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Abstract 

Climate change has an immense impact on many fields, especially in the agricultural sector the reduction in crop yield,   
pre-maturation of crops, and water scarcity that may lead to drought, and scarcity of food in India. Agriculture plays a 
significant role in India where approximately 60% of the population works in the agricultural sector, contributing 20.2% to 
India’s Gross Domestic Product (GDP). India has one of the largest populations 1.2 billion in the whole world (Census 2011), 
Precision Agriculture (PA) techniques with the utilization of Unmanned Ariel Vehicles (UAV), equipped with multi-sensor 
along with satellite imagery providing more spectral and temporal resolution. The primary objective of this research is to create 
a model within the Google Earth Engine (GEE) framework, a WebGIS platform that enables its users to access analyses and 
visualize geospatial data for a wide range of applications. This model will enable researchers to calculate several indices for 
crop health and stress assessment mentioned in this research in their respective Areas of Interest (AOI) whether using either a 
UAV or satellite dataset. These indices help in evaluating water stress, disease detection, biomass and nitrogen estimation, and 
soil moisture estimation in crops, various tools and techniques will be employed for data processing, comparing, and analysis 
to acquire the optimal precision, additionally, ground truthing measures were also utilized to validate the accuracy of the 
outcomes. This research will help in supporting PA practices and promoting sustainable development in the agricultural sector. 

1. Introduction

This specific study focuses on the village of Haridwar district 
of Uttarakhand India, Haridwar is known for its cultural 
prosperity, pilgrimage, and agriculture, agriculture plays a 
pivotal role in the economy of Haridwar, with major crops 
including rice, wheat, and pulses, where wheat and rice 
contributes 35% of Gross Cropped Area (GCA)(Tuteja, 
2013). With technological transformation over the past 
century, many initiatives for instance Green Revolution, 
have revolutionized the face of agriculture(Patel, 2013). PA 
is a crucial element of Sustainable development(Berry et al., 
2003). Expansion in agricultural areas, developing nations 
might still face challenges in achieving food security due to 
inadequate source management (Calzadilla et al., 2013). 
Food security is an integral part of sustainable development 
(Charles et al., 2014).  With the latest advancements in the 
agricultural sector, technologies such as remote sensing (RS) 
serve a crucial role within the agricultural sector by 
providing information for decision-making (Atzberger, 
2013). RS and Geographic Information System (GIS) can 
help us in pest and disease detection without using 
destructive approaches for collecting data (Al-Ghanmi & Al-
Jabri, 2019). Satellites work as a backbone for earth 
observation, continuously evolving and advancing over the 
past few decades, but still lack in “temporal and spectral 
resolution”, that’s where (UAV) drones provide solutions to 
these drawbacks and their potential in PA (McCabe et al., 
2016). Many developed countries have now implemented the 
use of UAV, Photogrammetry, and RS for PA (Colomina & 
Molina, 2014). UAVs also come with certain disadvantages 

such as limited payload capacity, flight duration, and cost 
(Velusamy et al., 2022).  Multispectral and thermal imagery 
possess great significance in agricultural applications (Raeva 
et al., 2019).  Thermal imagery may have a few advantages 
over optical RS in agricultural monitoring but also brings a 
few drawbacks like atmospheric attenuation, camera 
calibrations, and complex soil and plant interactions are 
some of the reasons for limited use in the agricultural 
sector(Khanal et al., 2017).  We can also calibrate satellite 
data from low-cost UAV multispectral data to increase 
spatial resolution and accuracy. (Pandey & Jain, 2019). By 
calculating certain indices like SAVI and OSAVI, Biomass 
and disease detection is possible by using multispectral 
data(Khan et al., 2020), Furthermore, we can also calculate 
biomass (Schaefer & Lamb, 2016) and water stress 
(Ballester et al., 2018) using NDVI, likewise, disease 
detection can be done using GNDVI (Pourazar et al., 2019). 
Water content in vegetation can be detected by calculating 
NDWI (Gao et al., 2015), chlorophyll and nitrogen content 
can be calculated using CI (Taskos et al., 2015) The research 
aims to collect processes and analyze the data across 
different levels, with the objective of the optimal 
combination of software and hardware for PA based on the 
availability of the resources. Creating a model on GEE which 
help future researchers and researchers calculate these 
indices at their respective AOI either having satellite or UAV 
multispectral data, and validate accuracy and reliability 
through a rigorous validation process including ground 
truthing the data and cross-referencing the outcomes.
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Fig 1 Study Area Khanjarpur village 

2. Study Area

The study area chosen for this study is a village named 
‘Khanjarpur’ which falls in the Haridwar district of 
Uttarakhand (Fig 1), India. The geographical centroid of this 
village is 29.8665° N, 77.9060° E with an elevation of 268 
meters above mean sea level falls in the subtropical region in 
the world with an annual average temperature of 28.17℃ | 
82.706 ℉ and an average rainfall of 98.16 mm | 3.86 inches 
annually. Wheat and sugarcane are the dominant crops that are 

grown here there is also a river named as Solani River which 
flows near the village and is the main source of irrigation, with 
a total population of 6,435. Most of the people who live in this 
village engaged in primary activities as cultivators and labour 
activity, and some engaged in business and other secondary 
activities, (Census 2011). The study area is divided into a total 
of 61 parcels differentiating wheat from sugarcane as shown 
in (Fig 2). 

 

 

 

2.1 Data Acquisition and Instrumentation

The data used in this study is sourced from two remote 
sensing platforms, the satellites that were used are Sentinel 
2B and Landsat 8, and at different resolutions and spectral 
band combinations, the UAVs used for acquiring the data are 
a ‘self-assembled UAVs in geomatics lab of civil the 

engineering department of IIT Roorkee named Rhaegal 
KJ(Fig3), equipped with ‘Micasense’ multispectral camera 
with 5 bands(Fig 5) and RGB UAV that is DJI Mavic 3E(Fig 
4) both the UAVs operate with RTK (Real Time Kinematics) 
precession providing a high level of accuracy while 
capturing the data, as shown in (Table1). 

 

 

 

 

 

 

 

 

Sr.no Name Type Speed Camera Endurance GNSS 

1 DJIMavic 3E Quadcopter 6-8 m/s RGB 45 mins 
GPS+Galileo+BeiDou+GLONASS(DJI 

website) 

2 Rhaegal KJ Quadcopter 6-8 m/s Multispectral 18-29 mins RTK multiband (L1, L2, L5) 

Fig 2 Study area Parcels 

Table 1 UAV Specification 
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3. Methodology 

 

This study conducted comprehensive research to investigate 
the optimal combination of software and hardware to create a 
model on GEE for promoting PA practices. Beginning with 
selecting the AOI, by harnessing data from UAV with 
multispectral sensor, and satellite images of Sentinel 2B, and 
Landsat 8 OLI. Data processing is conducted on ArcGIS and 
GEE, by using machine learning algorithms a model is created 
on GEE to calculate all the indices used in this study, this 
model enables to retrieval of data from either Sentinel 2B or  
 

 
 
Landsat 8 OLI, can also set a specific date and AOI for data 
acquisition and can select the maximum cloud cover 
percentage for the better-quality dataset, and a swap tool is 
also embedded in the model so it will be easy to see the 
difference or change detection in their respective AOI. The 
validation of the model is done by comparing the same indices 
calculated on ArcGIS and GEE and also validating them by 
having multiple ground surveys within the area of Interest.  
The methodology steps are also explained in the flow chart 
presented in Fig 8.
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Fig 3 Rhaegal KJ Fig 4 DJI Mavic 3E Fig 5 Micasense Rededege M 
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Fig 6 Methodology 
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4. Indices and Results  

For this study, a total of five indices were performed by using 
multispectral images of the AOI both on satellite and UAV 
data, including the Normalized Difference Vegetation Index 
(NDVI) shown in equation no.1 
 

NDVI =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 

 
The range of NDVI lies between [ -1; +1] values < 0 near -1 
depicting non-vegetated, buildups, bare soil, or water bodies. 
Values close to zero depict stressed or sparse vegetation and 
values close to +1 show dense vegetation, such as crops or 
forests. 
 
The second index that is applied in this study is the Green 
Normalised Difference Index (GNDVI) this index is similar 
to NDVI but rather than using the Red band it uses the Green 
band and NIR band, as depicted in equation no. 2  
 

GNDVI = 𝑁𝐼𝑅−𝐺𝑟𝑒𝑒𝑁

𝑁𝐼𝑅+𝐺𝑟𝑒𝑒𝑛
 

 
 
 
 
 
The values of GNDVI range from [-1; +1] values < 0 near -
1depicting non-vegetated, buildups, bare soil, or water 
bodies. Values close to 0 depict stressed or sparse vegetation 
or crops under stress and values close to +1 show dense 
vegetation, such as crops or forests. 
 
The third index applied in this study is the Normalized 
Difference Water Index (NDWI)which also used Green and 
NIR bands, as shown in equation no.3 
 

NDWI=  𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
 

 
The values of NDWI lie between [-1; +1] values < 0 close to 
-1 indicating nonwater features, soil, vegetation, or buildups, 
values near 0 depicting sparse vegetation, soil with high 
water content, values near +1 showing large water bodies 
rivers, and dams, ponds. 
 
The next index is the Soil Adjusted Vegetation Index, which 
includes NIR and Red and also there is a constant (L) = 
which is the soil condition Index (0.5) value is generally 
used. (Huete, 1988), as depicted in the equation no.4 
 

SAVI = 
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑+𝐿
× (1 + 𝐿) 

 
The values lie between [-1; +1] with values <0 near -1 
indicating a non-vegetated area or dessert region. Values near 
0 depict sparse vegetation, and values near +1 indicate a high 
level of vegetation density or forest.  
 
The fifth index that is applied in this study is the Chlorophyll 
index which includes Red and RedEdge bands, as shown in 
equation no.5 
  

CI = 𝑁𝐼𝑅

𝑅𝑒𝑑𝐸𝑑𝑔𝑒
− 1 

 
The value of CI lies between [-1; +1] with values < 0 -1 
showing minimal or absence of chlorophyll content can be 
found in deserts, or bare land, values near 0 depict a low 
amount of chlorophyll present in the vegetation could be 
sparse or unhealthy vegetation, values near +1 shows a high 
level of chlorophyll concentration which includes dense 
vegetation, forest.

 
 

4. Conclusion   

In conclusion to this study, by calculation of a total of five 
different indices on the model developed on GEE, based on 
the analysis of all the indices, provides evident information 
about the wheat parcels number 2, 5, and 7(Fig2) exhibit 
robust health indications of the wheat crop within the AOI 
showing a high concentration of Biomass, no water stress 
and no disease detection with good vegetation water content 
and high nitrogen and Chlorophyll concentration with dense 
vegetation indices values ranging from (+0.6; +0.87). 
Additionally, it was observed that there was a critical water 
stress pattern emerged in the northeastern part of wheat 
parcel number 8 (Fig 2) with an NDWI value between (-0.47; 
+0.12). On 1 February 2024, Khanjarpur received a heavy 
hail storm. Subsequently, data was collected again on  3 
February, this meteorological event helped alleviate the issue 
of water stress in parcel number 8 but also damaged crops 
due to the intense amount of hailstorm accompanying winds, 
despite there is regrowth observed in the damaged wheat 
crop within a few weeks which was verified by performing 

the field survey in different parcels, but there is still minimal 
loss detected in wheat parcel number 34, 44, 53, 57, 58 (Fig 
2),  which may affect the total yield of the wheat parcels, 
sugar cane crop in parcels number 61, 10, 55, 54, 48, 10, 9, 
27, 16, 13, (Fig 2) have minimal damages from a hailstorm 
due to their rigid structure, however, due to sparse vegetation 
of sugarcane it is difficult to get the actual indices value of 
the crop due to soil reflectance captured by UAV 
multispectral camera, which may influence the outcomes.  
The conclusion to this study is wheat parcels number 2, 5, 
and 7(Fig 2) will have the best yield comparatively to the 
other parcels within the AOI, the remaining wheat parcels 
also show good indices reflectance but comparatively lesser 
than parcel number 2, 5, 7(Fig 2)  and wheat parcels number 
34, 44, 53, 57, and 58(Fig 2) will have less yield due to crop 
destruction, the limitation while working on a small area like 
khanjarpur village, satellite with less spectral resolution may 
not able to provide the high accuracy data, which may 
influence the outcomes of the results. The indices calculated 

(1) 

(2)

) 

(3)

) 

(4)

) 

(5)

) 
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through this model will help in making an informed decision, 
such as optimizing irrigation schedules, disease, and water 
stress detection, and managing fertilization practices, this 

practice may help in improving crop yield and can help in 
improving sustainable practices in the agricultural domain. 
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