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Abstract

Indoor localization for pedestrians, which relies solely on inertial odometry, has been a topic of great interest. Its significance lies in 
its ability to provide positioning solutions independently, without the need for external data. Although traditional strap-down inertial 
navigation shows rapid drift, the introduction of pedestrian dead reckoning (PDR), and artificial intelligence (AI) has enhanced the 
applicability of inertial odometry for indoor localization. However, inertial odometry continues to be affected by drift, inherent to 
the nature of dead reckoning. This implies that even a slight error at a given moment can lead to a significant decrease in accuracy 
after continuous integration operations. In this paper, we propose a novel approach aimed at enhancing the positioning accuracy 
of inertial odometry. Firstly, we derive a learning-based forward speed using inertial measurements from a smartphone. Unlike 
mainstream methods where the learned speed is directly used to determine the position, we use the forward speed combined with 
non-holonomic constraint (NHC) as a measurement to update the state predicted within a strap-down inertial navigation framework. 
Secondly, we employ an invariant extended Kalman filter (IEKF)-based state estimation to facilitate fusion to cope with the non-
linearity arising from the system and measurement model. Experimental tests are carried out in different scenarios using an iPhone 
12, and traditional methods, including PDR, robust neural inertial navigation (RONIN), and the EKF-based method, are compared. 
The results suggest that the method we propose surpasses these traditional methods in performance.

1. Introduction

Indoor pedestrian localization is crucial for a range of emerging
applications, including virtual/augmented reality (VR/AR) (Yi
et al., 2021), car finder services (Ren et al., 2024), and emer-
gency response (Tseng et al., 2022). At present, the primary
solutions for indoor localization rely on radio frequency (RF)
signals, such as Wi-Fi, Bluetooth low energy (BLE), and ultra-
wideband (UWB) (Liu et al., 2007). While these tools can
provide satisfactory localization performance, they are depend-
ent on existing infrastructure and necessitate prior calibra-
tion. This dependency can increase costs and manpower re-
quirements, thus restricting their application. Moreover, their
performance can be easily affected by external interference
and non-line-of-sight (NLOS) conditions (Yang et al., 2021).
Perception-based localization methods, such as those using
cameras (Qin et al., 2018) and light detection and ranging
(LiDAR) (Zhang and Singh, 2014), do not rely on infrastruc-
tures and have demonstrated superior positioning accuracy in
indoor environments. However, most related algorithms for
perception are challenging to implement on mobile devices for
pedestrian use due to the requirements for corresponding hard-
ware and computational capabilities.

Inertial measurement units (IMUs), as low-cost sensors, are ex-
tensively integrated into existing mobile devices such as smart-
phones and smartwatches. They are typically utilized for ap-
plications like games and screen orientation changes. In ad-
dition, when other information is not available, IMUs can be
utilized to establish inertial odometry, thereby providing an al-
ternative solution for indoor pedestrian localization. In current
solutions, inertial odometry is typically utilized as the backbone
for achieving SLAM or sensor fusion (Bai et al., 2023), as it fa-

cilitates completely egocentric motion tracking (Chen and Pan,
2024). Inertial odometry can be divided into three main categor-
ies: strap-down inertial navigation, pedestrian dead reckoning
(PDR), and data-driven inertial navigation (Wang et al., 2022).
Strap-down inertial navigation, a classic form of dead reckon-
ing, utilizes data from an inertial measurement unit (IMU) to
estimate an object’s position, velocity, and attitude. However,
the IMUs typically used for indoor pedestrian localization are
low-cost and can cause rapid drift when strap-down inertial nav-
igation is applied. To mitigate this drift, researchers utilize a
zero-velocity update (ZUPT) (Wang et al., 2015). Despite the
improved accuracy, it is worth noting that ZUPT is typically
employed with foot-mounted IMUs, which are not frequently
used by pedestrians in their daily lives. On the other hand, PDR
is an effective method that can achieve less drift than strap-
down inertial navigation and is compatible with mobile devices
like smartphones. PDR operates based on step detection. The
lengths and directions of steps are subsequently estimated to
determine the position. However, the performance of PDR can
easily degrade when the pedestrian’s motion state changes. Ad-
ditionally, inaccuracies in heading also significantly impact the
performance of PDR.

Recently, with the rapid advancement of artificial intelligence
(AI), data-driven inertial navigation methods have been shown
to effectively suppress error accumulation. Chen introduced
IONet (Chen et al., 2018), a method that utilizes a window
length of IMU data to calculate changes in distance and head-
ing. Given an initial location and heading, this method can
determine a pedestrian’s location. Notably, this approach out-
performs PDR and strap-down inertial navigation. Herath pro-
posed robust neural inertial navigation (RONIN) (Herath et
al., 2020), in which horizontal positions and headings can
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be derived from a sequence of IMU data. RONIN encom-
passes three variants, each of which can be operated using Res-
Net, long short-term memory (LSTM), and temporal convolu-
tional network (TCN). Wang presented a loss formulation for
smartphone-based inertial odometry (Wang et al., 2021). The
velocity was represented as the average velocity magnitude and
moving direction, which can improve the trajectory estimation.
In addition to directly predicting a pedestrian’s position using
learned displacement or velocity, the learned measurement can
be integrated with strap-down inertial navigation to estimate the
position. Cortés used a convolutional neural network (CNN)-
based deep learning model to regress the instantaneous speed,
which was then used to update the inertial navigation system to
obtain the pose (Cortés et al., 2018). Liu developed TLIO (Liu
et al., 2020). The 3D displacement in a local gravity-aligned
frame was used as the measurement, and a stochastic cloning
extended Kalman filter (EKF) was employed to determine the
state.

Currently, the state estimation methods for the integration can
be primarily divided into filtering and optimization. The com-
parison between them remains a key topic in the navigation and
positioning community (Wen et al., 2019). While the factor
graph can surpass the standard EKF in terms of estimation ac-
curacy, it can impose a higher computational burden. This be-
comes a significant concern when it is implemented on widely
used mobile devices such as smartphones. Recently, the invari-
ant extended Kalman filtering (IEKF), an extension of the EKF,
has shown successful results in state estimation and navigation
(Barrau and Bonnabel, 2016). The IEKF has been mathematic-
ally proven to exhibit strong convergence and consistency prop-
erties. Potokar introduced IEKF-based underwater localization
using IMU and doppler velocity logs (DVLs) (Potokar et al.,
2021). A Monte Carlo simulation was conducted, and the res-
ults show that the proposed method outperforms a quaternion-
based EKF in terms of accuracy and convergence speed. Wang
proposed an IEKF-based pedestrian motion tracking (Wang et
al., 2020). The average speed, which was derived from the es-
timated position, was used as the measurement. Additionally, a
measurement noise parameter adapter was designed to enhance
the accuracy of the estimation.

In this paper, we investigate a novel inertial odometry for in-
door localization on smartphones. To the best of our know-
ledge, this is the first paper to develop a deep-inertial odometry
(DIO) within an IEKF framework. The main contributions of
this paper are as follows:

1) We propose a deep-inertial odometry based on velocity up-
dates. In this method, a neural network is utilized to re-
gress forward speed from IMU data. This speed is then
combined with non-holonomic constraint (NHC) to assist
strap-down inertial navigation. This method can achieve
superior performance by avoiding the influence of heading
uncertainty.

2) We formulate an integration model based on the IEKF,
which uses learned speed and strap-down inertial navig-
ation to enhance the accuracy of state estimation, offer-
ing enhanced performance compared to the EKF-based
method. Additionally, we provide the derivation of the
model used in deep-inertial odometry.

3) For evaluation purposes, we carry out experiments across
different scenarios. We use conventional PDR, RONIN,
and EKF-based methods for comparative analysis.

The structure of this paper is as follows: Section 2 presents
the learning-based forward speed model, while Section 3 out-
lines the formulation of the IEKF-based DIO. The results of
experimental tests are discussed in Section 4. Finally, Section 5
provides the conclusion of the paper.

2. Learning-based Forward Speed Model

Regarding the training data, we utilized an iPhone 12 to collect
both IMU data and ground truth. With the assistance of ARKit,
we can obtain a visual-inertial odometry (VIO) solution, which
served as the ground truth. Despite the drift experienced by
VIO in the absence of loop closure, we can use the velocity
derived from VIO as the training target, considering it a drift-
free measurement. A total of 73 sequences were collected from
various parts of the Hong Kong Polytechnic University campus,
amounting to approximately 5 hours of data.

The proposed method utilizes IMU data to estimate the forward
speed of the pedestrian. This estimation is then combined with
the NHC, forming the measurement to update the prediction
in the filter. This method effectively mitigates the impact of
heading uncertainty in real-world scenarios. To optimize the
regression performance of the forward speed, the collected data
must be transformed into corresponding frames. In this paper,
we define three distinct frames to describe the transformation
relationships among them. These frames are referred to as the
world frame, the smartphone frame, and the body frame, sym-
bolized by w, s, and b, respectively. The world frame serves as
the reference for navigation. The smartphone and body frames
are depicted in Figure 1. The xs and ys axes of the smartphone
frame are defined along the longitudinal and lateral axes, re-
spectively. The zs axis is oriented perpendicularly to the smart-
phone screen. The xb and yb axes of the body frame are oriented
towards the front and left of the human body, respectively. The
plane formed by the xb and yb axes is assumed to be parallel to
the ground. The zb axis is perpendicular to this plane.

Figure 1. The illustration of smartphone and body frames.

Based on the position of VIO within the world frame, we can
determine its velocity in the same frame by applying a differ-
ential operation, denoted as vwx and vwy , respectively. By
computing the norm, we can derive the forward speed from the
ground truth. This can be articulated as follows:

vb =

√
(vwx)2 + (vwy)2 (1)

To mitigate the influence of different holding attitudes for the
smartphone, the IMU data need to be transformed to the body
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frame, which can be expressed as:

âb
t = R̂b

sãt

ŵb
t = R̂b

sw̃t

(2)

where R̂b
s is the rotation matrix from the smartphone to the

body frame. The form of d̂ denotes the estimated variable in
this paper, where d is a general symbol. ãt and w̃t are the IMU
data at the time instant t, and âb

t and ŵb
t are the transformed

IMU data. In R̂b
s, the angles along the x and y axes can be

determined by the roll and pitch of the smartphone. Given that
the smartphone is held in front of the body by the pedestrian,
the angle along the z axis is set to zero in this paper. In addi-
tion, by removing the gravity vector from âb

t , we can obtain the
components of linear acceleration, denoted as l̂bt .

This paper leverages a 1D version of ResNet-18 architecture,
adding a fully connected layer at the end to regress the forward
speed of the pedestrian. The input dimension of the network
is n × 6, which includes n IMU data in the pedestrian’s body
frame, The regression of forward speed can be expressed as
follows:

v̂b = fResNet

(
l̂b1:n, ŵ

b
1:n

)
(3)

The loss function is defined as the mean square error (MSE)
form, which is expressed as:

LMSE =
1

N

N∑
i=1

(
v̂bi − vbi

)2

(4)

where N denotes the amount of data in the training dataset.

In the model training, the model is implemented using PyTorch
and the training process is done through NVIDIA GeForce RTX
4090. The Adam optimizer (Kingma and Ba, 2014) is used
with an initial learning rate of 0.0001, zero weight decay, and
dropouts with a probability of 0.5 for the FC layers. The models
are trained for 1000 epochs.

3. Deep-Inertial Odometry using Invariant Extended
Kalman Filtering

The framework of the proposed method, as depicted in Figure
2, operates as follows: The specific force and angular velocity
from a built-in smartphone IMU serve as the input. Strap-down
inertial navigation is implemented to predict the motion state,
which is then used for error propagation. A neural network re-
gresses the forward speed, which is used to update the state in
an IEKF-based integration. Finally, the estimated state is out-
put, which is then used for prediction and frame transformation.

3.1 State Prediction

The state variables in this paper are expressed as:

xk = (Rk, vk,pk,b
w
k ,b

a
k) (5)

where xk is the state at the time instant tk, which includes the
rotation, velocity, position, gyroscope bias, and accelerometer
bias. The state propagation based on IMU data can be expressed

Figure 2. The structure of the proposed method. Smartphone
IMU data is utilized for both strap-down inertial navigation and
the neural network. The speed, regressed by the network, is then

used to update the state in an IEKF-based integration.

as:
Ṙt = Rt [w̃t − bw

t − nw
t ]×

v̇t = Rt (ãt − ba
t − na

t ) + g

ṗt = vt

ḃw
t = nbw

t

ḃa
t = nba

t

(6)

where w̃t and ãt represent the measured angular velocity and
specific force, respectively. nw

t and na
t represent the noise from

the gyroscope and accelerometer. IMU biases are modelled as
a random walk, with their derivatives represented by nbw

t and
nba
t .

The state variables of the rotation, velocity, and position can
form the matrix Lie Group. Therefore, the state can be rewritten
as:

χt =

 Rt vt pt

01×3 1 0
01×3 0 1


Θt =

(
bw
t

ba
t

) (7)

This paper adopts the right invariant error. The error of χt can
be given by:

ηt = χ̂tχ
−1
t (8)

where

χ−1
t =

 RT
t −RT

t vt −RT
t pt

01×3 1 0
01×3 0 1

 (9)

Then, ηt can be expressed as:

ηt =

R̂tR
T
t v̂t − R̂tR

T

t vt p̂t − R̂tR
T
t pt

01×3 1 0
01×3 0 1


=

ηRt
ξvt ξpt

01×3 1 0
01×3 0 1


(10)
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Given that the right invariant error is used, the error of IMU bias
can be expressed as:

ζt =

(
b̂w
t − bw

t

b̂a
t − ba

t

)
=

(
ζwt
ζat

)
(11)

Let ξRt
be the Lie algebra of ηRt

, the system equation of the
state error can be expressed as:

ξ̇Rt

ξ̇vt

ξ̇pt

ζ̇
w

t

ζ̇
a

t

 = F̂t


ξRt

ξvt

ξpt

ζwt
ζat

+ Ĝt


nw
t

na
t

03×1

nbw
t

nba
t

 (12)

where F̂t is the state transition matrix, given as:

F̂t =


03×3 03×3 03×3 −R̂t 03×3

[g]× 03×3 03×3 − [v̂t]×R̂t −R̂t

03×3 I3×3 03×3 − [p̂t]× R̂t 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

 (13)

where Ĝt is the noise matrix, which is expressed as:

Ĝt =


R̂t 03×3 03×3 03×3 03×3

[v̂t]× R̂t R̂t 03×3 03×3 03×3

[p̂t]× R̂t 03×3 R̂t 03×3 03×3

03×3 03×3 03×3 −I3×3 03×3

03×3 03×3 03×3 03×3 −I3×3

 (14)

The, the propagation of the covariance matrix of the state can
be expressed as:

Σ̂t = Φ̂tΣ̂t−1Φ̂
T
t + Φ̂tĜtQĜT

t Φ̂
T
t ∆t (15)

where Q is the noise covariance matrix formed by the noise
term in equation (12). Φ̂t can be given as:

Φ̂t = exp
(
F̂t∆t

)
(16)

3.2 Measurement Update

The regressed speed, expressed in the pedestrian’s body frame,
needs be transformed to the smartphone frame s. Additionally,
the nonholonomic constraint (NHC) is applied. Consequently,
the measurement can be expressed as follows:

z̃t = R̂s
b

[
v̂b 0 0

]T (17)

where R̂s
b is the rotation matrix from the body to the smart-

phone frame, which is the inverse matrix of R̂b
s.

The measurement model can be expressed as:

z̃t = RT
t vt + st (18)

where st represents the measurement noise. The equation (18)

is further expressed as:

Z̃t = χ−1
t M+ St z̃t

−1
0

 =

 RT
t −RT

t vt −RT
t pt

01×3 1 0
01×3 0 1

03×1

−1
0

+

st
0
0


(19)

The measurement matrix can be expressed as:

Ht =
(
03×3 I3×3 03×3 03×3 03×3

)
(20)

Then the state update can be represented as:

χ̂t = exp
(
KξΠχ̂tZ̃t

)
χ̂t

Θ̂t = Θ̂t +KζΠχ̂tZ̃t

(21)

where Kξ and Kζ denote the filtering gains. χ̂tZ̃t represents
the innovation. Π is an auxiliary matrix to remove the zero
terms of innovation.

4. Experimental Tests

Experimental tests were conducted in different scenarios to val-
idate the performance of the proposed method. The test sites
selected were an underground car park and a campus ground.
During these tests, IMU data was collected using an iPhone
12 at a rate of 100 Hz. A LiDAR-inertial system, Mid-360,
produced by Livox Technology Company, was utilized to run
FAST-LIO (Xu and Zhang, 2021), providing the ground truth.
Traditional methods, including PDR, RONIN, and EKF, were
used for comparison. In the EKF method, the system also util-
izes the learned forward speed to update the state.

4.1 Underground Car Park

Firstly, the test results in the underground car park are presen-
ted. Figure 3 and Figure 4 show the comparisons of trajectory
and positioning errors among different methods. It is evident
that both PDR and RONIN suffer from noticeable drift. In the
test scenario, only a 6-axis IMU is used, which means that the
heading can be determined solely via the integration of gyro-
scopes. However, compensating for the unknown bias in the
gyroscope is challenging in PDR, leading to rapid drift in head-
ing estimation and affecting the overall PDR results. Simil-
arly, in RONIN, the IMU data must first be transformed into the
world frame before being fed into the neural network for dis-
placement regression. The inaccuracies in heading estimation
can compromise the quality of RONIN’s positioning results.

In both the EKF and the proposed method, the bias of the IMU
can be estimated online with the aid of velocity measurements.
This leads to better positioning results than those achieved by
PDR and RONIN. Although the EKF can achieve performance
similar to the proposed method in the first half of the data, its
performance gradually degrades over time. The primary source
of error stems from the linearization procedure, where the pre-
dicted states are typically used in the Taylor expansion. This
introduces additional errors for state estimation if the predicted
states have significant errors. However, as can be observed from
equation (13), the coefficients related to pose and velocity are
independent of the current state estimates in the invariant exten-
ded Kalman filter. This independence can mitigate the influence
of nonlinear errors and enhance the accuracy of odometry.
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Figure 3. The trajectory comparison in the underground car park.
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Figure 4. The positioning error comparison in the underground
car park.

The comparison of root mean squared error (RMSE) among dif-
ferent methods in the underground car park is presented in Table
1. It is evident that the proposed method outperforms the others,
achieving the best positioning performance.

Table 1. The RMSE comparison in the underground car park.

Method PDR RONIN EKF Proposed

RMSE (m) 27.14 18.07 5.68 2.53

4.2 Campus Ground

Another test was conducted on the campus grounds to further
validate the performance of the proposed method. The com-
parison of trajectories is depicted in Figure 5. Both PDR and
RONIN exhibit noticeable drift due to the impact of heading in-
accuracies. By employing a filter-based integration, both EKF
and the proposed method can outperform PDR and RONIN in
terms of positioning performance. However, due to the pres-
ence of nonlinear errors, the position estimation provided by
EKF gradually deteriorates.

The comparison of positioning error and RMSE are depicted
in Figure 6 and Table 2, respectively. It can be observed that
PDR and RONIN exhibit significant drift right from the start.
While EKF can somewhat mitigate the accumulation of errors,

its positioning outcomes still fall short when compared to the
proposed method.
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Figure 5. The trajectory comparison in the campus ground.
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Figure 6. The positioning error comparison in the campus
ground.

Table 2. The RMSE comparison in the campus ground.

Method PDR RONIN EKF Proposed

RMSE (m) 32.18 27.52 6.24 4.16

5. Conclusion

This paper introduces an invariant extended Kalman filter for
pedestrian deep-inertial odometry. In the proposed method,
IMU data is utilized to estimate the pedestrian’s forward speed
using a neural network. This estimation, when combined with
NHC, allows for the calculation of the pedestrian’s position via
an invariant extended Kalman filter based on velocity measure-
ment updates. This approach effectively mitigates the impact of
heading inaccuracies and nonlinear errors found in traditional
methods. The proposed method is validated using real-world
data collected by an iPhone 12 in an underground car park and
on a campus ground. For comparison, PDR, RONIN, and an
EKF-based method are employed. The results demonstrate that
the proposed method can effectively limit error accumulation in
the odometry, thereby enhancing indoor localization perform-
ance using only an IMU.
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The proposed DIO is fundamentally based on dead reckoning,
it continues to experience drift over extended periods. In the
future, we plan to use the proposed DIO as the foundation and
incorporate external information such as UWB, Wi-Fi RTT, or
5G for absolute position correction. Simultaneously, we aim to
integrate the proposed method into a smartphone to establish a
real-time indoor localization system.
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