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Abstract 

 

Stone cultural heritage, encompassing a broad spectrum of artifacts such as stone artworks, buildings, tools, and utensils, represents 

one of the most significant categories of cultural heritage. However, the conservation of these cultural heritage faces challenges from 

the process of deterioration. This degradation not only compromises the structural integrity of the heritage but also results in the loss 

of invaluable historical information.  Thus, there emerges a critical demand for effective methods to detect and assess the condition of 

stone cultural heritage, enabling timely and precise conservation interventions. Here we obtained sandstone samples under different 

deteriorative environments through laboratory-simulated deterioration experiments and employed a variety of detection technologies 

to capture a series of changes in the deterioration detection parameters during the sandstone deterioration process. Subsequently, a 

deep learning model was established to correlate the detection parameters with the degree of stone deterioration. A SHAP analysis was 

then conducted to determine the contribution of various parameters to the degree of stone weathering under different experimental 

environments, providing recommendations for selecting appropriate detection technologies and indicators adapted to different 

deterioration environments. To further analyze the deterioration processes of the stone samples, XRD analysis was conducted to 

observe changes in mineral composition throughout the deterioration process. SEM images were utilized to examine the changes in 

micro-morphology and the internal pore structure associated with deterioration. This study provides a basis for the scientific design of 

deterioration detection schemes by selecting the most suitable testing technology for optimal deterioration assessment under specific 

environmental conditions. 

 

 

1. Introduction 

Stone cultural heritage, encompassing a broad spectrum of 

artifacts such as stone artworks, buildings, tools, and utensils, 

represents one of the most significant categories of cultural 

heritage (Huang et al., 2022). These cultural heritages, 

characterized by their diverse types, vast quantities, and 

extensive historical span, are indispensable for understanding the 

cultural identity and historical continuity of human civilizations. 

However, the conservation of these cultural heritages faces 

challenges from the process of deterioration (Zhang et al., 2022). 

Environmental factors, ranging from temperature and humidity 

fluctuations to pollution and biological colonization, have 

significantly contributed to the accelerated degradation of stone 

cultural heritage. This degradation not only compromises the 

structural integrity of the heritage but also results in the loss of 

invaluable historical information. Therefore, there is a critical 

need for effective methods to detect and assess the condition of 

stone cultural heritage, enabling timely and precise conservation 

interventions. 

 

Currently, the assessment of the deterioration degree of stone 

cultural heritage primarily utilizes three categories of indicators. 

The first category evaluates deterioration through the physical 

and mechanical properties of stone, exemplified by the 

classification of carbonate rocks' weathering degrees based on 

ultrasonic wave velocity (El-Gohary, 2013; Fioretti and Andriani, 

2018), and based on the penetration ratio of weathered rock to 

fresh rock (Hachinohe et al., 2000). The second category assesses 

the mineralogical and chemical compositions of stone, such as 

comparing mineral components before and after deterioration 

using X-ray diffraction (XRD) analysis (Friolo et al., 2003), and 

detecting changes in chemical elements with X-ray fluorescence 

(XRF). The third category focuses on the microscopic features of 

stone, like micro-fractures and porosity (Ceryan et al., 2008), 

measuring changes in Al2O3, SiO2, and TiO2 during the 

weathering process (Jayawardena and Izawa, 1994), or utilizing 

the linear fracture density index for evaluation (Sousa et al., 

2005). Existing research suggests that the applicability of various 

deterioration detection techniques in porous stone cultural 

heritage, such as sandstones, can vary greatly depending on the 

primary environmental conditions and mechanisms of 

deterioration. In environments characterized by physical 

weathering, such as temperature fluctuations, wetting-drying 

cycles, and freeze-thaw actions, the porosity of sandstone may 

increase, and internal micro-fractures may form, thereby 

rendering ultrasonic testing more feasible. Conversely, in 

environments characterized by chemical weathering, like those 

affected by atmospheric pollution and acid rain, changes in the 

mineral composition and chemical elements of sandstone suggest 

that XRF and XRD detections could be more effective (Yang et 

al., 2023; Zhang et al., 2023). However, there remains a lack of 
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systematic guidance for selecting the most suitable testing 

technology, particularly non-destructive ones, for optimal 

deterioration assessment under specific environmental conditions 

(Wang et al., 2024). This hinders the efficient and accurate 

application of these techniques in practical monitoring and 

evaluation scenarios. 

 

It is important to study the cross-environmental adaptability of 

various non-destructive testing methods, thereby providing a 

basis for the scientific design of deterioration detection schemes. 

Therefore, this study emphasize the importance of selecting the 

most appropriate and effective detection parameters and 

technologies for evaluating stone deterioration, tailored to the 

specific environmental challenges faced by the stone cultural 

heritage. We obtained sandstone samples under different 

deteriorative environments through laboratory-simulated 

deterioration experiments and employed a variety of detection 

technologies to capture a series of changes in the deterioration 

detection parameters during the sandstone deterioration process.  

Subsequently, a deep learning model was established to correlate 

the detection parameters with the degree of stone deterioration. 

A SHAP analysis was then conducted to determine the 

contribution of various parameters to the degree of stone 

weathering under different experimental environments, 

providing recommendations for selecting appropriate detection 

technologies and indicators adapted to different deterioration 

environments.  Specifically, laboratory-simulated deterioration 

experiments, involving freeze-thaw cycles, and dry-wet cycles 

with acidic and alkaline solutions, were conducted to obtain 

sandstone samples under different weathering environments.  In 

addition to the non-destructive testing methods, this study also 

implemented destructive testing techniques (including SEM, 

XRD) to further analyze the deterioration processes of the stone 

samples. The results indicate that the suitability of various 

detection technologies for assessing deterioration varies 

significantly across different environmental conditions, such as 

acidic, alkaline, and freeze-thaw scenarios.  Additionally, the 

relevance of these detection parameters is closely associated with 

changes in the microstructure and chemical composition of the 

stone during the deterioration process.  These findings emphasize 

the importance of selecting the most appropriate and effective 

detection parameters and technologies for evaluating stone 

deterioration, tailored to the specific environmental challenges 

faced by the stone cultural heritage. 

 

The rest of this paper is organized as follows: Section 2 

introduces the study area of the experiment and the source of the 

experimental samples. Section 3 discusses the data format and 

problem formulation. Section 4 describes the techniques used in 

the simulation experiments and the organization of the 

experimental data. Section 5 presents the deep neural network 

model and the techniques employed during the training process. 

Section 6 discusses the major findings of the conducted 

experiments. Finally, the conclusion is presented in Section 7. 

 

2. Study Area and Sandstone Samples 

The Yungang Grottoes are a UNESCO World Heritage site, with 

the earliest carvings dating back to the time of the Xiaowen 

Emperor of the Northern Wei Dynasty (398-403 AD). Located at 

113°20' E, 40°04' N, in the southern foothills of the Wuzhou 

Mountains in Datong City, Shanxi Province, China, the grottoes 

extend for about 1 km along the mountainside from east to west, 

covering an area of over 20,000 square meters. Currently, there 

are 45 major caves, 252 niches of varying sizes, and a total of 

more than 51,000 stone sculptures. 

The Yungang area experiences a continental semi-arid monsoon 

climate, with significant diurnal and seasonal temperature 

variations. Summers are extremely hot and rainy, while winters 

are dry and cold. The diurnal temperature difference can reach up 

to 20°C, and the monthly temperature difference can be as high 

as 40°C, with an average temperature of around 23°C in July. The 

average annual freezing period lasts 150 days. The annual 

average precipitation is 430 mm, but in extreme cases, it can 

exceed 600 mm or be as low as 140 mm, mainly concentrated in 

July and August, with relative humidity reaching 80%, which can 

lead to short-term high-temperature heavy rainfall events. Under 

these climatic conditions, the sandstone of the Yungang Grottoes 

undergoes frequent freeze-thaw cycles due to the internal 

moisture phase changes. This long-term freeze-thaw process 

continuously weakens the structural integrity of the sandstone, 

increasing porosity, expanding cracks, and ultimately causing 

irreversible structural damage. It is evident that physical 

weathering is a significant cause of the deterioration of the 

Yungang Grottoes sandstone relics, posing a serious threat to 

their preservation. 

The air around the Yungang Grottoes contains suspended 

particles, carbon dioxide, sulfur dioxide, and other nitrogen 

oxides. These gaseous pollutants, combined with factors such as 

moisture and temperature, undergo multi-factor coupling, 

directly causing chemical erosion and damage to the sandstone in 

the grottoes. Additionally, due to the continuous dissolution of 

deep-seated minerals, groundwater is often not neutral but exists 

in acidic or alkaline forms. Under the action of water and acid-

base chemical corrosion, the mechanical strength of the 

sandstone decreases, and its cementing ability also decreases, 

leading to problems such as particle loss and cracks in the 

sandstone, posing a significant threat to the preservation of the 

grotto sculptures. 

This study selected sandstone from the Yungang Grottoes as the 

experimental object and conducted simulated weathering 

experiments in the laboratory. To ensure that the structural 

properties of the experimental samples are as consistent as 

possible with the actual grottoes, we collected sandstone samples 

near the Yungang Grottoes scenic area to prevent any impact on 

the grottoes. The collected samples were fresh rocks excavated 

during recent construction, with uniform texture, clear grain, and 

a yellowish brown color, which fully meeting the requirements 

for fresh sandstone experiments. 

 

3. Experiments and Detection Techniques  

3.1 Simulated Weathering Experiments 

After sampling and preparation, the sandstone samples 

underwent multi-environment (including freeze-thaw, acid, etc.) 

indoor weathering experiments. In this study, the freeze-thaw, 

acid, and alkaline simulated weathering experiment cycles were 

each conducted 65 times. After every 5 cycles, 3 samples were 

preserved from each group for destructive testing, while another 

3 fresh blank control samples were stored, totalling 42 rock 

samples per group. The selected 126 sandstone samples were 

divided into 3 groups of 42 rock samples each, numbered and 

prepared for testing. For the freeze-thaw cycle experiment, the 42 

sandstone samples underwent different numbers of weathering 

cycles. The fresh blank rock samples were untreated, while the 

remaining 39 rock samples simultaneously underwent the freeze-

thaw cycle experiment. The specific steps of the freeze-thaw 

cycle experiment is shown in Figure 1. After every 5 cycles, the 

rock samples were dried and underwent non-destructive testing, 

with data recorded. After non-destructive testing, 3 sandstone 

samples corresponding to the cycle number were preserved for 

non-destructive testing, while the remaining rock samples 
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underwent vacuum saturation water absorption treatment in 

preparation for the next freeze-thaw cycle, until the 65th freeze-

thaw cycle was completed.  

 

Figure 1. Experimental procedure of Freeze-thaw cycle. 

 

In the acid and alkali solution cycle experiments (Figure 2), each 

group of 42 sandstone samples underwent varying numbers of 

weathering cycles. The fresh blank rock samples remained 

untreated, while the remaining 39 rock samples in each group 

were subjected to either acid or alkali cycles, respectively. The 

specific steps involved in the acid-alkali cycle experiments are 

illustrated in the diagram. After every 5 cycles, the rock samples 

were dried and subjected to non-destructive testing, with data 

recorded accordingly. Following the non-destructive testing, 3 

sandstone samples corresponding to each cycle number were 

preserved for destructive testing, while the remaining rock 

samples were prepared for immersion in the respective acid or 

alkali solution for the next cycle, until the completion of the 65th 

cycle for both acid and alkali environments.  

 

Figure 2. Experimental procedure of dry-wet cycles with acidic 

and alkaline. 

During the experiment process, various non-destructive detection 

techniques were employed to obtain changes in sandstone 

samples’ performance, such as mass, ultrasonic wave velocity, 

and chemical element content. 

 

3.2 XRD&SEM 

X-ray diffraction (XRD) and scanning electron microscopy 

(SEM) are crucial techniques employed to analyze the phase 

changes in sandstone before and after the experiments. For XRD 

characterization, a Smartlab X-ray diffractometer was utilized, 

with a measurement angle range of 10°-90° and an angular 

accuracy of 0.0001°. SEM characterization was facilitated by a 

Zeiss GeminiSEM 300 field emission scanning electron 

microscope, boasting a resolution of 1.0 nm, enabling clear 

observation of changes in the pore structure even at the nanoscale. 

The sampling positions for XRD and SEM analyses are 

illustrated in Figure 3. 

 

Figure 3. Schematic of XRD and SEM sampling locations. 

 

4. Data and Problem Formulation 

4.1 Data Description 

After the experiments, a total of 312 data entries were obtained 

for each deteriorative environment. Every data entry 

encompassed the iteration number, serving as an indicator of the 

weathering degree, as well as the variations in nine parameters 

compared to the initial state prior to the experiments. These 

parameters included changes in mass and elemental content 

(comprising Al, Si, Ca, Fe, K), along with the ultrasonic wave 

velocities measured across three dimensions (x, y, z). 

 

4.2 Feature Construction 

In the process of the cyclic experiment, changes in performance 

parameters such as mass, ultrasonic wave velocity, and chemical 

element content were measured. The parameters of the samples 

were recorded before the experiment and after every 5 cycles, and 

the rate of change for each parameter was calculated to assess the 

deterioration of the sandstone under different cycles. Taking 

mass as an example, the formula for the mass change rate is given 

as:  

 
Δ𝑀

Δ𝑡
=

𝑚𝑖−𝑚0

𝑚0
× 100%,    (1) 

 

where 
Δ𝑀

Δ𝑡
is the mass change rate. 

 𝑚𝑖 is the mass of the sample after the ith cycle. 

 𝑚0 is the initial mass of the sample. 

 

Similarly, the rate of change of ultrasonic wave velocity in three 

dimensions, 𝑉𝑥，𝑉𝑦，𝑉𝑧, can be calculated, as well as the rate of 

change of each element (Al, Si, Ca, Fe, K). For subsequent input 

into the model, the iteration count for each sample is used as the 

label L, and these indicators are encoded as a 1×9 input sequence, 

represented as X： 

𝑋𝑖 = [𝑀 𝑉𝑥 𝑉𝑦 𝑉𝑧 𝐴𝑙 𝑆𝑖 𝐶𝑎 𝐹𝑒 𝐾],    (2) 
 

Where 𝑋𝑖 is the feature tensor for the 𝑖th sample. 

 

4.3 Problem Formulation 

To analyze the contribution of each feature to the weathering 

degree for subsequent mechanistic analysis, we need an 

expression to quantify the impact of each feature on weathering. 

This will allow us to explain the model's prediction results by 
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attributing the contributions to the various features involved in 

the prediction. 

Assuming the model's predicted degree of weathering for a 

sample is 𝑦𝑖 , and the baseline of the entire model (usually the 

mean of the target variable for all samples) is 𝑦𝑏𝑎𝑠𝑒 . We can 

calculate the deviation of the predicted value for sample 𝑖 relative 

to the baseline value by taking the difference, as shown in 

expression (3). 

 ϕ𝑖 = 𝑦𝑖 − 𝑦base,     (3) 
 

This deviation represents the extent to which the predicted value 

for sample 𝑖 deviates from the baseline value. 

 

5. Method 

5.1 MLP Layer 

The Multilayer Perceptron (MLP) is a flexible mathematical 

modeling technique used to learn the behavior of complex 

systems by associating input and output data. When coupled with 

activation layers, MLPs can capture both linear and non-linear 

relationships between inputs and targets. Consequently, after 

learning from a set of samples, an MLP can provide solutions for 

new samples based on the learned patterns. Thus, after training 

on a portion of experimental data, it can predict the degree of 

weathering for the remaining data. 

An MLP typically comprises an input layer, one or more hidden 

layers, and an output layer (Figure 4). The number of neurons in 

the input and output layers corresponds to the dimensions of the 

input and output data for the problem at hand. However, 

determining the optimal number of neurons in these layers often 

requires iterative experimentation. Additionally, the Rectified 

Linear Unit (ReLU) function is introduced as an activation layer: 

 𝑓(𝑥) = max(0, 𝑥),    (4) 

 

 
Figure 4. The structure of MLP. 

 

5.2 Multi-attention Layer 

The Attention Mechanism is a technique that mimics the human 

attention process and has achieved significant success in the field 

of deep learning. Its main idea is to consider that different 

parameter changes have varying effects on the final degree of 

weathering. Therefore, we employ the attention mechanism to 

adaptively capture the influence of each parameter on the 

weathering degree (Figure 5). This encourages the model to focus 

more on parameter changes relevant to the task while ignoring 

less relevant features. 

 

Figure 5. The structure of multi-head attention layer. 

 

For an input feature group 𝑋𝑖  with a length of 𝑛 experimental 

parameters, where the rate of change of the jth experimental 

parameter is 𝑋𝑖𝑗, we map it to three vectors: query vector 𝑄𝑖, key 

vector 𝐾𝑖, and value vector. 𝑉𝑖 . Our calculation process involves 

comparing the distance relationship between the query 𝑄 and the 

key 𝐾, then looking up the key 𝐾 and value 𝑉 pairs, preferentially 

inferring the final result. The calculation of these three vectors is 

obtained through linear mapping of 𝑋𝑖. 

 𝑞 = 𝑊𝑞𝑋𝑖 ,  𝑘 = 𝑊𝑘𝑋𝑖 ,  𝑣 = 𝑊𝑣𝑋𝑖,   (5) 

 

where 𝑊𝑞, 𝑊𝑘, 𝑊𝑣 are mapping matrices for queries, keys, and 

values, respectively.  

Then, we calculate the dot product of the query vector and the 

key vector, then divide by the square root of the dimension of 

√𝑑𝑘(where 𝑑𝑘 is the dimension of the query or key vector) to 

obtain attention scores (represented as Score here).  

                   𝑆𝑐𝑜𝑟𝑒(𝑞, 𝑘𝑖) =
𝑞⋅𝑘𝑖

√𝑑𝑘
,    (6) 

 

We normalize the attention scores using the softmax function to 

obtain attention weights. These weights represent the relative 

importance of each experimental parameter of each experimental 

data for the current position output. Here, these weights are 

denoted as Weight. 

Weight(𝑞, 𝑘𝑖) =
exp(Score(q,ki))

∑ exp(Score(q,kj))n
j=1

,  (7) 

 

The attention weights were used to perform a weighted sum on 

the numerical vectors, obtaining the output of self-attention, 

denoted as O. 

O(𝑞, {𝑘𝑖}, {𝑣𝑖}) = ∑ Weight(𝑞, 𝑘𝑖)𝑛
𝑖=1 ⋅ 𝑣𝑖,    (8) 

 

By this method, we need to iterate over all feature vectors, and 

we can convert the above vector calculations into matrix form. 

We can define multiple sets of 𝑄，𝐾，𝑉, each focusing on 

different contextual relationships. The calculation process 

remains the same, except that the matrix for linear transformation 

changes from a single set of linear mapping matrices to multiple 

sets of linear mapping matrices. This is the principle of multi-

head attention mechanism. 

 

5.3 Linear Interpolation 

To increase the generalization of the model by introducing new 

samples, we employed a linear interpolation method similar to 

Sample Pairing during the training phase. The interpolation 

method is shown in Figure 6: for each experimental data entry 

that will participate in the training, we select another 

experimental data entry that has not been included in the training 
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set, and take the average of their respective degrees of weathering 

(i.e., labels) and feature tensors. Ultimately, as illustrated in 

Figure 6, we generate a new data entry to replace the original one, 

which is then fed into the training network for model training. 

 
Figure 6. The workflow of linear interpolation. 

 

Specifically, during the training process, our training procedure 

follows the method proposed by Inoue (Inoue, 2018), as follows: 

1）At the beginning of training, we do not enable interpolation 

training, allowing the loss to quickly converge within the 

constrained space. 

2) During the middle stages of training, we start linear 

interpolation, and the loss begins to oscillate. 

3) After 8 epochs of interpolation, we will turn off linear 

interpolation for 2 epochs. 

4）Once the oscillation becomes stable, we will turn off linear 

interpolation until the end of training. 

 
Figure 7. The structure of MLP-ATTENTION Model. 

 

Therefore, the structure of the MLP-Attention-Linear 

interpolation model is illustrated in Figure 7. 

 

5.4 SHAP  

The SHapley Additive exPlanations (SHAP) value is a method 

employed to interpret predictions generated by machine learning 

models. It is rooted in the concept of Shapley values originating 

from game theory, applied in this context to quantify the 

contribution of each experimental parameter to the output 

weathering degree. The core principle of SHAP values lies in 

allocating the contribution of each feature to the various features 

involved in the prediction, thereby elucidating the model's 

prediction results. It takes into account all possible combinations 

of features and calculates the impact of features on the model 

output for each combination. Assuming the i-th experimental 

sample is represented by 𝑥𝑖  and the jth experimental parameter 

feature of the ith sample is xij, then the SHAP value follows the 

following equation: 

 𝜙𝑖 = ∑ 𝑓(𝑥𝑖,𝑗)𝑀
𝑗=1 ,     (9) 

 

For a given feature, a higher SHAP value indicates a greater 

contribution of that input experimental parameter feature to the 

degree of weathering. 

 

6. Result and Discussion 

6.1 Model Performerce 

To observe the improvements in the model after incorporating the 

attention mechanism and linear interpolation, we first take the 

freeze-thaw data as an example and perform regression with 

different detection parameters as independent variables and the 

number of cycles as the dependent variable. In this setting, the 

learning rate is fixed at 0.01, the number of iterations is fixed at 

300, 20% of the data is used as the validation set, and the mean 

square error (MSE) is used as the loss metric. Compared to a 

model consisting of only two MLP layers, the introduction of the 

attention mechanism layer reduces the MSE loss on the test set 

from 66.47 to 7.14, although the training time increases. After 

adding linear interpolation to the training process, the training 

duration is further prolonged (because linear interpolation 

consumes considerable computational resources), but the MSE 

loss on the test set further decreases to 2.58. 

 

Model Learning 

Rate 

Number  

of  

iterations 

Training 

time(S) 

Test 

MSE 

MLP 0.01 300 2.80 66.47 

MLP-

Attention 

0.01 300 90.67 7.14 

MLP-

Attention- 

Linear 

interpolation 

0.01 300 1,032.51 2.58 

Table 1. Deep-learning parameters and classification accuracy. 

 

From the training loss curve in Figure 8, it can be observed that 

there are expected oscillations in the middle stage (epochs 50-

220). According to the magnified part of the graph, it can be 

inferred that in the final stage after turning off linear interpolation, 

the MLP Attention Linear Interpolation model converges more 

quickly to the low loss range, clearly achieving the best effect. 

On the test set, the MLP Attention Linear Interpolation model 

achieves the best results, and the losses are compared, indicating 

that the generalization advantage provided by linear interpolation 

is more obvious. Therefore, for data from different experimental 

environments, this paper trains the MLP Attention Linear 

Interpolation model and then uses SHAP for factor analysis. 

 
Figure 8. The loss curves of the three models. 

 

6.2 Factor Analysis with SHAP 

Through SHAP analysis, the main detection techniques strongly 

associated with the number of weathering cycles were 

determined.  
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Figure 9. Scatter plots and bar graphs of SHAP factor analysis 

in multiple environments including: (a) freeze-thaw, (b) acidic, 

(c) alkaline. 
 

As Figure 9 suggests, under freeze-thaw conditions, the main 

indicators that change are the total mass and the content of Ca. 

The scatter plot shows that as the number of cycles increases, 

both the total mass and the content of Ca gradually decrease. 

Calcium is a major element in the composition of sandstone 

feldspar, calcite, dolomite, and other metallic minerals. The 

decrease in Ca content indicates, to a certain extent, a reduction 

in the content of these mineral components. A decrease in the 

content of cementing materials leads to a decline in the 

cementation ability of sandstone, resulting in the shedding of 

mineral particles. Under freeze-thaw conditions, the influence of 

chemical composition is relatively small; therefore, the 

proportion of mass change is relatively large. 

 

Under acidic conditions, the main changes are in the content of 

iron and silicon elements. The scatter plot shows that as the 

number of cycles increases, the mass of Fe decreases, while the 

content of Si increases. The decrease in iron content is due to the 

dissolution reactions of feldspar, calcite, dolomite, metallic iron, 

and their oxides in acidic solutions. After feldspar, cementing 

material calcite, and dolomite are eroded by acidic solutions, they 

undergo chemical reactions to form gypsum (CaSO4) and other 

sulfate substances. The solution will migrate into the sandstone's 

interior through its pores and channels. The inner cementing 

material will also undergo the same chemical reactions to 

generate sulfates, which will dissolve in water or form salt 

crystals. Therefore, after cycling, the content of elements such as 

Fe decreases in the sandstone. 

 

Under alkaline conditions, the most significant changes observed 

are the variations in Al and K elemental content. The scatter plot 

shows that with the accumulation of cycle numbers, the content 

of Al and K elements gradually decreases. The sandstone mainly 

undergoes dissolution reactions of quartz and feldspar in alkaline 

solutions, and form salt substances such as sodium silicate, 

calcium silicate, and potassium silicate. Therefore, after cycling, 

the content of elements such as Al and K decreases in the 

sandstone. 

 

6.3 Mineral Composition and Microstructure Analysis 

According to the XRD test results, the main mineral components 

of fresh sandstone include quartz (SiO2), potassium feldspar 

(KAlSi3O8), calcite (CaCO3), and kaolinite (Al2Si2O5(OH)2). 

However, the mineral composition of sandstone varies under 

different environmental conditions. In the freeze-thaw cycle 

experiment, characteristic peaks of quartz, potassium feldspar, 

calcite, and kaolinite were observed at all stages. After the cycles, 

the intensity of the calcite peak slightly decreased, the potassium 

feldspar peak intensity reduced, and the kaolinite peak intensity 

increased, indicating a decrease in potassium feldspar content 

and an increase in kaolinite content. 

In the acidic cycle experiment, characteristic peaks of quartz, 

potassium feldspar, and kaolinite were observed at all stages. The 

characteristic peak of calcite gradually weakened and became 

extremely low after 60 cycles. New characteristic peaks of salt 

substances CaSO4 and MgSO4 were detected, indicating that the 

mineral components underwent chemical dissolution reactions. 

In the alkaline cycle experiment, characteristic peaks of quartz, 

potassium feldspar, and kaolinite were observed at all stages. 

After 60 cycles, the characteristic peaks of potassium feldspar 

and calcite significantly weakened, and new peaks of sodium 

silicate appeared. This suggests that the content of potassium 

feldspar and calcite decreased, and the sandstone structure was 

damaged. 

 

Additionally, SEM was used to observe and analyze the 

microstructure characteristics of the surface (0-0.5 cm) and inner 

layer (2-2.5 cm) of the sandstone. The magnification used was 

1000 and 3000 times, respectively. The top-left image is a 1000x 

magnification morphology image of the surface, the top-right 

image is a 3000x magnification morphology image of the surface, 

the bottom-left image is a 1000x magnification morphology 

image of the inner layer, and the bottom-right image is a 3000x 

magnification morphology image of the inner layer. 

 
Figure 10. SEM microstructure images of sandstone under 

weathering in multiple environments, including: (a) fresh, (b) 

freeze-thaw, (c) acidic, (d) alkaline. 

 

The SEM images in Figure 10 clearly demonstrate that the 

microstructure of both the surface and inner layers of fresh 

sandstone is compact, with well-defined particle outlines, strong 

cementation, and a smooth surface.  
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There are few signs of weathering, with only a small number of 

tiny pores present on the surface, while the inner layer is nearly 

pore-free, suggesting a high degree of density. Following the 

alkaline cycling experiment, both the surface and inner layers of 

the sandstone exhibited pronounced weathering characteristics. 

The sandstone's surface structure became loose, with numerous 

irregularly distributed mineral particles of varying sizes and a 

significant amount of fine debris adhering to it. At higher 

magnifications, multiple micro-cracks and pores were visible on 

the sandstone surface. The primary cause of this weathering is the 

dissolution of quartz and feldspar within the sandstone when 

exposed to alkaline conditions, resulting in the formation of 

dissolution holes on the surface. This process erodes the structure, 

weakens the cementation between particles, and leads to the 

generation and precipitation of new salts, which accumulate as 

fine mineral particles on the surface. In contrast, the inner layer 

of the sandstone remained free of debris particles and maintained 

a relatively intact structure. The surface displayed minor 

undulations, with some degree of cementation between mineral 

particles. Under magnification, micro-cracks and a small number 

of dissolution pores were still observed. However, when 

compared to fresh sandstone, the inner layer structure also 

exhibited some damage, although to a lesser extent than the 

surface. 

 

7. Conclusion 

Detecting and assessing the condition of stone cultural heritage 

is of utmost importance. In this study, a method utilizing deep 

learning techniques to analyze the adaptability of deterioration 

detection technologies for stone cultural relics was proposed. 

Firstly, weathered sandstone samples were prepared under four 

conditions (freeze-thaw, acidic, and alkaline) through laboratory-

simulated weathering experiments. Detection parameters of the 

sandstone under different weathering environments were 

obtained using various non-destructive detection techniques, 

such as ultrasonic wave velocity detection and XRF detection. 

Next, an MLP-Attention-Linear interpolation model was 

developed to analyse the relationship between the above NDT 

parameters and the degree of weathering. The SHAP technique 

was then used to analyse the contribution of each detection 

parameter to the weathering degree under different 

environmental conditions, i.e. the correlation between the 

detection parameters and the degree of weathering. The results 

show that the applicability of various detection techniques in 

assessing sandstone deterioration under different environmental 

conditions varies widely. Combined with further chemical 

composition and microstructural analyses, it is evident that the 

correlation of these detection parameters is closely related to the 

changes in microstructure and chemical composition of the 

sandstone during the deterioration process. These findings 

emphasise the importance of selecting the most appropriate and 

effective assay parameters and techniques for assessing stone 

deterioration in response to the specific environmental challenges 

faced by stony cultural heritage. 
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