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Abstract 
 

Light Detection And Ranging (LiDAR) technology has provided an impactful way to capture 3D environmental map. However, 

consistent mapping in sensing-degenerated and perceptually-limited scenes (e.g. multi-story buildings) or under high dynamic sensor 

motion (e.g. rotating platform) remains a significant challenge. To this end, an efficient multi-floor indoor mapping system is proposed 

in this paper utilizing a versatile rotating LiDAR platform. In the front end, measurements from motor, IMU and LiDAR are tightly 

integrated to track the fast motion state of system, based on iterative Error State Kalman Filter (ESKF). Then linear and planar features 

are extracted from the point cloud map voxelized with adaptive resolutions. A sliding-window-based batch optimization is performed 

to simultaneously optimize the states of local frames with reference to the map consistency. In the experiments, we investigated the 

influence of rotating speed on the mapping performance as well as the superiority of rotating mechanism when compared to standard 

LiDAR setup. Moreover, comparative studies with one of the SOTA work, FAST-LIO2, have shown the competitive mapping results 

in multi-floor indoor environments.   

 

 

1. Introduction 

The urgency of 3D spatial mapping for digital twin modelling has 

been underscored in recent research (Lehtola et al., 2022). The 

development of mobile mapping systems, from sensors to 

applications, has garnered significant attention, promising 

precise and robust 3D reconstruction (Elhashash et al., 2022). In 

addition to the widespread use of GNSS for large-scale outdoor 

scenes, the field of Simultaneous Localization And Mapping 

(SLAM) has consistently emphasized the complex task of 3D 

mapping in extreme underground or confined indoor 

environments with intricate self-similar structures (Ebadi et al., 

2022). LiDAR stands out as a crucial sensor for accurate pose 

estimation, laying a solid foundation for acquiring high-precision 

point cloud maps. Compared to other sensors, LiDAR offers high 

measurement accuracy, rapid response speed, and strong anti-

interference capabilities.  

 

Due to the limited vertical angle resolution (e.g., 2 degrees) of 

Multi-Beam LiDAR (MBL) compared to its horizontal resolution 

(e.g., 0.2 degrees), there is typically varying degrees of drift in 

the height/Z direction of the estimated trajectory (Liu et al., 2019; 

Seo et al., 2022; Wei et al., 2021). To mitigate this drift, 

numerous studies utilize the ground as a strong constraint (Chen 

et al., 2021; Koide et al., 2019; Seo et al., 2022; Shan and Englot, 

2018; Velas et al., 2019; Wei et al., 2021), while others introduce 

additional vertical residuals in LiDAR SLAM (Zelin Wang et al., 

2022). Moreover, some researchers extract various types of 

features, including ground, facade, pillar, and beam, to enhance 

pose estimation robustness (Pan et al., 2021; Zhou et al., 2021). 

By adaptively filtering and probabilistically modeling the local 

point cloud map, efforts have been made to enhance the accuracy 

of LiDAR odometry (LO) and the mapping process (Duan et al., 

2022; Garcia-Fidalgo et al., 2022; Quenzel and Behnke, 2021; 

Yuan et al., 2022). However, relying solely on LiDAR may not 

be sufficient to recover high dynamic motion states in a short 

period, and long-term LiDAR odometry could suffer from 

significant accumulated error. As a result, LiDAR-inertial-

odometry (LIO) systems, which integrate LiDAR and IMU data 

either loosely or tightly, have been developed to provide rapid 

and accurate positioning across various scenarios (Bosse et al., 

2012; Kenny Chen et al., 2022; Holmberg et al., 2022; Le Gentil 

et al., 2020; Qian et al., 2022; Zhong Wang et al., 2022). The 

high-frequency state measurements from IMUs aid in guiding 

LiDAR registration towards improved convergence, while the 

slowly varying biases of IMUs are concurrently estimated 

through the registration process. 

 

To compensate the limited field of view (FoV) and resolution of 

a single laser scanner, researchers have explored 3D mapping 

using multiple LiDARs as discussed in (Chen et al., 2021; Jiao et 

al., 2021; Velas et al., 2019). These efforts aim not only to 

improve pose estimation but also to achieve comprehensive 

reconstruction of the environment. To achieve uniform 

observations in all directions, a pair of tilted-mounted laser 

scanners is employed. Building on the work of (Zhang and Singh, 

2017), other studies have focused on enhancing mapping quality 

using a rotating 2D LiDAR (Alismail and Browning, 2015; Kang 

and Doh, 2016; Yuan et al., 2021; Zhen et al., 2017). These 

systems place the 2D LiDAR on a rotating platform to increase 

the field of view. The pioneering work of (Park et al., 2021, 2018, 

2017) has led to the development of the first map-centric SLAM 

framework for dense elastic mapping of environments. 

Meanwhile, with the advancement of 3D LiDAR technology, 

researchers have carefully examined the effectiveness of Multi-

Beam LiDAR (MBL) installed on a rotating platform (Claer et 

al., 2019; Morales et al., 2018; Neumann et al., 2016). In addition, 

Karimi et al. (2021) have investigated the relationship between 

scan patterns and rotation mechanisms to enhance SLAM 

performance. They propose a 2D Lissajous pattern to rotate the 

LiDAR for equitable observation of vertical and horizontal 

surfaces. Similarly, Ramezani et al.(2022) and Kai Chen et al. 

(2022) have developed commendable LiDAR-inertial-odometry 

(LIO) systems, although they devote less attention to the design 

of the rotating platform setup itself. 

 

The integration of a rotating Multi-Beam LiDAR (MBL) with an 

Inertial Measurement Unit (IMU) is paramount for achieving 

robust 3D mapping under high dynamic motion, particularly in 

multi-story scenes. However, this integration poses two primary 
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challenges. Firstly, mounting the MBL on a motor introduces an 

additional sensor motion pattern alongside the body's movement. 

This combined motion state complicates accurate pose estimation. 

Secondly, the distribution characteristics of MBL point clouds 

vary over time due to rotation, necessitating additional efforts for 

robust point cloud registration, especially in narrow indoor 

scenes. To address these challenges, we introduce a novel 

LiDAR-inertial-mapping system designed for rotating MBL 

platforms for efficient multi-floor indoor mapping. In the front 

end, an Error State Kalman Filter (ESKF) is utilized in the 

LiDAR-inertial odometry (LIO) module to track fast motion 

states. Subsequently, to maintain the global map consistency, 

linear and planar voxels are extracted and expanded from the 

reconstructed point cloud map to establish associations among 

multiple frames in the sliding window. The experiments with 

various setting are carried out to exemplify the mapping 

performance of our system.  

 

 

Figure 1. Mapping system design. 

Sensor  Frequency/Hz Parameters 

LiDAR 10 Beams number: 16 

Ranging accuracy: 3cm 

Horizontal angle resolution: 0.2° 

Vertical angle resolution: 2° 

FoV: 360°x30° 

Motor 200 Angle accuracy: 1
216⁄ ° 

IMU 200 Accelerometer zero-bias stability: 15ug 

Gyroscope zero-bias stability: 3°/h 

Table 1. Sensor specifications. 

 
Figure 2. Mapping system overview 

 

 

2. System Overview 

Our versatile mapping system is shown in Figure 1 rigidly 

coupled with a handle. It consists of an electric motor M, an 

attached Velodyne LiDAR L with sparse 16 laser beams, a built-

in Xsens Mti-300 MEMS IMU I and a fisheye camera (for 

visualization only at present). Detailed specifications can be 

found in Table 1. The reason for not placing IMU right on the top 

of LiDAR lies on the consideration of stability for gyroscope and 

accelerator. The clock of each sensor is hard-synchronized 

through the signal from an ARM. The system overview is 

demonstrated in Figure 2 with different models explained in the 

following subsections.  

 

2.1 Motor model 

The LiDAR rotates around the X axis of body (IMU) frame 

producing different roll angles for laser points. The fixed 

extrinsic transformation between IMU and LiDAR is calibrated 

offline while the rotation angle for each point is compensated by 

the motor angle data output, the precision of which is 1
216⁄  in 

200 Hz. In specific, this angle is linearly interpolated between the 

motor angles of the nearest two timestamps 𝑡𝑖
𝑀, 𝑡𝑖+1

𝑀 with 

reference to the point timestamp 𝑡𝑖
𝐿 as shown in Figure 3 

 

 
𝒑𝑡𝑖

𝐿
𝐼 = 𝑻 ∙𝐿

𝐼 𝒑𝑡𝑖
𝐿

𝐿

= 𝑻𝑐𝑎𝑙𝑖𝑏 ∙ 𝐑(𝑡𝑖
𝐿, 𝑡𝑖

𝑀, 𝑡𝑖+1
𝑀 ) 𝒑𝑡𝑖

𝐿
𝐿

𝐿
𝐼 , 

(1) 

 

Where 𝐑(∗) is 3x3 rotation matrix only with roll angle. In this 

way, we can get each laser point in the frame of IMU.  

 

2.2 IMU model 

With IMU measurement model, we can incrementally propagate 

the system state forwardly at each IMU timestamp 𝑡𝑖
𝐼. Thus, the 

motion distortion within the LiDAR scan will be rectified by 

projecting the laser points according to the time difference as 

shown in Figure 3. Detailed state propagation process and 

equation derivation can be found in the work of (Xu and Zhang, 

2020).  

 𝒑𝑡𝑗
𝐼

𝐼 = 𝑻 ∙ 𝒑𝑡𝑖
𝐿

𝐼

𝑡𝑖
𝐿

𝑡𝑗
𝐼

, (2) 
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Figure 3. Multi-sensor temporal synchronization.  

 

2.3 LiDAR model 

The undistorted point clouds are then transformed to the world 

(map) frame W using  

 

 𝒑𝑡𝑗
𝐼

𝑊 = 𝑻 ∙𝐼
𝑊 𝒑𝑡𝑗

𝐼
𝐼 , (3) 

 

where five nearest neighbours are found to determine the local 

small surface. The residual will be defined by the point-to-surface 

distance. This optimization can be solved iteratively by ESKF 

method as detailed in (Xu and Zhang, 2020). However, there are 

abundant similar structures in multi-floor indoor environments 

causing such constraint function to degenerate. To enhance 

robustness, we calculate the average residuals after each 

optimization to filter out gross error.  

 

2.4 Optimization model 

From the above LIO process, the system states can be finely 

obtained at LiDAR frame frequency. However, global 

consistency cannot be guaranteed especially when mapping 

across multiple floors with a rotating MBL. Thus, we choose 

BALM (Liu and Zhang, 2021) as the back-end for sliding-

window-based optimization. To begin with, local point cloud 

map is constructed and voxelized through the integration of 

downsampled LiDAR frames in the window. Then from octree 

roots with large-scale resolution to leaves with small-scale one, 

PCA analysis is conducted to extract linear and planar voxels by 

examination of eigenvalues. Suppose 𝒏 is the normal of planar 

voxels or direction of linear voxels, 𝒒𝑊  is one point on them. The 

target of bundle adjustment can be illustrated in Equation (4)(5), 

where the system states will be refined in accord with the map 

consistency. Followed BALM, we use second order 

approximation to minimize the different eigenvalues of feature 

covariance matrix Ω , by Levenberg-Marquardt (LM) method. 

Since each feature voxel consists of points from multiple frames, 

such batch optimization is conducted in a sliding window scheme, 

where the covariance of marginalized frames is kept fixed in the 

map voxel for efficiency. More implementation details can be 

found in (Liu and Zhang, 2021).  

 

(𝑻∗, 𝒏∗, 𝒒𝑊 ∗) = arg min
𝑻,𝒏, 𝒒𝑊

1

𝑁
∑ (𝒏𝑇( 𝒑𝑖

𝑊 − 𝒒𝑊 ))
2𝑁

𝑖=1
 

= arg min
𝑻
{min
𝒏, 𝒒𝑊

1

𝑁
∑ (𝒏𝑇 ( 𝒑

𝑖

𝑊 − 𝒒𝑊 ))
2𝑁

𝑖=1

} ≝ arg min
𝑻
𝜆𝑚𝑖𝑛(Ω), 

(4) 

 

(𝑻∗, 𝒏∗, 𝒒𝑊 ∗) = arg min
𝑻,𝒏, 𝒒𝑊

1

𝑁
∑ ‖(𝑰 − 𝒏𝒏𝑇)( 𝒑𝑖

𝑊 − 𝒒𝑊 )‖
2

2𝑁

𝑖=1
 

= arg min
𝑻
{min
𝒏, 𝒒𝑊

1

𝑁
∑ ‖(𝑰 − 𝒏𝒏𝑇) ( 𝒑

𝑖

𝑊 − 𝒒𝑊 )‖
2

2𝑁

𝑖=1

} ≝ arg min
𝑻
(𝑇𝑟(Ω)−𝜆𝑚𝑎𝑥(Ω)), 

(5) 

 

Figure 4. Mapping results of different rotating speeds. 

 3. Experimental Results 

3.1 Influence of rotating speed 

At first, to investigate the influence of motor rotating speed on 

the mapping performance, the system is fixed on the ground of 
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an office room where 5 minutes of data are collected and 

processed. Three different rotating speeds are tested for 

comparison with high-precision TLS map scanned by Leica 

VZ400 with a measuring accuracy of 3mm. The cloud-to-cloud 

distances are calculated through the CloudCompare software. 

From Figure 4, we can see 90°/𝑠 achieves the best precision with 

thinnest wall, which is in accord with most commercial handheld 

mapping device. So, we chose it as the baseline in the following 

experiments.  

 

 

 

Figure 5. Multi-floor mapping results of different methods w\o rotating mechanism. 

 

 

Figure 6. Multi-floor mapping results of different methods w\o rotating mechanism. 

3.2 Comparative experiments 

All of the experiments are conducted in a research lab building 

with typical wide and narrow multi-floor indoor hallways. In 

order to show the benefit brought by such rotating mechanism, 

we exam the mapping performance while turning on/off the 

motor. From each column of Figure 5, we can see many holes in 

the point cloud map when keeping the LiDAR still. Rotating can 
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obviously improve the efficiency of mapping tasks though with 

few improvements on the precision. In a word, the rotating 

framework not only improves the stability but also the efficiency 

of mapping system with larger coverage.  

 

Moreover, comparative experiments are also executed on Fast-

LIO2, a SOTA LIO method.  As shown by each row of Figure 5, 

our method, whether rotating or not, achieves better performance 

compared to Fast-LIO2. The large distortions between the point 

cloud of different floors are rectified owing to the feature-based 

batch optimization. It can be clearly visualized from the top 

views and side views of Figure 6 that there are much more serious 

deviations in the point cloud map built by Fast-LIO2 not only in 

the height direction but horizontally. Although our method has 

obtained better global consistency, there are some slippages 

during the hall, caused by the LiDAR degeneracy in such 

environment.  

 

4. Conclusions 

In this paper, an effective multi-floor indoor mapping system is 

proposed incorporating the measurements from motor, IMU and 

LiDAR. Iterative ESKF is used for the LIO front-end, while a 

sliding-window-based optimization is conducted as the back-end.  

Linear/planar features are explicitly derived from the adaptive 

voxels to maintain the global consistency of point cloud map. 

Comparative experiments have shown the advantages of our 

mapping system. However, more datasets should be included in 

the future. Wh  ’      , more attention is needed on the stability 

of batch optimization under degenerative scenes. 
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