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Abstract 
 
Indoor scene identification can provide prior environmental information for indoor positioning applications, achieving positioning 
enhancement. Due to the similarity of wireless signals in adjacent spaces, it can lead to incorrect identification in neighbouring 
scenario units. To address this problem, this paper first employs a Naive Bayes classifier to train and classify wireless signal strength 
data from different scenes, constructing a scene identification algorithm. Secondly, a topological relationship adjacency matrix and 
adjacency list tailored for indoor positioning are constructed, imposing spatial topological constraints to assist scene identification. 
Finally, an indoor scene intelligent identification system is developed and implemented. The experimental results indicate that the 
scene identification method based on spatial topological relationship constraints can effectively improve identification accuracy. The 
overall accuracy for 8 scenario units is 98.2%, and the identification accuracy is increased by 1.1% compared with the original 
method. 
 
 

1. Introduction 

In recent years, with the development of Internet of Things 
(IoT), indoor positioning technology has become important in 
many fields such as indoor navigation, context awareness, smart 
logistics, emergency rescue and so on (Obeidat et al., 2021). 
Indoor positioning is closely related to indoor scenes, which are 
characterized by complex spatial structures and diverse building 
materials, profoundly affecting the propagation of various 
wireless signals. Utilizing environment information to enhance 
indoor scene perception and identification, and achieving hybrid 
positioning in complex indoor environments, has become a 
research hotspot. 
 
Indoor scene identification depends on environmental 
conditions and signal conditions. The map, spatial structure, 
topological relationship and other information contained in the 
scene constitute the environmental conditions, while the rich 
acoustic, optical, electrical, magnetic and other information 
constitute the signal conditions. Existing research (Afif et al., 
2020; Labinghisa and Lee, 2021; Guo et al., 2018; Miao et al., 
2021) mainly focuses on using deep learning algorithms to 
extract and train image features in complex indoor 
environments, or on integrating wireless signals and barometric 
signals (Alameer et al., 2019; Luo et al., 2015) to achieve scene 
classification and identification. Deep learning algorithms with 
different structures have high requirements for the quantity, 
quality, transmission, and computational resources of images, 
making it difficult to deploy on existing terminals, and real-time 
acquisition of scene identification results also faces challenges. 
Currently, WiFi and Bluetooth devices are widely deployed in 
indoor environments to emit wireless signals in support of the 
internet of things, and their signals are influenced by the 
environment during propagation, exhibiting phenomena such as 
shadowing, fading, and multipath effects (Yassin et al., 2017). 
These characteristics cause signals to exhibit different features 
in different scenes, thereby providing a basis for scene 
identification methods based on wireless signals. However, 
existing devices often use omnidirectional antennas to increase 
signal coverage. The signal characteristics, especially the signal 

strength, in physically close and adjacent scenes are relatively 
similar, which can lead to misidentification in some special 
scenarios, thereby reducing the accuracy of scene identification. 
 
In response to the above issues, the paper proposed an indoor 
intelligent scene identification algorithm based on spatial 
topological constraints to improve scene identification accuracy, 
while also considering the efficiency of algorithm. Based on 
this algorithm, an intelligent scene identification system was 
developed to assist indoor positioning and improve positioning 
accuracy.  Our contributions can be summarized as follows: 
 
1) To improve the training efficiency and consider the accuracy 
of scene identification, a Naive Bayes (NB) classifier was 
adopted to train and classify the wireless signal strength data, 
thereby constructing a scene identification algorithm. 
 
2) Based on the spatial entity attributes of indoor scenes, the 
topological relationships between scenes were analyzed to 
construct a topological relationship adjacency matrix and 
adjacency list, assisting in identification of adjacent scenario 
units. 
 
3) A scene intelligent identification system centered on the 
scene identification algorithm and topological relationship 
constraints is proposed, establishing an online scene 
identification system to achieve real-time scene identification. 
 
The rest of this paper is organized as follows. Section 2 is about 
the methods of the proposed algorithm and the schema of the 
developed system. Section 3 describes the experiments and 
analyses the results. Then the conclusions are presented in 
Section 4. 

 
2. Methods 

2.1 Naïve Bayes Classifier 

Indoor scenes are composed of various scenario units. (Sun et 
al., 2015) had subdivided the indoor environments into narrow 
tunnels, small region, and large areas according to interior space 
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structure. These scenario units are indivisible, and the complex 
indoor scenes are composed of a combination of the three types 
of scenario units. Scene identification is essentially the process 
of learning and classifying wireless signals in different spatial 
environments. With the rapid development of artificial 
intelligence (AI) technology, a series of excellent machine 
learning algorithms have emerged, such as NB, Decision Tree 
(DT), Random Forest (RF), Support Vector Machine (SVM), 
and Artificial Neural Networks (ANN). These algorithms have 
their own advantages and have been widely used in various 
fields. The NB algorithm is a classification algorithm based on 
Bayes' theorem and the assumption of attribute independence. It 
has the characteristics of being simple to implement and 
computationally efficient, making it suitable for the real-time 
identification of scenes. Due to the widely deployment of Wi-Fi 
and Bluetooth devices in indoor environments, the wireless 
signals from these devices are mutually independent and do not 
interfere with each other. Therefore, this paper chooses the NB 
classifier to learn and classify the received signal strength (RSS) 
of Wi-Fi and Bluetooth in each scenario unit to achieve scene 
identification in indoor environments. 
 
Given a sample dataset 1 2{ , , , }mD x x x= 

 , where each sample 

,1 ,2 ,{ , , , }i i i i dx x x x= 
 is a vector of d attributes, and the class 

labels are 1 2{ , , , }Ny c c c=  , meaning that the dataset D can be 
divided into N categories. Based on Bayes' theorem, the 
posterior probability of a sample can be expressed as follows: 

( ) ( )
( ) ( | )| i

i
i

P c P x cP c x
P x

=  (1) 

where ( )P c  is the prior probability of class c , ( | )iP x c  is the 
probability of the sample ix given that the class is c , ( )P c is the 
total probability of the sample ix  and is considered to be same 
for all possible classes.  
 
Given the assumption of attribute independence, ( | )iP c x  can 
be approximately simplified to the following expression: 

( ) ( ) ,
1

( )| ( | )
d

i i j
ji

P cP c x P x c
P x =

= ∏  (2) 

where ,i jx  represents the value of the sample ix on the j -th 

attribute and ,( | )i jP x c  refers to the probability of j -th attribute 
under class . 
 
The class of a sample can be inferred by utilizing the maximum 
likelihood estimation method as expressed in equation (3). 

,
1

( ) arg max ( ) ( | )
d

nb i i jc y j

h x P c P x c
∈

=

= ∏  (3) 

According to the analysis of equations (1)-(3), the probabilities 
( )P c  and ,( | )i jP x c  are necessary to obtain to classify the 

sample ix . 
 
Since the strength of wireless signals is a discrete value, when 
the NB classifier is applied to the training of RSSI, the 
probability ( )P c can be estimated using the following equation: 

( ) cD
P c

D
=  (4) 

where cD is the number of samples class c , D  is the total 

number of samples. The probability ,( | )i jP x c  can be expressed 
as: 

,,
,( | ) i jc x

i j
c

D
P x c

D
=  (5) 

where 
,, i jc xD  is the size of the subset cD  for j -th attribute. 

 
Signal will fluctuate caused by temporal and spatial variations, 
it is not possible to capture all discrete values during the data 
training phase. Therefore, the signal strength values can be 
treated as continuous and assumed to follow a Gaussian normal 
distribution. The probability ,( | )i jP x c  can be expressed as 
follows: 

2
, ,

, 2
,,

( )1( | ) exp( )
22

i j c j
i j

c jc j

x
P x c

µ
σπσ
−

= −  (6) 

where ,c jµ  and 2
,c jσ  are respectively the mean and variance of 

the class c on the j -th attribute. 
 

Once you had the training information of ( )P c  and ,( | )i jP x c , 
the collected RSSI could be used to determine the current user's 
scene in real-time according to equation (3). Therefore, the 
process of scene identification based on the NB algorithm can 
be summarized as follows: 
 
Step 1: In an indoor environment, the scene was first divided 
into scenario units. Within each scenario unit, random walking 
was performed to collect Wi-Fi and Bluetooth signal strengths 
along with the corresponding MAC addresses, which were then 
compiled into a training dataset D . The data was stored at a 
rate of one second per entry to form the training dataset. Each 
sample's attribute corresponded to a unique MAC address, and 
each scenario was assigned a class label. The form of the dataset 
D  can be expressed as follows. 
 
Scenario unit Mac(1) Mac(2) …. Mac(M) 

1c  
1 ,1cRSS  1 ,2cRSS   

1 ,c mRSS  

2c  
2 ,1cRSS  2 ,2cRSS   

2 ,c mRSS  
     

Nc  ,1NcRSS  ,2NcRSS   ,Nc mRSS  

Table 1. The form of the dataset D  

Step 2: Based on the training data set D , the prior probabilities 
( )P c  of each class were calculated and stored according to 

equation (4);  
 
Step 3: Based on the data set cD , calculated the mean ,c jµ  and 

variance 2
,c jσ of the j -th attribute respectively;  

 
Step 4: Repeated steps 2 and 3 to complete the training of the 
dataset.  
 
Step 5: When performing real-time scene identification, real-
time signal strength data is collected. Then the probability of 
each scene was calculated, and the scene with the highest 
probability was returned as the identification result according to 
Equation (3). 
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2.2 The construction of spatial topology 

Topological relationships are spatial relationships between 
spatial entities that do not consider metrics and direction. In the 
Geometry Information System (GIS), the description of 
topological relationships primarily involves three basic 
elements, namely: nodes, arcs, and polygons. These three basic 
elements correspond to the points, lines and surfaces in the 
space entity one by one. In the field of indoor positioning, 
narrow tunnels, small region, and large areas all have spatial 
extents, which can be understood as polygon elements. The 
relationship between scenario units only needs to consider the 
topological relationship between polygon elements. Therefore, 
the topological relationships between indoor scene units are 
limited to two types: adjacency and separation. 

 

Room 1: 92.1% Room 2: 96.5%

Room 3: 93.9% Room 4: 94.8% Room 5: 94.6%

Corridor: 92.1%

 
Figure 1. Example of spatial topological relationships assisting 

scene identification 

 
In Figure 1, the scenario includes a total of 5 rooms and 1 
corridor. Although each room is adjacent to the others, they are 
not interconnected, and each room is adjacent to the corridor. 
Topological relationship tables can be established between the 
rooms and the corridor in two forms: one is an adjacency matrix 
between the rooms and the corridor as shown in Table 2, which 
represents the connectivity between various scenes; the other is 
an adjacency list for the rooms and the corridor as shown in 
Table 3, which indicates the adjacent scene units for each scene. 
To prevent the table content from overflowing, Rooms 1 ~ 5 are 
abbreviated as R1 ~ R5. 

 
Scenario R1 R2 R3 R4 R5 Corridor 

R1 1 0 0 0 0 1 
R2 0 1 0 0 0 1 
R3 0 0 1 0 0 1 
R4 0 0 0 1 0 1 
R5 0 0 0 0 1 1 

Corridor 0 0 0 0 0 1 
Table 2. Adjacency matrix between rooms and corridor 

Scenario Adjacency Unit 
R1 R1, R2, Corridor 
R2 R2, R1, Corridor 
R3 R3, R4, Corridor 
R4 R4, R3, R5, Corridor 
R5 R5, R4, Corridor 

Corridor Corridor, R1, R2, R3, R4, R5 
Table 3. Adjacency list between rooms and corridor 

In Figure 1, the green arrow indicated that the user was at the 
entrance of room 4. When the user moved from Room 4 
towards the corridor, the probability of identifying Room 2 was 
the highest. However, according to the adjacency list between 
rooms and the corridor from Table 3, it could be observed that 
Room 2 was not listed among the adjacent units of Room 4. 
Additionally, by traversing the adjacent units of Room 4, it was 
determined that the probability of the corridor is the highest. By 

examining the adjacency matrix from Table 3, it was found that 
the connectivity value between Room 4 and the corridor was 1, 
indicating that Room 4 was adjacent to the corridor. Therefore, 
it could be inferred that the next scene unit was the corridor 
with an identification probability of 94.8%. 
 
This flowchart described the process of assisting scene 
identification by leveraging the spatial topological relationships 
within an indoor environment. The process steps were 
summarized as follows: 
 
Step 1: Performed scene identification using a NB classifier and 
output the identification probabilities for each scene. 
 
Step 2: Selected the scene with a higher probability as a 
preliminary candidate result, then checked the current scene's 
adjacency list to determine whether the candidate result was 
adjacent to the current scene. 
 
Step 3: If it was not an adjacent relationship, returned to Step 2 
to select the next scene with a higher probability. 
 
Step 4: If it was an adjacent relationship, then check the 
adjacency matrix to determine if there was connectivity. 
 
Step 5: If there was connectivity between two scenes, output the 
result; if there was no connectivity, returned to Step 2 to 
continue the assessment, and repeated this process until the final 
scene identification result was outputted. 

 

Start

Scene identification

Belongs to 
adjacent units？

Is Connectivity？

Select the scenario 
with the highest 

probability

Output result

NO

YES

YES

NO

 
Figure 2. Flow chart of spatial topological relationship assisting 

scene identification 

 
2.3 Online scene identification system 

An intelligent scene identification system centered on the scene 
identification algorithm and topological relationship constraints 
was proposed. The solution diagram was shown in Figure 3. 
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Figure 3. Construction scheme of scene identification system 

 
The construction scheme for the scene identification system 
broken down the scene identification process into three 
subsystems, covering the main processes of scene data 
collection, training, and identification. The three subsystems 
were as follows: data collection and annotation system, the 
scene identification cloud service, and the online application. 
 
The data collection and annotation system collected and 
uploaded current scene data through the HyperText Transfer 
Protocol (HTTP). The scene data mainly included the names of 
places, scene units, device names, and feature data. Scene units 
required manual participation for annotation. The scene 
identification cloud service was responsible for receiving, 
processing, storing, training, and generating predictive models 
for scene identification data. The data processing module 
included feature extraction and format conversion functions, 
which were responsible for processing the uploaded scene 
identification data into vectors, compressing and storing data in 
the scene identification database for training. The core of the 
cloud service was the machine learning algorithm library, which 
included many algorithms such as NB, SVM, RF, DT, and NN. 
It could choose the appropriate classifier based on the signal 
type, and periodically retrieved data from the scene 
identification database for offline learning and updates the 
predictive model. The online application was responsible for the 
collection and upload of real-time signal data, waiting for scene 
identification results and display it. 
 
The online scene identification system decouples the scene 
identification process according to data collection, processing, 
and verification, reducing the complexity and enhancing the 
stability of the system. It also uses a terminal-cloud 
collaborative approach to achieve the development of the 
system, making full use of the computing and storage resources 
of the terminal and cloud. 
 

3. Experiments and Analysis 

3.1 Environmental Setup 

The indoor scene identification experimental site was located at 
the C7 AI Experimental Field of the 54th Research Institute of 
the China Electronics Corporation Group. The experimental site, 
as shown in Figure 4, was 24.92 meters long and 27.49 meters 
wide. The site was divided into three floors, each with a 

different structural layout. The first floor was a lobby with a 
rectangular atrium structure connecting to the second and third 
floors. The second floor of the experimental field consisted of a 
rectangular corridor, the interior walls of which were entirely 
made of tempered glass. Along one side of the corridor, there 
were three small rooms. The corridor and rooms contained 
objects such as tables, chairs, and equipment. The third floor 
had three elongated room areas. 
 

S1:large area

 
(a) First floor 

S4:Room

S5:Corridor

S3:Room S2:Room

 
(b) Second floor 

S
6
：

Room

S7：Room

S
8
：

Room

 
(c) Third floor 

Figure 4. Spatial distribution of each scene 

 
The entire experimental site was divided into 8 scene units, 
represented as S1 to S8. Each scenario unit had already been 
labeled in Figure 4. There were Wi-Fi routers and Bluetooth 
base stations specifically installed for indoor positioning 
experiments. Due to the influence of the glass curtain walls, the 
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propagation of Wi-Fi and Bluetooth wireless signals was 
severely affected by multipath effects. Each scene unit was 
within the coverage area of Wi-Fi and Bluetooth wireless 
signals. 
 
Wi-Fi and Bluetooth signals were collected for scene data 
training by utilizing crowdsourced information collection 
software. The data included the name of the experimental site, 
the scene name, and the device name. Users walked freely in 
each scene, trying to cover the entire area of the scene with their 
movement. Data was collected for 400 seconds in each scene to 
form a training dataset. Additionally, another 400 seconds of 
data was collected in each scene to serve as test data. There 
were a total of 3,295 training data entries and 3,289 test data 
entries. These training data were input into many classifiers for 
training and testing. The results from each were statistically 
analyzed and compared. 

 
3.2 Environmental Results and Analysis 

Before the data were input into the classifiers for training and 
testing, preprocessing of the data is required. This mainly 
included the removal of useless data. Useless data primarily 
consisted of noise within the entire training and testing datasets, 

which might be interference caused by other users' mobile 
phones with Bluetooth or Wi-Fi hotspots enabled during the 
data collection process. Additionally, due to the particularity of 
the signal strength data type, 0-value data in the dataset was 
replaced with the value of -115, indicating that the user is either 
far away or not receiving valid RSS. After the data 
preprocessing, the number of attributes in the dataset was 
reduced from 202 to 189, indicating that 13 attribute data 
belong to the invalid data. 
 
In addition to using the NB algorithm as a scene identification 
training classifier, other machine learning methods such as DT, 
KNN, linear SVM, and NN were also compared using the same 
dataset. The training time and scene identification accuracy of 
each method were compared in Tables 4 and 5. 

 
Method Training time/s Overall accuracy 

NB 1.278 97.1% 
DT 0.558 63.7% 

KNN 1.241 90.6% 
Linear SVM 3.152 98.1% 

NN 2.639 97.2% 
Table 4. Performance of various classifiers 

 
Method S1 S2 S3 S4 S5 S6 S7 S8 
NB 99.7% 98.3% 92.3% 100.0% 99.3% 96.7% 95.3% 88.0% 
DT 19.7% 100% 0.0 100% 97.2% 11.4% 59.9% 19.7% 
KNN 66.6% 99.0% 93.6% 99.0% 95.2% 95.3% 96.7% 65.6% 
Linear SVM 100.0% 100.0% 94.3% 99.3% 99.9% 94.0% 97.3% 64.3% 
NN 98.7% 97.0% 95.7% 99.7% 99.0% 95.3% 93.6% 93.3% 

Table 5. The identification accuracy of each scene with different classifiers 

From the Table 4 and Table 5, it could be observed that the 
method DT exhibited relatively poor performance in both 
overall scene identification and individual scene identification 
rates. The linear SVM achieved the highest accuracy in scene 
identification and maintained a high level of accuracy across 
various scenarios, although it had the longest training time. The 
classification performance of the NN classifier was close to the 
NB classifier in terms of accuracy, but there was a significant 
difference in training time. The training time of the KNN 
classifier was comparable to the NB classifier but its scene 
identification accuracy was 90.6%, which as lower than the 

97.1% of the NB classifier. Due to the deployment of Wi-Fi and 
Bluetooth base stations on the first and second floors, the signal 
characteristic data fluctuated more noticeably on these floors 
across different scenes. Consequently, the identification 
accuracy for scenarios 1 to 5 were higher than for scenarios 6 
through 8 based on various positioning methods. In summary, 
the scene identification algorithm based on the NB method kept 
a balance between identification accuracy and training 
efficiency, demonstrating the best overall performance in this 
environment. 

 
Accuracy S1 S2 S3 S4 S5 S6 S7 S8 

S1 99.7% 0.0 0.0 0.0 0.3% 0.0 0.0 0.0 
S2 0.0 98.3% 1.7% 0.0 0.0 0.0 0.0 0.0 
S3 0.0 7.7% 92.3% 0.0 0.0 0.0 0.0 0.0 
S4 0.0 0.0 0.0 100.0% 0.0 0.0 0.0 0.0 
S5 0.5% 0.0 0.0 0.0 99.3% 0.1% 0.0 0.1% 
S6 0.0 0.0 0.0 0.0 0.7% 97.0% 2.3% 0.0 
S7 0.0 0.0 0.0 0.0 0.0 3.0% 95.3% 1.7% 
S8 0.3% 0.0 0.0 0.0 4.0% 0.0 7.7% 88.0% 

Table 6. Scene identification confusion matrix of Naive Bayes classifier 

Table 6 displayed the confusion matrix for scene identification 
based on the NB classifier, where the first columns represented 
the true class of the scenarios, and the rows indicated the 
predicted categories of the scenarios. From Table 6, it could be 
observed that spatially adjacent scenes were more susceptible to 
misidentification. For example, between Scene 2 and Scene 3, 
which were two adjacent rooms, misidentifications might occur. 
Scenes 5, 6, 7, and 8 also exhibited this issue.  
 
To suppress such misidentifications, constraints based on the 
topological relationships between scenes were utilized. A 

topological relationship table between scenes was established 
according to their spatial distribution. According to the scenes 
depicted in Figure 4, the adjacency matrix for Scenes 1 to 8 was 
constructed as shown in Table 7. 
 
In Table 7, the value 1 indicated that there was an adjacency 
relationship between the scenes and they were connectivity 
while the value 0 indicated that there was no connectivity 
between scenes. For first row, Scene 1 was the lobby on the first 
floor, and Scene 5 is the corridor on the second floor. According 
to the spatial relationship, Scene 1 was adjacent to Scene 5. 
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Although Scene 1 has an overlapping area with Scene 2 in the 
planar projection, they were in a separated relationship. The 

establishment of connectivity between other scenes was done in 
the same manner. 

 
Accuracy S1 S2 S3 S4 S5 S6 S7 S8 
S1 1 0 0 0 1 0 0 0 
S1 0 1 0 0 1 0 0 0 
S1 0 0 1 0 1 0 0 0 
S1 0 0 0 1 1 0 0 0 
S1 1 1 1 1 1 1 0 0 
S1 0 0 0 0 1 1 1 0 
S1 0 0 0 0 0 1 1 1 
S1 0 0 0 0 0 0 1 1 

Table 7. Adjacency matrix from scene 1 to 8 

 
Table 8 was the adjacency list for the scenes, which was used to 
look up the adjacent units of each scene. 

 
Scenario Adjacency Unit 
S1 S1, S5 
S2 S2, S3, S5 
S3 S3, S2, S4, S5 
S4 S4, S3, S5 
S5 S5, S1, S2, S3, S4, S6 
S6 S6, S5, S7 
S7 S7, S6, S8 
S8 S8, S7 
Table 8. Adjacency list between from scene 1 to 8 

According to the process of scene identification, the topological 
relationships between scenes were inspected and constrained 
during real-time scene identification. Based on the topological 
relationship constraints, the confusion matrix for the 
identification of each scene was demonstrated in Table 9. From 
Table 9, it could be seen that the identification accuracy for 
each scene units had been enhanced by utilizing the topological 
relationship constraints except for scene 7. The 
misidentification accuracy between the two adjacent scenes, 
Scene 6 and Scene 8, had not decreased. This phenomenon was 
due to the fact that Scene 7 was connected and adjacent to both 
Scene 6 and Scene 8, fulfilling the topological constraint 
conditions, which results in the scene constraint became 
ineffective in this case. 

 
Accuracy S1 S2 S3 S4 S5 S6 S7 S8 
S1 100.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
S2 0.0 100.0% 0.0 0.0 0.0 0.0 0.0 0.0 
S3 0.0 0.0 100.0% 0.0 0.0 0.0 0.0 0.0 
S4 0.0 0.0 0.0 100% 0.0 0.0 0.0 0.0 
S5 0.3% 0.0 0.0 0.0 99.6% 0.1% 0.0 0.0 
S6 0.0 0.0 0.0 0.0 0.7% 97.3% 2.0% 0.0 
S7 0.0 0.0 0.0 0.0 0.0 3.0% 95.3% 1.7% 
S8 0.0 0.0 0.0 0.0 0.0 0.0 9.0% 91.0% 

Table 9. Scene identification confusion matrix of Naive Bayes classifier 

For the other scenes, the process began by checking the 
topological relationships. If no adjacency was found, the 
procedure described in Figure 2 was followed. The system 
continues to compare the probability values of the remaining 
scenes, selecting the scene with the highest probability value as 
the candidate result. Then, it conducted another topological 
relationship check. This cycle continued until the conditions 
were met, and the final scene identification result was outputted. 
With the assistance of topological relationship constraints in 
scene identification, the overall accuracy of the 8 scenes was 
98.2%, which had an improvement of 1.1% compared to the 
accuracy 97.1% of original NB classifier. We could conclude 
that the accuracy of scene identification had been improved to a 
certain extent by incorporating topological relationship 
constraints. 
 

4. Conclusion 

 
Researching indoor scene identification helps to enhance the 
scene change perception capability of indoor positioning, 
improving the intelligence and effectiveness of the system. To 
address the issue of adjacent scenes being easily confused in 
identification and considering the difficulty and real-time 
requirements of algorithm implementation, this paper proposed  
an indoor intelligent scene identification system based on 

spatial topological relationship constraints. This technical 
solution employed an NB classifier for scene training and 
classification, and incorporated spatial topological relationships 
to constrain and optimize scene identification. A scene 
intelligent identification system centered on the scene 
identification algorithm and topological relationship constraints 
was also developed. The experimental results indicated that the 
scene identification method based on spatial topological 
relationship constraints could effectively improve identification 
accuracy. However, the spatial topological relationships were 
only used for constraints and did not take effect in some special 
cases. In the future, we will focus on researching the connection 
between spatial topological relationships and knowledge graphs 
to enhance their role in intelligent scene identification. 
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