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Abstract 

 

Cultivated land is the basic resource and material condition for human survival, providing the necessary material basis for agricultural 

development and agricultural modernization (Tian and Shi, 2024). For this reason, this paper takes Beijing as an experimental area to 

study the cultivated land extraction method and analyze the distribution pattern of cultivated land and the degree of fragmentation. The 

results show that (1) the extraction results are evaluated by using confusion matrix and Kappa coefficient, and the Kappa coefficient is 

obtained to be 0.8358.(2) The cultivated land in Beijing is mainly distributed in the southeast as well as the northwest of the local area 

of gentle terrain, and the The range of the extremely high value of cultivated land kernel density in 2017-2022 is significantly reduced, 

the slope of the area with the smallest reduction in the proportion of cultivated land is less than 5°, the reduction in the area of cultivated 

land in water resource-rich areas is small, and the reduction in the proportion of cultivated land in road-intensive areas is large. (3) Due 

to various natural factors and human activities, the degree of cultivated land fragmentation in Beijing is increasing, the boundary shape 

of cultivated land patches tends to be irregular. 

 

1. Introduction 

 

Cultivated land is vital for agriculture, rural areas, and farmer 

well-being, impacting both national economy and people's 

livelihoods (Huang et al., 2019). Remote sensing technology 

offers distinct advantages for large-scale cultivated land studies. 

Its synchronous, large-area observation capabilities and high 

timeliness provide rich data for extraction and spatial pattern 

analysis. Remote sensing images can capture the complex and 

diverse shapes of cultivated land. Deep learning methods, 

particularly target detection and semantic segmentation, excel at 

extracting features and determining the spatial location and 

category of each land element (Cheng et al., 2017). The spatial 

pattern of cultivated land refers to its distribution and 

configuration. Its formation is influenced by both the inherent 

characteristics of the land itself and the surrounding natural and 

socio-economic environment (Brabec and Smith, 2002). 

Researching this spatial pattern, including its formation 

mechanisms and the interplay between land, environment, and 

socio-economic factors, allows for predictions and effective 

management of future land patterns. This holds significant 

theoretical and practical value for comprehensive cultivated land 

improvement and agricultural modernization (Geng et al., 2021). 

 

2. Study area and data 

 

2.1  Study area 

 

Beijing is located in the northern part of the North China Plain, 

adjacent to Bohai Bay and Tianjin. The terrain is high in the 

northwest and gently slopes down to plains in the southeast, with 

an average elevation of 43.5 m (Qiu et al., 2021). The area is rich 

in water resources, including rivers, lakes and reservoirs. In 

general, Beijing's topography, climate, hydrology, and other 

natural geographic conditions are favourable for agricultural 

development, with wheat and corn being the main crops (Yin et 

al., 2024).  

 

However, due to Beijing's unique position as the "capital city", 

population growth and rapid urban expansion have led to a 

steady decline in the food production capacity of cultivated land. 

Large tracts of continuous farmland land have been fragmented, 

and clear boundaries between cultivated land and urban areas 

have become increasingly blurred (Yin et al., 2019). This has 

exacerbated the issues facing cultivated land, significantly 

hindering agricultural development. 

 

2.2  Data source and sample set production 

 

In this study, the Google Earth Engine remote sensing cloud 

computing platform was utilized to acquire Sentinel-2A image 

data of the Beijing area from September 2017 and September 

2022. These images contain three visible bands-red, green, and 

blue-with a spatial resolution of 10 meters. These datasets are 

widely used for remote sensing image classification. 

Additionally, clouds in Sentinel-2 images can be quickly 

removed using the QA bands provided officially, and the cloud-

free areas are processed by overlaying images from different 

time periods (Cai et al., 2019). For this study, the area was 

categorized into two land classes: cultivated land and non-

cultivated land. Cultivated land samples were manually 

annotated with reference to Google map images from both 2017 

and 2022 to create the label file. The large remote sensing images 

were then cropped into smaller images of 256 px*256 px with a 

cropping step of 64 px. Data enhancement methods such as 

rotation and flipping were applied to generate 3,544 images and 

their corresponding labels. These images were randomly divided 

into a training set and validation set in a 7:3 ratio.  

 

Furthermore, auxiliary data such as Beijing's 90m DEM data, 

township and street-level administrative planning data, water 

system data, and OpenStreetMap road network data were used 
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for landscape pattern analysis. This auxiliary data forms a 

reliable database for this study. 

 

3. Methodology 

 

In this study, we addressed the national demand for cultivated 

land protection by focusing on Beijing as our study area. We 

created a sample set of cultivated land to train a deep learning 

network to extract cultivated land patches. Using HRNet, we set 

relevant parameters to pre-train the model, and adjusted these 

parameters multiple times to select the model with the best 

training results based on accuracy, recall and other indicators. 

Once the model was trained, we used it to extract cultivated land 

from the remote sensing image data of Beijing. We then 

compared the extracted cultivated land with actual labels and 

calculated evaluation indexes such as the Kappa coefficient to 

assess the cultivated land extraction results. Finally, we 

conducted a landscape pattern analysis of the cultivated land. 

This analysis included examining the distribution of cultivated 

land, trends in cultivated land change, driving factors, 

fragmentation, and spatial agglomeration characteristics of 

cultivated land fragmentation. The goal was to provide a 

theoretical and practical basis for the country to rationalize the 

layout of cultivated land, improve its quality, and implement 

effective cultivated land protection policies. 

 

 

Figure 1. Research framework of cultivated land extraction and 

spatial pattern analysis. 

 

3.1  Cultivated land extraction 

 

HRNet (High-Resolution Network) is a deep convolutional 

neural network designed to efficiently process high-resolution 

images and provide accurate prediction results (Zhu et al., 2019). 

The overall structure of HRNet is shown below. In this structure, 

the horizontal direction indicates the depth of the network, while 

the vertical direction represents the scale of the feature map.At 

each stage of the network, a new branch is added with half the 

resolution and double the number of channels, running in 

parallel with the original channels. This architecture allows for 

the effective fusion of multi-scale information by exchanging 

information across parallel multi-resolution sub-networks at 

different stages (Akhyar et al., 2024). This design enables 

HRNet to consistently provide robust semantic information and 

precise positional information, making it particularly well-suited 

for location-sensitive tasks such as object detection and semantic 

segmentation. 

 

Figure 2. HRNet frame diagram. 

 

HRNet's fusion module ensures that the output of each stage is 

the result of fusing information from parallel tributaries (Zhao et 

al., 2023). Taking the fusion module for four representations as 

an example, each output is the result of summing the four input 

representations after transforming them by a conversion function, 

calculated as: 

 

 𝑅𝑟
𝑜 = 𝑓1𝑟(𝑅1

𝑖) + 𝑓2𝑟(𝑅2
𝑖 ) + 𝑓3𝑟(𝑅3

𝑖 ) + 𝑓4𝑟(𝑅4
𝑖 ) (1) 

 

Where  fxr (R) = the conversion function. 

x = the xth input 

r = the rth output. 

When x=r, no conversion is performed on the representation, 

when x<r, downsampling is performed, and when x>r, 

upsampling is performed to increase the resolution. 

 

In this study, cultivated land extraction is considered as a binary 

classification problem, dividing the study area into cultivated 

land and non-cultivated land categories. Cultivated land was 

manually labeled in Sentinel-2 imagery from 2017 and 2022, 

using Google imagery as a reference. A sample set of cultivated 

land was created by randomly selecting areas and cropping the 

cultivated land vector labels and images. To increase the number 

of samples and prevent overfitting during training data 

augmentation techniques were employed to expand sample set. 

The datasets was then randomly divided into a training set and a 

validation set in a 7:3 ratio. The training set was used to train the 

HRnet deep learning network, while the validation set was used 

to evaluate the trained model for cultivated land extraction. The 

model parameters were continuously adjusted to select the 

model with the best performance. The optimized model was then 

applied to the entire Beijing area to extract cultivated land (Li et 

al., 2021) 

 

Parameter 1 3 4 5 

Initial 

learning rate 
0.00001 0.00001 0.00001 0.00001 

Class weight 1:1 1:4 4:1 10:1 

Area weight 1:1 1:1 1:1 1:1 

Loss 2.258 2.212 2.168 2.318 

IoU 0.816 0.785 0.801 0.835 

Recall 0.845 0.864 0.898 0.718 

Precision 0.811 0.778 0.894 0.934 

Accuracy 0.884 0.855 0.976 0.869 

F1 0.826 0.805 0.890 0.754 

Table 1. Model training parameters. 

 

The table presents the main parameters involved in the 

debugging process, as well as some records of the training 

indices corresponding to the obtained model. After repeated 

training, a training batch size of 3000 and a cropping size of 468 

px were selected as the most appropriate. The debugging mainly 
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focused on adjusting the initial learning rate, category weights, 

and area weights to observe the effects of these parameters on 

the model's training indices. The final selected model achieved a 

recall of 89.8%, an accuracy of 97.6%, a precision of 89.4%, and 

an F1 score of 0.89. The initial learning rate for this model was 

set to 0.00001, and the category weights were set to 4:1. 

 

3.2  Analysis of spatial patterns 

 

3.2.1  Landscape pattern index: Landscape pattern typically 

refers to the spatial layout of the landscape, encompassing both 

the distribution and arrangement of landscape elements of 

various shapes and sizes on the surface, as well as the reflection 

of landscape heterogeneity(Liu et al., 2021). The landscape 

pattern index serves not only as a quantitative indicator of 

landscape structure, but also as a comprehensive summary of 

landscape pattern information (Wahyudi et al., 2019). Changes 

in these indices can quantitatively reflect shifts in land use 

patterns across various dimensions.  

 

Based on existing studies, 12 indices suitable for analyzing the 

landscape pattern of cultivated land in Beijing were selected 

according to the distribution characteristics of cultivated land in 

the area (Chen et al., 2019). Calculations were performed using 

Fragstats software, which enabled the computation and analysis 

of the landscape pattern indices and the changes in 

characteristics of Beijing's cultivated land for the years 2017 and 

2022. These indices include 9 class-level indices and 3 

landscape-level indices, as shown in the following table. 

 

Landscape 

pattern index 
Units Description 

NP a 

Represents the total number 

of plots of cultivated land in 

the study area 

PD a/km² 

Represents the number of 

map spots in the unit area of 

cultivated land. 

AI % 

Indicates the degree of 

separation between different 

plots of cultivated land. 

LPI % 
Indicates the dominant pattern 

in the landscape 

LSI / 

The larger the index, the more 

irregular the shape of 

cultivated land pattern. 

AREA_ 

AM 
km² 

The smaller the value, the 

greater the degree of 

cultivated land fragmentation. 

SHAPE_AM / 

This value is used to describe 

the regularity of the overall 

shape of cultivated land 

pattern 

CLUMPY % 

This value can reflect the 

aggregation degree and 

dispersion state of cultivated 

land pattern spots in the 

landscape. 

DIVISION / 

This value indicates the 

degree of separation between 

different plots of cultivated 

land. 

Table 2. Landscape pattern index at class scale. 

 

 

Landscape 

pattern index 
Units Description 

ED m/km² 

This value indicates the 

degree to which a landscape 

or type is divided by a 

boundary. 

FRAC_ 

MN 
/ 

This value is the average 

value of the sum of the 

fractal dimensions of each 

spot in the landscape 

CONTAG % 

This value can reflect the 

aggregation degree or 

spreading trend of different 

pattern types in the 

landscape. 

Table 3. Landscape pattern index at landscape scale. 

 

3.2.2  Cultivated land Fragmentation ： The study of 

cultivated land fragmentation can draw on research methods and 

ideas from landscape fragmentation (Zhang et al., 2022). It is 

essential to assess the degree of cultivated land fragmentation 

using landscape pattern indices and establish a reasonable 

cultivated land fragmentation evaluation model (Chen et al., 

2012).  

 

In this study, 164 street-level units with cultivated land in 

Beijing in 2017 and 163 street-level units with cultivated land in 

Beijing in 2022 were selected as samples. Then the scale class, 

shape class, agglomeration class and comprehensive 

fragmentation index of cultivated land in each research unit were 

calculated This evaluation model helps analyse the distribution 

of cultivated land patches and provides a quantitative and 

qualitative description of their shape. The 12 landscape pattern 

indices selected have different units, which could significantly 

impact the results. To standardize the indices and eliminate scale 

differences' influence, each index needs to be dimensionless. In 

the CRITIC weighting method (Liu et al., 2019), both forward 

and inverse normalization processes are usually used. When the 

evaluation indicator to be processed is a positive indicator, the 

formula for the normalization process is: 

 

 𝑥′𝑖𝑗 =
𝑥𝑗−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (2) 

 

When the indicator to be evaluated is a negative indicator, the 

formula for the reversalization process is: 

 

 𝑥′𝑖𝑗 =
𝑥𝑚𝑎𝑥−𝑥𝑗

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (3) 

 

Where   𝑥ⅈ𝑗
′ =the dimensionless value 

𝑥𝑖𝑗=the original value of the indicator 

𝑥𝑖𝑚𝑖𝑛, 𝑥𝑖𝑚𝑎𝑥 = the minimum and maximum values in 

the sample respectively 

 

The categories and indicator attributes of each indicator are 

shown in the table below. 
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Class Name Stats 

Scale class 

NP + 

PD + 

LPI - 

AREA_AM - 

shape class 

LSI + 

SHAPE_AM + 

ED + 

FRAC_MN + 

Aggregation 

class 

AI - 

CLUMPY - 

DIVISION + 

CONTAG - 

Table 4. Classification of index of fragmentation evaluation 

system. 

 

To reflect the contribution of different indicators to cultivated 

land fragmentation, it is necessary to assign weights to each 

indicator. This study chose the CRITIC weighting method to 

determine these weights. The intensity of comparison among 

indicators is expressed through the standard deviation: a larger 

standard deviation implies greater variability of an indicator 

across different units, indicating a significant difference in 

values between regions. Indicators with substantial differences 

should be assigned higher weights to highlight this discrepancy. 

Weights for each index were calculated accordingly (Zhao and 

Feng, 2024). Subsequently, the comprehensive index method 

was employed to compute the degree of cultivated land 

fragmentation for each street-level unit in Beijing, with the 

formula: 

 

 𝑅𝑖 = ∑ 𝑝𝑖𝑗 × 𝑤𝑗
𝑛
𝑗=1  (4) 

 

Where   𝑅𝑖 = the comprehensive fragmentation index of 

cultivated land in the 𝑖th evaluation unit 

 𝑝𝑖𝑗= the score of the 𝑗th indicator in the 𝑖th evaluation 

unit 

𝑤𝑗is the weight of the 𝑗th indicator. 

 

Classification is carried out using the natural breakpoint method, 

identifying suitable breakpoints and categorizing them into 

graded levels. The degree of cultivated land fragmentation is 

then classified into five zones: very low value, low value, 

medium value, high value, and very high value, based on the 

graded results. 

 

4. Experimental results and analysis 

 

4.1  Cultivated land extraction results 

 

The cultivated land patches of Beijing in 2017 and 2022 

extracted by the trained model are depicted below. Overall, 

cultivated land in Beijing is primarily concentrated in the flat 

plains of the southeast, while sparse and fragmented patches of 

cultivated land are found scattered in the mountainous regions of 

the northwest, and urban construction areas have virtually no 

cultivated land. The model can extract the cultivated land more 

completely in the plain area with flat topography, intact plots and 

large cultivated land area, with fewer omissions.  

 

 

Figure 3. Results of cultivated land extraction in Beijing: (a) in 

2017;(b) in 2022. 

 

It also effectively identifies cultivated land devoid of vegetation 

cover and land cultivated during various crop growth stages. The 

training model's parameter configuration assigns a weight ratio 

of 4:1, with a higher weight assigned to cultivated land and a 

lower weight to non-cultivated land. This adjustment mitigates 

issues related to sample class imbalance during model learning, 

consequently enhancing its interpretive capabilities. 

 

 

Figure 4. Results from cultivated land in plain area and 

adjacent to city. 

 

 

Figure 5. Results of cultivated land extraction: (a) adjacent 

roads; (b) Hilly areas with gentle terrain. 

 

The model can effectively identify the boundaries of cultivated 

land adjacent to roads and other land uses such as urban areas. It 

also performs well in mixed areas where cultivated land has 

irregular shapes, is fragmented, or has low differentiation, as 

well as in regions with complex topography, extracting 

irregularly shaped and sporadically distributed cultivated land in 

mountainous areas.  

 

However, the model sometimes misclassifies small amounts of 

construction land, forest land, and grassland as cultivated land. 

The features of these land types sometimes closely resemble 

those of cultivated land without vegetation cover, making them 

difficult to distinguish even through manual visual inspection. 

Consequently, the model also performs poorly in recognizing 

cultivated land that is challenging to identify visually in the 

images. 

 

To quantitatively evaluate the extraction results, a test area was 

randomly selected from each of the 2017 and 2022 images of 

cultivated land in Beijing. The extraction results were 

superimposed on manually labeled maps, which were evaluated 

by a series of comprehensive evaluation metrics, including 
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Overall Accuracy (OA), Producer Accuracy (PA), User 

Accuracy (UA), and Kappa Coefficient. The calculated Overall 

Accuracy (OA) is 0.9208, the Producer Accuracy (PA) is 0.1709, 

User Accuracy (UA) is 0.1702 and Kappa Coefficient (K) is 

0.8358. The confusion matrix is shown below. 

 

 

The predicted 

result is non-

cultivated land/ 

km² 

Predicted 

cultivated 

land/ km² 

Sample non-

cultivated land 
499.6919 34.4481 

Sample 

cultivated land 
36.5333 325.3267 

Table 5. Confusion matrix of cultivated land extraction results. 

 

4.2  Kernel density analysis 

 

Using the data management tool of ArcGIS, the extracted 

cultivated land vectors were converted from surface elements to 

point elements. The kernel density analysis tool was then used 

to obtain the kernel density distribution maps for the distribution 

of cultivated land in Beijing for the years 2017 and 2022.In 

general, from 2017 to 2022, the extent of areas with very high 

kernel density values for cultivated land in Beijing has 

significantly reduced, and the distribution shows a trend of 

decentralization.  

 

The spatial distribution pattern of cultivated land in Beijing is 

characterized by "polycentricity", with a linear distribution 

pattern along the southeastern part of the city. There is almost no 

cultivated land in the high altitude and steep mountainous areas. 

Low-nuclear-density areas are mainly located in the downtown 

area of Beijing and mountainous regions, which are unsuitable 

for agricultural development due to their political, economic, 

and natural conditions. These areas are highly developed, with 

less cultivated land. The distribution is shown in the figure below. 

 

 

Figure 6. Nuclear density analysis results: (a) 2017; (b) 2022. 

 

New urban development zones located in the plains, such as 

Fangshan District and Daxing District, are important areas for 

undertaking appropriate functions of the central city and for 

population dispersal, and the area of cultivated land has been 

reduced. Meanwhile, in order to strictly implement the cultivated 

land protection system and ensure the bottom line of cultivated 

land size, cultivated land in ecological protection zones, such as 

Shunyi and Pinggu districts, is widely distributed and maintained 

in good condition. 

 

4.3  Analysis of Changes in Cultivated land Utilization 

 

The topography of Beijing consists mainly of plains, mountains 

and hills. The slopes in the mountainous and hilly areas are steep 

and prone to soil erosion, which is not conducive to cultivation 

of cultivated land. Using 90-meter DEM data in Beijing and 

Arcgis spatial analysis tool to calculate the slopes, the slopes 

were categorized into three ranges: 0-5°, 6-15° and 16-25°. 

Analysis results indicate that from 2017 to 2022, the area of 

cultivated land on slopes between 15-25° decreased the most 

significantly. These areas have poor soil and water conservation, 

requiring comprehensive measures to prevent soil and water 

erosion.  

 

 ≤5°/km² 6~15°/km² 16~25°/km² 

2017  899.70 96.70 24.13 

2022 727.30 71.53 11.63 

Area of 

change 
-172.40 -25.17 -12.50 

Table 6. Changes in cultivated land under different slopes. 

 

Water resource is an important factor to ensure the quality of 

cultivated land, and the soil quality of cultivated land near water 

systems is typically better and suitable for crop cultivation. 

Based on Beijing's specific conditions, a 500-meter buffer zone 

from cultivated land to water system was established to buffer 

the water system data in Beijing. This buffer layer was overlaid 

with the cultivated land in Beijing to analyze changes in 

cultivated land influenced by water systems from 2017 to 2022.  

 

 

In-stream 

buffer/ 

km² 

Out of 

stream 

buffer/ km² 

Research 

area/ km² 

2017 396.94 623.59 1020.53 

2022 303.56 506.90 810.46 

Area of 

change 
-93.38 -116.69 -210.07 

Table 7. Changes in cultivated land under the influence of 

stream. 

 

During this period, the area of cultivated land within the 500-

meter buffer zone of the water system was reduced by a smaller 

amount, with the total area reduced by 93.38 km², while the area 

of cultivated land outside the buffer zone decreased by 116.69 

km².The road network in Beijing is intricate. The expansion of 

this road network, along with road construction, impacts the 

ecological environment, leading to a reduction in cultivated land 

area and an increase in fragmentation.  

 

According to the actual situation of Beijing, a 100-meter buffer 

zone from cultivated land to road was set up, and the buffer layer 

was superimposed with cultivated land to obtain the change of 

cultivated land in Beijing from 2017 to 2022. Although the total 

area of cultivated land in Beijing has shown a downward trend, 

the decrease of cultivated land is more pronounced within 100 

meters of roads. The area of cultivated land outside the road 

buffer zone decreased by 15.48% to 117.94 km². In contrast, the 

cultivated land in the buffer zone decreased by 35.67% equalling 

92.13 km². 
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 Cultivated land distribution/ km² 

 
Within road 

buffer zone 

Off-road 

buffer 

Research 

area 

2017 258.78 761.75 1020.53 

2022 166.65 643.81 810.46 

Area of 

change 
-92.13 -117.94 -210.07 

Table 8. Changes in cultivated land under the influence of road. 

 

4.4  Landscape pattern index and fragmentation analysis 

 

The vector map spots of cultivated land were converted into 10m 

raster data by Arcgis conversion tool. The raster data was then 

imported into Fragstats, and the landscape pattern indices 

required for the study were calculated. The calculation results 

are shown in the table below: 

 

Landscape pattern 

index at class scale 
2017 2022 

NP 4766 4673 

PD 0.285 0.279 

AI 91.239 89.494 

LPI 0.237 0.031 

LSI 87.109 83.095 

AREA_AM 323.271 55.533 

SHAPE_AM 2.297 1.603 

CLUMPY 0.908 0.891 

DIVISION 0.896 0.934 

Table 9. Calculation results of landscape pattern index at class 

scale. 

 

Landscape pattern 

index at 

landscape scale 

2017 2022 

ED 6.251 4.738 

FRAC_MN 1.006 1.052 

CONTAG 81.742 86.873 

Table 10. Calculation results of landscape pattern index at 

landscape scale. 

 

The calculation results indicate that from 2017 to 2022, LPI 

decreased significantly, indicating that the distribution of 

cultivated land patches is heavily influenced by human activities, 

probably due to the development of agricultural land such as 

urban expansion and road construction, which led to a more 

irregular shape of cultivated land. The notable decrease of 

AREA_AM also corroborated this situation, showing a 

significant reduction in the average area of cultivated land 

patches.  

 

This indicates that the originally piece of continuous cultivated 

land was divided into many fragmented cultivated land patches 

due to human factors. The overall landscape pattern indices of 

cultivated land patches all indicate that cultivated land 

aggregation in Beijing is high, but is decreasing. The complexity 

of cultivated land shapes is increasing, and the increase in 

complexity is particularly pronounced relative to regular shapes 

of the same size. 

 

Calculated weights for the indicators of the evaluation system 

for the degree of cultivated land fragmentation in Beijing in 2017 

and 2022 are presented in the table below: 

 

Class Index 

2017 

index 

weights 

2022 

index 

weights 

Scale 

NP 40.35% 33.90% 

PD 25.02% 21.89% 

LPI 20.16% 20.58% 

AREA_AM 14.47% 23.63% 

Shape 

LSI 32.81% 28.88% 

SHAPE_AM 13.36% 13.11% 

ED 35.15% 39.79% 

FRAC_MN 18.68% 18.22% 

Aggregation 

DIVISION 19.38% 20.96% 

CLUMPY 12.58% 20.78% 

AI 17.31% 24.06% 

CONTAG 50.73% 34.20% 

comprehensive 

Aggregate 35.41% 31.45% 

Shape 32.44% 49.01% 

Scale 32.15% 19.55% 

Table 11. Calculation results of the weights of each index in the 

evaluation system of cultivated land fragmentation in 2017 and 

2022. 

 

Based on the results of weight calculation, the size class, shape 

class, aggregation class and comprehensive class fragmentation 

of each street-level administrative unit in Beijing in 2017 and 

2022 are determined, and the spatial distribution map of 

comprehensive class fragmentation is depicted in the following 

figure. 

 

 

Figure 7. Comprehensive spatial distribution map of 

fragmentation: (a) 2017; (b) 2022. 

 

The spatial distribution map of cultivated land fragmentation in 

2017 reveals that a total of 15 street-level units exhibit extremely 

high values of fragmentation. These areas are predominantly 

distributed in regions with gentle slopes in Mentougou, the 

southeastern part of Fangshan, Daxing and Tongzhou districts, 

as well as the plain areas in Miyun district. In these areas, 

cultivated land is more dispersed, displaying pronounced spatial 

clustering characteristics, and the shape of cultivated land 

patches appears irregular, as indicated by the shape class 

indicator.  

 

By subtracting the integrated cultivated land fragmentation value 

in 2022 from that of 2017, we obtained the variation in integrated 

cultivated land fragmentation value from 2017 to 2022. From the 

results, it can be seen that, across Beijing, there are 46 street-

level administrative units experienced an increase in the 

comprehensive fragmentation of cultivated land. These areas are 

mainly concentrated in the fringe areas near the main urban 

zones, such as Daxing and Haidian districts, as well as in the 
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mountainous areas like Miyun and Yanqing districts. Cultivated 

land near the main urban areas has become more severely 

fragmented due to the construction of roads and other 

infrastructure, the expansion of built-up areas, and the 

intervention of the other human activities. Mountainous areas, 

with their complex terrain and steep slopes, are unsuitable for 

extensive farming. Although less intervened by human activities, 

they lack the natural conditions for continuous large-scale crop 

cultivation, thus leading to cultivated land fragmentation to 

better adapt to the terrain and hydrological environment. The 

fragmentation of cultivated land in the rest of the region has 

decreased, probably due to the response to the national policy of 

cultivated land protection and the designation of cultivated land 

protection agglomeration areas, which has eased the 

fragmentation and fragmentation of cultivated land. 

 

 

Figure 8. Spatial distribution of comprehensive fragmentation 

from 2017 to 2022. 

 

5. Conclusion and outlook 

 

In this paper, we conducted an exploratory research on cultivated 

land extraction using deep learning methods. We employed the 

HRNet deep learning network for model training, evaluated the 

training results, and completed the extraction of cultivated land 

in Beijing.  To evaluate the accuracy of the model's extraction 

effect, a test area was selected, and the confusion matrix and 

Kappa coefficient were calculated. The Kappa coefficient is 

0.8358, demonstrating the high accuracy of the extraction 

method. Furthermore, based on landscape pattern indices, we 

developed a cultivated land fragmentation evaluation system at 

the street level in Beijing. Considering the attributes and spatial 

patterns of Beijing's cultivated land, we selected 12 landscape 

pattern indices. We employed the CRITIC weight method to 

determine the weights of these indices, thereby constructing a 

comprehensive cultivated land fragmentation evaluation system. 

This approach extends the evaluation dimensions, making the 

analysis results more region-specific, scientific, and 

comprehensive. 

 

Subsequently, the evaluation method can be continuously 

improved to better understand the current situation of Beijing's 

cultivated land from the perspective of cultivated land protection. 

This will help explore more targeted and effective cultivated 

land protection measures, thereby contributing to the process of 

sustainable development. 
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