(d), 
(e), and (f), act as significant obstacles. These barriers, with their 
complex traffic flows and crossing difficulties, impede bicycle 
mobility. Addressing these obstructions within the downtown 
area could substantially improve cycling conditions and meet the 
varied cycling needs of the residents, thereby enhancing the 

overall utility and accessibility of the BSS. 
 

4.2.2   Discussion the Indicators of Bicycle-sharing Patterns 
Figure 9 illustrates the usage patterns of shared bicycles within 
each sub-community on the 24th (panels (a)-(d)) and the 26th 

(panels (e)-(h)), detailing metrics such as graph density (𝐷𝑘 ), 

bicycle-sharing potential (𝑄𝑖𝑛 , 𝑄𝑜𝑢𝑡, 𝑄𝑖𝑛𝑠𝑖𝑑𝑒 ), cross-area travel 

demand (𝑃𝑘 ), and the temporal distribution characteristics of 
bicycle usage. This multidimensional approach provides insights 
into the usage patterns from both spatial and temporal 
perspectives. 
 

Initially, a horizontal comparison of indicators within a single 

day reveals that 𝐷𝑘 , shared bicycle potential, and 𝑃𝑘  are 
mutually independent. This aids in providing a reliable basis for 
comprehensive analysis in subsequent stages. As observed in 
Figures 9 (b) and (c), although some areas have similar numbers 

of bicycle-sharing potential internal trips (𝑄𝑖𝑛𝑠𝑖𝑑𝑒), the level of 

their cross-area travel demand (𝑃𝑘) may vary. In practice, such 
scenarios should be managed with different policies. For 
example, in sub-areas 1 and 3 on 24th, despite having similar 

𝑄𝑖𝑛𝑠𝑖𝑑𝑒 , the 𝑃𝑘  varies significantly. In cases of lower 𝑃𝑘 , 
governments or companies could implement policies to restrict 
cross-area bicycle-sharing trips. This approach could reduce the 
workload for vehicle rebalancing without hindering residents' 
access to bicycles. However, in areas such as sub-areas 1, 3, 8, 

and 9 on 24th, which have a high proportion of cross-area trips, 
implementing the same policy could inconvenience users. 
Therefore, developing dynamic scheduling and pricing policies 

based on the 𝑃𝑘 could offer a solution for providing a higher 
quality BSS. 
 

A horizontal comparison within a single day shows that 𝐷𝑘 , 

bicycle-sharing potential, and 𝑃𝑘  are mutually independent, 
which forms a solid foundation for a more detailed subsequent 
analysis. As seen in Figures 9(b) and (c), while some areas might 

report similar internal bicycle-sharing potential (𝑄𝑖𝑛𝑠𝑖𝑑𝑒), their 

cross-area travel demands (𝑃𝑘 ) could differ markedly. Such 
disparities necessitate differentiated policy interventions. For 
instance, in sub-areas 1 and 3 on the 24th, despite comparable 

𝑄𝑖𝑛𝑠𝑖𝑑𝑒values, the significant variance in 𝑃𝑘 suggests tailored 

strategies; lower 𝑃𝑘  might prompt the implementation of 
restrictions on cross-area bicycle-sharing trips to streamline 
vehicle rebalancing, thereby maintaining access without 
imposing undue logistical burdens. Conversely, for areas like 
sub-areas 1, 3, 8, and 9 on the 24th, which experience high 
volumes of cross-area trips, such restrictive measures could 
adversely affect user convenience. Here, adaptive scheduling and 

dynamic pricing based on 𝑃𝑘  values could enhance service 
quality and user satisfaction in high-demand zones.  
 
Analysis of Figure 9(a) and (e) shows that on the 24th, sub-area 

6, and on the 26th, sub-areas 3 and 4, exhibit higher graph 

densities (𝐷𝑘), suggesting concentrated user activities in these 
smaller areas at certain times. However, the correlation between 
small area size and high graph density is not always consistent, 
as demonstrated by sub-area 3 on the 24th. 
 
Temporal dynamics of bicycle usage also provide critical insights 
into the operational characteristics of BSS schemes. The usage 
trend curves from Figures 9(d) and (h) reflect distinct patterns on 

the 24th and 26th. The 24th shows an even distribution of bicycle 
usage from 8 a.m. to 5 p.m., indicative of non-commuter or 
leisurely travel patterns. In stark contrast, the 26th reveals a tidal 
usage pattern with peaks around traditional commuting hours 
(06:00-08:00 and 16:00-18:00), underscoring the BSS’s role in 
facilitating daily commutes. 
 
Spatial distributions were similarly analyzed, with 95% 
confidence ellipses employed to clarify the spatial distribution of 

bicycle travel within communities, particularly focusing on sub-
area 2 as depicted in Figure 10. The scatter plot, which uses 
points at 25% transparency to highlight denser usage areas as 
brighter, indicates that weekend bicycle travel in this sub-area 

tends towards greater directionality (higher 𝑂𝑏  value) and 
variability in travel directions compared to weekdays. This 
intriguing trend may be linked to local preferences. For example, 
residents near Niujie Street tend to favor trips towards Tiantan 
Street on weekends, while the increased weekday traffic on 

Yuetan Street likely relates to its employment opportunities. This 
illustrates how BSS adapt to and support the varying daily 
rhythms of urban life. 
 

5. Conclusions and Future Work 

Extracting residents' travel patterns and uncovering urban spatial 
correlations from large-scale BSS data has consistently been at 
the forefront of research interests. This article introduces an 
analytical framework designed to uncover spatial-temporal usage 
patterns from BSS data. This framework aims to support 
improved BSS services and urban planning. It comprises three 
main components: detecting potential bicycle-sharing 
behaviours, revealing cycling areas, and indicators for bicycle-

sharing patterns. Community detection algorithms enable the 
identification of interactive behaviours in city-wide bike-sharing 
usage from a broader perspective. Building on this, the bike-
sharing travel pattern indicators provide detailed characteristics 
of sub-areas with distinct travel features, including graph density, 
cross-area travel demand, and confidence ellipses, which are 
crucial for a better understanding of the internal structure of 
cities. 
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Fig 7 Community detection results based on time period segmentation. (a)24th; (b)26th 

Using the method proposed in this paper, the following was 
discovered: 

(1) The arrangement of BSS facilities within Beijing's downtown
is considered to be relatively reasonable. The usage pattern of

BSS within the downtown area consistently exhibits a clustering
phenomenon over time.
(2) The clustering pattern of BSS in the downtown is relatively
stable, with only minor changes. Compared to Xicheng, the
clustering pattern in Dongcheng is more stable, likely due to the
dense combination of residential and commercial functions in the
area.
(3) The usage of BSS in downtown is mostly affected by natural

barriers such as rivers and parks, and some areas are affected by
urban transportation infrastructure. However, the latter effect is
attenuated during weekdays.
(4) Residents tend to complete their cycling trips within the
designated sub-areas. Furthermore, compared to non-working
days, the role of BSS in bridging the 'last mile' of urban
transportation is more pronounced on working days.
(5) The inter-area travel demands vary between different sub-

areas, necessitating diverse BSS management strategies.
(6) Generally, smaller sub-areas tend to have denser bicycle
travel behaviour.

Further analysis will be devoted to following directions. For 
instance, to deepen the understanding of urban residents' travel 
motivations, integrating BSS data with information from bus and 
subway systems is crucial. Posteriorly, to tailor BSS more 
effectively to local needs, merging data from land use, urban 

economics, and survey questionnaires is recommended. 
Additionally, our study utilized only three indicators, omitting 
factors like weather variations and special events. Expanding the 
range of indicators in future studies would enhance our insights. 
These efforts lay a research groundwork for enhancing urban 
BSS services and planning, thereby supporting the sustainable 
development of city environments. 

Figure 8. (a) The Forbidden City and Beihai,Zhonghai,Nanhai; 
(b) Temple of Heaven; (c) Taoranting Park; (d) East Chang'an

Street (e) GuLouWai Street ;(f) West Second Ring Road
Viaduct 

Figure 10. Spatial distribution of bicycles usage pattern 
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Figure 9. BSS usage pattern: (a),(b),(c),(d) on 24th and (e),(f),(g),(h) on 26th 
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