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Abstract 

Sustainable water resources management relies on advanced hydrological models calibrated from long-term satellite observations of 

water cycles. Monitoring water resources from Earth-observing satellites is enabled by cloud computing environments like Google 

Earth Engine (GEE) that support easy processing and analysis of archived data. While there are different satellite-based indicators of 

water resources availability, this paper focuses on mapping irrigated areas for each summer harvest season. The paper presents an 

automated workflow to extract yearly irrigated areas from imagery made public by Landsat and Sentinel-2. This method uses a 

normalised difference vegetation index (NDVI) to identify fields that exhibit higher vegetation greenness than their surroundings and 

are potentially being irrigated. As a first step, Google Earth Engine was used to create a seasonal maximum NDVI composite on which 

a grid-based thresholding algorithm was applied to identify irrigated areas in different parts of a catchment. The irrigated areas were 

then refined using morphological image processing and a quality-control step was conducted with ancillary datasets such as the most 

recent landuse classification, evapotranspiration data and crop phenology information. Finally, real-world use cases are presented to 

demonstrate the ability of satellite remote sensing to provide critical information on irrigation practices over the last 4 decades at the 

catchment scale. 

1. Introduction

1.1. Background 

Climate change and global warming are exacerbating water 

scarcity, resulting in increased aridity and shifts in agroecological 

zones that affect crop yields. Although only 18% of cultivated 

areas globally are irrigated, 70% of available freshwater 

resources are used for irrigation (Magidi et al., 2015). These 

resources play a significant role in semi-arid climates such as 

those experienced in much of Australia. The Australian continent 

is the sixth largest country in the world and covers a large range 

of climatic zones, from the tropics in the north to the arid interior 

and temperate regions in the south. In terms of rainfall, Australia 

is the driest inhabited continent. The amount of rainwater that 

flows into rivers is also relatively low – on average only 12% of 

rainfall flows into rivers, compared to 39% in Europe and 52% 

in North America. Additionally, rainfall patterns at the inter-

annual timescale are controlled by the state of the El Niño-

Southern Oscillation (ENSO) climate phenomenon. Long-term 

trends of precipitation show a shift towards drier conditions in 

the southwest and southeast regions, with a higher frequency of 

years of below average rainfall in recent decades. In this context, 

freshwater resources are critical to support industry (agriculture 

and mining), communities (drinking water) and environmental 

assets such as wetlands. Periods of water scarcity present 

particular challenges for agriculture, which accounts for 

approximately 75% of Australia’s fresh water use. In response, 

farmers are implementing innovative technologies like precision 

farming, water-efficient technologies, and enhanced water 

storage facilities to optimise water allocation and minimise 

wastage. 

However, to ensure better water resources outcomes for NSW, 

continuous monitoring of irrigated water usage is also important. 

In theory water planners and managers could rely on in situ 

metering devices to do this. However, given the extent of 

irrigated lands in NSW, this is not economically or practically 

feasible for large areas over long time periods. Satellite remote 

sensing offers a low-cost solution, leveraging publicly available 

imagery and recent advances in cloud computing platforms to 

monitor water usage across large spatio-temporal scales. In 

particular, the extent of irrigated areas each season is observable 

from satellite and can be used to estimate how much water is 

being used in agricultural areas. This information could then 

inform targeted policy interventions to improve the long-term 

sustainability of water resources for the benefit of all 

stakeholders.  

Multiple irrigated areas products have been developed in the past, 

including the Global Map of Irrigated Areas version 5 (GMIA 

5.0), the MIRCA 2000 product, and the International Water 

Management Institute (IWMI) Irrigated Area Map. These have 

used varying spatial scales and resolutions. Various spectral 

indices and algorithms are also used for satellite-based irrigated-

area mapping. Among those indices, the Normalised Difference 

Vegetation Index (NDVI) is endorsed as the most suitable 

measure of canopy greenness, based on its sensitivity to plant 

canopy chlorophyll content (Rouse et al., 1973). Near-infrared 

(NIR) (0.85-0.89 µm) radiation used in NDVI is scattered by the 

physical structure of the leaf, resulting in high levels of 

reflectance and transmittance, while NDVI’s red (0.63-0.69 µm) 

radiation is strongly absorbed by leaf pigments involved in 

photosynthesis (Jensen, 2021). Cultivated crops exhibit 

significant changes in pigment concentration and structure as 

they develop from the early growing season through to maturity 

and senescence. Such changes affect reflectance in NIR and red 

radiation, thus providing the theoretical basis for NDVI to use 

reflected radiation from satellite images to retrieve a crop-

specific growth patterns/optical signature (including sowing, 
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tillering, heading and maturity points), along with crop age and 

any crop stress. 

 

NDVI values range from -1 to +1, where higher values 

correspond to greener and denser vegetation. Conversely, 

negative NDVI values typically represent non-vegetated surfaces 

such as water bodies and urban areas. In the life cycle of plants, 

the NDVI profile typically rises during the vegetative growth 

stage, reaching a peak followed by a plateau once the plant 

reaches maturity. Subsequently, as plants undergo senescence, 

the NDVI profile gradually declines. Therefore, the timing of 

vegetation ‘green-up ’and senescence can be determined using 

time series of NDVI data. Several methods exist that use NDVI 

thresholds, backward-looking moving-averages or empirical 

equations. 

 

When advances in remote sensing data (multispectral and 

hyperspectral), processing methods and techniques are combined 

with those in big data and cloud computing, irrigated areas can 

be more easily classified. However, although hyperspectral 

imagery provides more phenological information, there are 

challenges associated with data capture and processing. First, 

tasking an aerial capture with a hyperspectral sensor can be 

prohibitively expensive. Second, it is subject to seasonal, 

illumination and aviation restrictions. In addition, processing and 

extracting information from high multi-dimensional data 

containing hundreds of narrow continuous bands (Rasel et al., 

2019) is very challenging.  

 

Benefits of multispectral satellite imagery are that it is publicly 

available and provides regular observations at medium spatial 

resolution (10 m for Sentinel-2 and 30 m for Landsat). Moreover, 

advances in classification algorithms, including Random Forest, 

Support Vector Machine, Decision Trees and Extreme Gradient 

Boosting (Abdi, 2020), make it possible to efficiently extract 

features from multispectral satellite imagery. Cloud computing 

platforms like Google Earth Engine (GEE) also provide access to 

petabytes of remote-sensing data and enable users to deploy 

remote sensing algorithms on the cloud for large-scale processing 

(Teleguntla et al,. 2018).  

 

The aim of this article is to present an operational GEE-enabled 

workflow to generate long-term time-series of irrigated area 

maps from Landsat and Sentinel-2. Section 2 presents the study 

site and methodology, while Section 3 discusses real-world 

applications of the satellite-derived irrigated areas within the 

water resources management sector.  

 

1.2. Novelty and Context of this Article 

 

Although previous research has investigated the creation of 

regional-scale irrigated area maps from Earth-observing satellites 

(Magidi et al., 2015, Wardlow et al., 2008), there is limited 

research demonstrating an operational workflow for irrigated 

areas mapping deployed in the cloud and used for real-world 

applications. This cloud-based workflow provides efficient 

retrieval of satellite imagery and ancillary datasets 

(evapotranspiration, rainfall, landuse) from multiple sources 

inside one platform. In addition, this paper proposes a grid-based 

thresholding algorithm that accounts for spatial variability in the 

landscape across an entire catchment. For example, irrigated 

areas and native vegetation will have different spectral signatures 

in different parts of a catchment based on elevation, climate and 

other geographic factors. In this workflow, each component can 

be fine-tuned based on the user requirements and adapted to 

different geographical areas. In summary, the approach outlined 

in this paper:  

1. automatically generates irrigated crop area maps from GEE 

based on Landsat and Sentinel-2 imagery; 

2. refines the irrigated area maps using ancillary datasets such 

as evapotranspiration data and recent landuse classification; 

3. provides a framework to validate irrigated areas that is up to 

industry standard and can be used in subsequent applications 

in water resources management. 

 

2. Data and Methodology 

2.1. Study Site 

The study area (Figure 1) is the agricultural catchment of 

Macquarie-Castlereagh in the Murray Darling Basin (MDB), also 

known as the ‘Food Bowl of Australia’.  

 

 
Figure 1. Location of Macquarie and Castlereagh Catchment in 

New South Wales, Australia. 

2.2. Satellite Imagery and Evapotranspiration Data  

2.2.1.  Satellite imagery 

 

Medium-resolution and cloud-free satellite images from Sentinel 

2 (10 m/pixel) from 2015 to 2023 and  Landsat 5, 7 and 8 imagery 

(30 m/pixel) from 1985 to 2014 were analysed in Google Earth 

Engine (GEE) cloud computing environment. 

 

2.2.2.  Evapotranspiration (ET)  

 

This is raster data that measures the loss of water from both plants 

and soil and provides an indication for irrigation. The CSIRO 

CMRSET provides monthly-averaged actual evapotranspiration 

data (in mm/day) for Australia at 30 m/pixel. This dataset is 

available in GEE as 

‘TERN/AET/CMRSET_LANDSAT_V2_2’.  

 

2.2.3.  Vector Data 

 

Two vector datasets were used as input in the GEE workflow: 

i) the Macquarie-Castlereagh River catchment boundary 

(polygon); ii) a set of landuse classification layers created for the 

entire state in 2004, 2013 and 2017. This layer was created based 

on in situ observations and high-resolution aerial photo data. For 

each crop season, the closest landuse layer was selected. For 

example, the 2012 crop year uses the 2013 landuse and 2019 crop 

year uses 2017 landuse.  
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2.3. Methodology 

 

A 3-phase methodology was designed to map irrigated areas with 

the datasets at hand. Figure 2 presents a flowchart representation 

of each step together with infographics depicting the key 

intermediary products. 

1. Phase I: creation of a seasonal maximum NDVI 

composite in GEE (Figure 3) using all images from 1 

December to 31 March and excluding cloudy and rain-

affected images. 

2. Phase II: extraction of irrigated area polygons from 

maximum NDVI composite using a grid-based 

thresholding method and morphological image 

processing. 

3. Phase III: manual validation of irrigated areas using 

ancillary datasets such as evapotranspiration, landuse 

and NDVI phenology. 

 

2.3.1.  Rainfall Filtering and Image Selection 

 

Heavy to moderate rainfall can affect the greenness of vegetation 

on the images. This is one of the major obstacles for mapping 

irrigated areas, the green-flush vegetation is sometimes identified 

as irrigated and leads to a large number of false positives. Thus, 

a filter of 25mm rainfall within 5 days was applied to remove 

rainfall-impacted images from the seasonal maximum NDVI 

composite. This means that if it rains 25mm or more on a given 

day, any image captured within the next 5 days will be 

automatically discarded from the collection. The rest of the 

cloud-free (20% cloud threshold) images were used to compute 

maximum NDVI composite. 

 

 
Figure 2. Flowchart of the methodology to map irrigated areas. 

2.3.2.  Maximum NDVI Composite 

 

Time series of NDVI were essential for obtaining cropland 

phenological data and for distinguishing irrigated areas from 

rain-fed areas. Unlike other vegetation types, such as grassland 

and forest, croplands have unique observable characteristics in 

the stages of emergence, vegetative growth, senescence and 

harvest. These features mean a time-series of satellite images can 

be used to identify croplands and separate them from other 

vegetation types. NDVI (Figure 3) was derived using the 

following formula (Eqs. 1 and 2) based on the satellite sensor 

used. 

 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
 ,                                                   (1) 

 

Within GEE, a maximum NDVI composite (Eq. 2) was 

constructed using all the selected images in cropping season (1 

December to 31 March): 

 

𝑁𝐷𝑉𝐼𝐶 = max(𝑁𝐷𝑉𝐼1′𝑁𝐷𝑉𝐼2′………………..𝑁𝐷𝑉𝐼𝑛) ,              (2) 

where NDVIc represents maximum NDVI composite while n 

represents the number of images available for a season.  

 
Figure 3. Maximum NDVI composite generated in GEE using all 

rain-filtered and cloud-free images for the 2018–2019 crop 

season. 

2.3.3.  Landuse Masking 

 

The maximum NDVI composite was then combined with the 

NSW landuse vector data to ensure that only those areas that were 

potentially irrigated were retained. These areas were labelled as 

irrigated cropping categories in the NSW landuse layer. The 

following 8 classes were considered: ‘Grazing irrigated modified 

pastures’, ‘Grazing modified pastures’, ‘Irrigated cropping’, 

‘Cropping’, ‘Seasonal horticulture’, ‘Perennial horticulture’, 

‘Irrigated seasonal horticulture’ and ‘Irrigated perennial 

horticulture’.  For more information on the Australian landuse 

classes, visit 

 https://www.agriculture.gov.au/abares/aclump/land-use/alum-

classification/alum-classes.  

 

2.3.4.  Thresholding 

 

NDVI time series data derived and compiled using GEE from 

Landsat/Sentinel were then used to classify irrigated areas. Due 

to spatial variability in rainfall, topography, elevation and climate 

in the catchment, a local threshold was preferred to a global 

NDVI threshold. To account for those differences in the 

landscape, the catchment was separated in blocks and a separate 
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threshold was applied to each block based on the local histogram 

distribution of NDVI values. Figure 4a illustrates the maximum 

NDVI composite masked by landuse and divided into a 3x3 grid. 

Figure 4b shows the histogram of NDVI values within each 

block. It indicates there was strong variability between the lower 

(blocks 1–3) and higher parts of the catchment (block 7–9). 

 

The NDVI threshold was calculated as the mean of the 

distribution plus 2 times the standard deviation (mean + 2*std). 

After applying the threshold, the resulting image was binary 

(Figure 5) – pixels with an NDVI above the threshold were 

considered irrigated crops. To avoid having ‘edge effects ‘for 

irrigated areas at the boundary between 2 adjacent blocks, a  

4-km buffer was applied around each block and the lowest 

threshold among the overlapping buffer was used in the 4 km 

region. This ensured that individual paddocks were not partially 

detected because of a low NDVI threshold on one side and high 

NDVI threshold on the other. 

 
Figure 4. a) Maximum NDVI composite masked by landuse and 

divided in a 3X3 grid. b) Histogram distribution of NDVI values 

within each of the 9 blocks, showing variability in NDVI across 

the catchment. 

 
Figure 5. Binary image resulting from the application of a local 

NDVI threshold to separate the irrigated areas (white) from the 

non-irrigated areas (black). 

2.3.5.  Noise Removal by Morphological Image Processing 

 

After applying the grid-based thresholding algorithm, the 

resulting binary image captured the irrigated paddocks but also 

contained much noise (Figure 5). This noise is created by pixels 

with high NDVI that are not irrigated paddocks (e.g., riparian 

vegetation). 

 

To remove the noisy pixels, morphological operators were used 

to only retain large compact shapes that were likely to be irrigated 

paddocks. A binary opening with a 3x3 (Landsat) or 5x5 

(Sentinel-2) square element was applied to the binary image. This 

consisted of an erosion, followed by a dilation. Therefore, it 

removed small and ‘skinny’ features while conserving compact 

shapes. Subsequently, another morphological filter was applied 

to only retain features with at least 11 (Landsat) or 100 (Sentinel-

2) connected pixels, which corresponds to a minimum area of 1 

hectare. Finally, a gap-filling operation was applied to fill holes 

inside the detected paddocks. All these operations were carried 

out using the scikit-image python library (https://scikit-

image.org/docs/stable/api/skimage.morphology.html). 

 

After these morphological operators were applied to the binary 

image, the image was vectorised to create individual polygons. 

The resulting polygons are indicated in Figure 6, with a backdrop 

of maximum NDVI composite. While the red polygons are the 

final extracted polygons, the blue polygons show all the riparian 

vegetation that was removed with the morphological operations. 

a) 

b) 
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Figure 6. Resulting irrigated area polygons on maximum NDVI 

composite backdrop. The red polygons are the final extracted 

polygons, while the blue the blue polygons indicate the riparian 

vegetation that was removed by the morphological operations. 

2.3.6.  Validation 

 

This final step checked the quality of the irrigated area maps 

produced. In it, the vector polygon layer generated in the 

automated workflow was validated manually and checked 

against 3 different sources of information: 

(a) national map 

(b) Seasonal NDVI phenology 

(c) evapotranspiration data (ET) 

 

a)  National Map: In the national map, false-colour composites 

from Landsat and Sentinel-2 data could be visualised 

interactively. The polygon layer was overlayed over a backdrop 

of false-colour composite images using Green, SWIR and NIR 

bands, as shown in Figure 7. This visual interpretation helped 

identify 'false positives’ – polygons that were identified as 

irrigated areas but which did not show the typical crop growth 

cycle across the season. https://nationalmap.gov.au/ 

 

(b) Seasonal NDVI: Besides false colour composite, NDVI value 

for individual images over the season were also checked to 

confirm the correct detection of irrigated area. Crop phenology is 

seasonal and time-dependent where NDVI value changes with 

the growth of the vegetation and drop before the harvesting as 

shown in figure 7. With this step, rainfall-affected polygons can 

be removed and others can be cross-checked to make sure their 

NDVI pattern follows crop growth.  As discussed previously in 

the introduction, NDVI values change with growth and maturity 

of the planted crop and decreases again before the harvest.  As an 

example, Figures 7a and 7b show the early stages of vegetative 

growth in December/January followed by the peak period of 

vegetative growth (Figures 7c and 7d) and senescence where the 

greenness drops (Figure 7 e). 

 

(c) Evapotranspiration Check and Confirmation: ET data 

provided a further line of evidence to confirm that the mapped 

polygons were correctly identified as irrigated areas. The ET 

monthly data was used to check that the irrigated areas had ET 

values above 3.5 mm/day for at least for 2 consecutive months. 

If ET value was more than the threshold value, it confirmed that 

the paddock was wet and not at a water-stress level. After 

harvesting, if there is no crop, the paddock dries out and the ET 

value for that paddock also drops.  

 

 
Figure 7. a–e: false-colour (Green, SWIR and NIR) imagery 

showing the vegetative growth from early germination (a), to 

crop green-up phase (b), reaching peak (c), peak (d) and 

senescence (e). f: maximum NDVI seasonal composite and 

validated irrigated crop areas. 

These additional checks ensure that the final irrigated area map 

is of high quality and does not contain false positives. 

 

3. Results and Discussion 

This section presents a validation the satellite-derived irrigated 

areas. It then applies this dataset to calibrate catchment-scale 

hydrological models. Finally, it uses a long-term dataset of 

irrigated areas to investigate the relationship between irrigated 

areas, rainfall and climate patterns over the past 35 years. 

 

3.1. Accuracy Assessment 

 

The accuracy of the satellite-derived irrigated areas was assessed 

against 4 years of in situ surveys obtained from an Irrigator 

Behaviour Questionnaire (IBQ) in the northern Murray Darling 

Basin. Figure 8 shows the comparison between total irrigated 

areas derived from satellite and total irrigated areas reported in 

the questionnaire in the Border River catchment. The accuracy 

assessment indicates that the satellite-derived irrigated areas have 

a bias of ~1,750 ha and root-mean-squared-error (RMSE) of 

~3,350 ha. This is a good agreement for the purposes of 

monitoring irrigated areas as it represents a 10% bias and ~20% 

RMSE.  
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Figure 8. Comparison between satellite-derived irrigated areas 

and in situ irrigator questionnaire data for 4 years in the Border 

River catchment. 

3.2. Calibration of Catchment-Scale Hydrological Models 

 

Large-scale irrigated crop area time-series are crucial to calibrate 

catchment-scale hydrological models. These models are key to 

estimating current and future water usage and informing water 

planning strategies. To illustrate this point, a 10-year time-series 

of satellite-derived irrigated areas was used to calibrate a 

catchment-scale hydrological model in the Gwydir catchment in 

the northern Murray Darling Basin. Figure 9 shows the time-

series of total irrigated areas derived from the satellite data and 

the corresponding irrigated areas predicted by the model. This 

shows how satellite-derived irrigated areas can be leveraged to 

calibrate the hydrological models and ensure that the models are 

correctly capturing irrigation processes across hundreds of 

properties over large catchments. The differences between the 

satellite observations and the hydrological model outputs are 

exacerbated during very wet years, as shown during 2011 and 

2012 when the Gwydir catchment received above-average annual 

rainfall. 

 
Figure 9. Satellite-derived irrigated areas in Gwydir catchment 

used for calibrating a catchment-scale hydrological model.  

3.3. Long-term Patterns in Irrigated Areas and Links to 

Climate Drivers 

 

By leveraging publicly available satellite imagery and the 

workflow described above, it is possible to monitor irrigated 

areas over large spatial and temporal scales. It is also possible to 

gather unique insights into spatial and temporal variability. For 

this paper, a dataset of total irrigated areas in the Macquarie-

Castlereagh catchment (Figure 1) was compiled from 1987 to 

2023. The time-series is shown in Figure 10a. It indicates strong 

inter-annual variability in total irrigated areas, with the minimum 

variability observed in 2019–2020 (10,000 ha of irrigated crops) 

and the maximum in 1996–1997 (67,000 ha). 

One of the main drivers for the variability in irrigated areas is the 

availability of freshwater resources. Therefore, a corresponding 

time-series of total annual rainfall averaged over catchment was 

compiled with data from SILO 

(https://www.longpaddock.qld.gov.au/silo/). Additionally, the 

dominant climate driver affecting rainfall patterns in south-east 

Australia is the El Niño/Southern Oscillation (ENSO). The phase 

and intensity of ENSO is represented by the Multivariate ENSO 

Index (MEI), downloaded directly from NOAA 

(https://psl.noaa.gov/enso/mei/). Both these datasets are 

presented in Figure 10b and indicate a strong relationship, with 

dry periods associated with El Niño and wet periods with La 

Niña. 

 

Figure 10. a) 35-year time -series of total irrigated area in Macquarie -Castlereagh catchment (1987-2023). b) Monthly time series of 

amplitude and phase of El Niño/Southern Oscillation and annual rainfall in the catchment. 
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The period between 1988 and 2000 was characterised by average 

rainfall and total irrigated areas remained relatively high. From 

2001 to 2010, this region experienced the Millennium Drought, 

one of the worst droughts on record. During this period, very few 

areas in the catchment were irrigated – a total of only 10,000–

20,000 ha, compared to 40,000–50,000 ha in the early 1990s. The 

strong La Niña phase of 2011–2012 brought high rainfall and 

total irrigated areas suddenly increased to the 50,000 ha mark. 

This was followed by an El Niño phase in 2016 that resulted in 

below-average rainfall and reduced total irrigated area. This 

drought last until 2020 and resulted in irrigated areas dropping to 

their lowest extent in 35 years. In 2020, rainfall returned with a 

‘triple-dip’ La Niña. This resulted in an abundance of freshwater 

resources and increased total irrigated area (the highest in a 

decade). 

This long-term time-series provides key insights into the 

availability of water for irrigation over the last 4 decades and the 

relationship between the climate and irrigation. This interannual 

variability is important for designing water management and 

water sharing strategies for different users within a catchment. 

4. Concluding Remarks

This paper presents an operational methodology to extract 

irrigated crop areas from publicly available satellite imagery, 

namely Landsat and Sentinel-2. The 3-phase methodology 

combines NDVI imagery and ancillary environmental datasets 

(evapotranspiration data and a land use classification) with 

advanced image processing algorithms (local thresholding and 

morphological operations) in a cloud environment (Google Earth 

Engine) for robust, efficient and rapid processing. The 

automatically extracted irrigated area polygons are then quality-

controlled with a manual validation. As part of this process, the 

satellite-derived irrigated areas used in this paper were compared 

against in situ data obtained from irrigators questionnaires and 

indicated a good agreement between the two datasets. 

The developed methodology was then employed to create 35-

year time-series of irrigated areas over an entire catchment in 

south-east Australia. The long-term dataset reveals interesting 

temporal patterns in the irrigation of cultivated areas. Strong 

inter-annual variability is observed that is linked to rainfall 

patterns and ENSO phases.  

In conclusion, satellite remote sensing can provide essential 

information on irrigation practices to support water management 

strategies. This paper illustrates the value that satellite-derived 

observations of irrigated areas could have for water management 

purposes. Future work should focus on improving the 

methodology by using additional datasets such as higher 

resolution optical imagery like Planet (3 m/pixel), hyperspectral 

imagery and Synthetic Aperture Radar products.  
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