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Abstract

Smartphones are indispensable tools in modern social life, and they can be used for online shopping, electronic payment, gaming,
and navigation. In particular, low-cost inertial measurement unit (IMU) sensors are widely integrated into smartphones, so ped-
estrian dead reckoning (PDR) positioning techniques based on smartphone IMU sensors have been applied and developed. PDR
positioning techniques require acceleration data for step detection, step length estimation, and step heading estimation. However,
due to the cost limitations of the built-in IMU sensor in smartphones, acceleration data contains measurement noise and interfer-
ence, resulting in poor consistency in acceleration peak detection and the generation of false peaks, which is not conducive to step
detection and accurate step length estimation. Therefore, this paper proposes a stochastic resonance (SR) enhancement method
for smartphone IMU acceleration data. The SR-enhanced acceleration data has better peak consistency and is conducive to step
detection. Finally, the algorithm is evaluated using actual measurement data collected from a smartphone. The results show that the

SR-enhanced acceleration data has excellent peak consistency and higher step detection accuracy.

1. Introduction

Location-based services (LBS) can provide location informa-
tion for people, vehicles, and objects. LBS has a wide range
of applications, including route planning, autonomous driving,
and disaster relief. Global navigation satellite systems (GNSS)
are the most successful and widely used technology for imple-
menting LBS and can provide LBS worldwide. The best-known
GNSS systems are GPS, BeiDou, GLONASS, and Galileo. In
open-sky environments, GNSS positioning accuracy can reach
the meter level (Gao and Groves, 2018), which can meet the
positioning needs of many fields. However, in the shade of
trees, urban canyons, and indoor environments, the propaga-
tion path between the satellite and the receiver is obstructed or
completely blocked, and the GNSS positioning performance is
reduced or completely disabled. Therefore, achieving reliable
positioning in indoor environments where GNSS signals are un-
available is an important research focus.

Many technologies have been developed and utilized for in-
door positioning, including WiFi (Feng et al., 2023, Ding et al.,
2022), Bluetooth (Zhuang et al., 2022, Guo et al., 2023), Ultra-
wideband (UWB) (Chiasson et al., 2023, Cerro et al., 2022),
and cellular systems (Chen et al., 2022, Gao et al., 2022). A
common feature of these technologies is installing anchor nodes
at fixed locations to observe signals between the anchor nodes
and the user equipment (UE). These observations, which in-
clude time of arrival (TOA), direction of arrival (DOA), angle
of arrival (AOA), and received signal strength indicator (RSSI),
are processed to achieve positioning. Therefore, the above po-
sitioning method is very effective in an environment such as
factories, where anchor nodes can be installed, and the UE is
cooperative. However, in some indoor scenarios, we are not al-
lowed to install anchor nodes in advance, and the functions of
the UE are limited, so these methods cannot be applied.

Pedestrian dead reckoning (PDR) positioning technology uses

data from an inertial measurement unit (IMU) for dead reck-
oning and does not rely on external signal exchange, and can
be applied in indoor environments where anchor nodes are not
installed. Therefore, PDR positioning technology has been ex-
tensively studied, and its implementation forms are also very
diverse. On the one hand, some studies have installed IMUs
in different parts of the human body to achieve PDR, such as
foot-mounted IMU PDR (Ali et al., 2021, Cho and Park, 2019),
waist-worn IMU PDR (Goyal et al., 2011), helmet-mount IMU
PDR (Sadruddin et al., 2020), etc. On the other hand, thanks
to the development of integrated circuit technology, IMUs are
embedded in smartphones, and smartphones are increasingly
becoming necessary. Therefore, research on PDR technology
based on the IMU in smartphones has significant practical ap-
plication value. For example, some studies focus on using smart-
phone IMU alone to achieve PDR (Kang and Han, 2015, Poulose
etal., 2019). Other research focuses on combining PDR techno-
logy with different technologies, such as PDR/GNSS (Jiang et
al., 2022), Wi-Fi Round Trip Time (Wi-Fi RTT) and PDR (Liu
et al., 2021), Bluetooth low energy (BLE) and PDR (Kong et
al., 2023), PDR/UWB (Guo et al., 2020) and so on. In addi-
tion, readers can find concluding reviews on PDR by (Wu et al.,
2019).

In PDR positioning, step detection, step length estimation, and
step heading estimation are the three most crucial steps (Diez
et al., 2018), and accelerometer data is used for step detection
and step length estimation. Step heading estimation is based
on the orientation measurement of the IMU. Based on the cur-
rent step point, position estimation is achieved based on the step
length and heading. Therefore, step detection is the foundation
of PDR, as it determines the precise moment for position up-
dates, and incorrect step detection can result in an offset of the
estimated position (Ho et al., 2016). There is much literature
on step detection using smartphone IMU. For example, Wang,
A. et al. implemented filtering and differential processing of
smartphone acceleration data and improved the step size estim-
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ation algorithm (Wang et al., 2019). Yao, Y. et al. based on
dynamic time warping (DTW), integrated peak prediction and
zero-crossing detection to implement step detection, and veri-
fied the accuracy of the step detection method in three walking
modes (Yao et al., 2020). Gu, F. et al. improve the accuracy
of step detection by based on peak detection and utilizing the
periodicity, similarity, and continuity of steps (Gu et al., 2017).
Figures 2 (Wang et al., 2019), 5 (Yao et al., 2020), 11 (Gu et
al., 2017), and 3 (Ho et al., 2016) illustrate the waveforms of
the raw acceleration data. These images reveal significant in-
consistencies in the peak data, which may be due to the poor
performance of the smartphone IMU. Such poor performance
adversely affects the accuracy of step detection. However, this
issue has not been studied in depth. Therefore, this paper fo-
cuses on solving the problem of poor peak consistency of the
original acceleration data from the smartphone IMU.

‘We proposed using stochastic resonance (SR) to pre-process the
original acceleration data to obtain acceleration data with better
peak consistency, which is beneficial for subsequent step detec-
tion. SR is a non-linear method that can use noise to enhance
weak signals. Unlike traditional filtering ideas, SR uses the
noise in the system as helpful information. It can be explained
by Brownian particles converting some of the noise energy into
signal energy under the influence of a non-linear potential func-
tion (Gammaitoni et al., 1998, Jiao et al., 2019). Figure 1 shows
the effect of SR.

The energy distribution of the input data

stochastic resonance

—

The energy distribution of the output data

Figure 1. The signal portion of the input data is enhanced under
the effect of SR.

The classical bistable model is the most common representation
of SR, and it is widely used in various fields, such as mechan-
ical fault diagnosis (Zhai et al., 2023), spectrum sensing (Li
and Li, 2014), wireless channel parameter estimation (He et al.,
2024) and signal detection (Chen et al., 2007). The classical
bistable model deals with weak low-frequency periodic signals
containing noise. When a pedestrian holds a smartphone while
walking, the acceleration of IMU will show prominent periodic
characteristics, and the frequency of human walking is relat-
ively low so that these characteristics can meet the processing
requirements of SR. Therefore, this paper uses SR for accel-
eration data processing to improve the peak uniformity of the
acceleration waveform and the step detection rate.

In this paper, we proposed a method to enhance acceleration
data using SR. We achieve improved peak uniformity in the
original data by applying SR to process the IMU acceleration
data from smartphones. With fixed detection parameters, the
SR-processed acceleration data significantly improves the step
detection rate compared to using the original acceleration data
directly.

The rest of the paper is structured as follows. Section 2 gives
a detailed description of our proposed method for SR-enhanced
acceleration data. Section 3 gives test results on actual data
collected from an Android smartphone. Section 4 summarizes
and gives conclusions.

2. Methodology
2.1 Bistable Stochastic Resonance System

This article uses a SR system based on parameter adjustment
to achieve weak signal enhancement in nonlinear systems. The
Langevin equation is a typical bistable nonlinear system. The
SR system can be described by the Langevin equation with
double-well potential property (Fan et al., 2020):

dx

o = V@ +st)+ N (1)
V() = f%amQ + ibx‘l 2

where s(t) is the input signal of the SR system. z(¢) is the out-
put signal after SR-enhanced. N (t) represents the noise term,
usually modeled as white Gaussian noise with a mean of zero
and a variance of 0. V() is the system double-well poten-
tial function. a,b is the adjustment parameter of the bistable
potential well and also represents the system parameter of SR.
Different SR-enhanced effects can be achieved by adjusting the
values of a and b.

V(x)

(b)

Figure 2. Schematic diagram of the double-well potential. (a)
Sketch of the double-well potential, (b) switching states of the
double-well potential for different parameters.
(Gammaitoni et al., 1998)

As can be seen in Figure 2(a), the symmetric double-well po-
tential reaches a minimum value at +z,,, called the stable state,
a maximum value at x, called the unstable state, and AV =
a®/(4b) is called the potential barrier height (Gammaitoni et
al., 1998). Figure 2(b) graphically illustrates the principle of
SR. Specifically, when the system is subjected to weak periodic
signals and noise, the double-well potential will deform and tilt,
and the barrier height will produce periodic changes, and if the
noise changes are synchronized with the periodic generation of
the input signals, the phenomenon of SR is triggered and the
enhancement of noise on the signal is achieved.
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Step 4 Topt

Figure 3. SR enhancement and peak step detection algorithm flow chart.

2.2 SR Enhancement and Peak Step Detection Algorithm
for Acceleration Data

Step 1: Initialization of SR parameters

First, prepare a set of acceleration data A,.s(t) with a priori
known number of steps Sirye, input A,.y(t) into the SR sys-
tem described by Equation (1), i.e., s(t) = Arcs(t). Second,
parameters a and b must be adjusted manually to obtain the SR
output z(t). Then, evaluate the waveform shape of z(t), com-
pare the waveform states corresponding to the different para-
meters a and b values, and select the optimal output waveform
shape, denoted as x,p:(t). Finally, the a and b values corres-
ponding to zop(t) are the initialized SR parameters aop: and
bopt.-

Step 2: Initialization of step detection threshold

The acceleration data zop¢ (t) after SR-enhanced using aopt, bopt
is used to detect the step according to the following

S = Z I[Zpear (t) > 1) 3)

where S represents the number of step detection; X represents
the summation operation. I[e] is an indicator function, if the
input value e is true, it takes 1, if  is false, it takes 0. Zpeak (t)
denotes the peak value of the detected acceleration data x(¢).
represents the threshold for step detection on acceleration data.

Input z,p (t) into Equation (3) as z(¢), and continuously adjust
the value of 7 until S = Sirye. At this point, 7 is used as the
initialized step detection threshold 7op¢.

Step 3: Perform SR-enhanced on the acceleration data to be
measured

Input the SR parameters aopt, bopt Obtained in Step 1 and the ac-
celeration data Ao, (t) to be processed into the SR system, that
is, Aori(t) is substituted into Equation (1) as s(t), aopt, bopt
is substituted into Equation (2) as a and b. The fourth-order
Runge-Kutta method is used to solve Equation (1) (Tong et al.,
2018), and the acceleration data xsg(t) after SR-enhanced is
obtained.

Step 4: Step detection

The step detection threshold 7,,: obtained from Step 2 is used
to perform step detection on the acceleration data zsr(t) ob-
tained from Step 3. Set z(t) = zsr(t) and n = 7opt, then
substitute these into Equation (3) to perform peak step detec-
tion. Label the resulting step detection outcome as Ssr.

3. Experiment Evaluation

To evaluate the effectiveness of the proposed algorithm, we
use actual measured IMU data from a smartphone for valida-
tion. The IMU data was acquired using an OPPO REALME
RMX3366 smartphone running Android 13, with an accelero-
meter sampling rate of 51Hz. Volunteers handed smartphones
walked at three speeds: slow, medium, fast, and then jogging.
Four sets of IMU data were collected in total. The collected
data underwent post-processing using Matlab 2023b.

According to the algorithm in Section 2.2, first, we select the
acceleration data of medium-speed walking as A, (t), and the
number of steps is known to be Sy = 100. According to the
requirements of Step 1, A,.¢(t) is input to SR for processing.
Different outputs can be obtained after adjusting a and b, and
the output with parameters aop: = 1 and bop: = 1000 is finally
selected as the optimum output z,p¢(t). Then, enter Step 2, in-
put Zop:(t) into the step detector of Equation (3), continuously
adjust the detection threshold 7, let the output quantity .S of the
step detection be equal to the actual quantity St,ve, then obtain
the optimal detection threshold 7o, = 0.8.

Method Parameter Nopt
Original - 0.8613
srochastic topt = 1, bope = 1000. 0.8
sampling frequency = 51Hz,
L(])B\:/l_m;r;:%ritlltler passband frequency=2.5Hz, 0.48
P stopband frequency=5Hz.

Table 1. Parameters of SR and Butterworth digital LPF and
optimal detection thresholds.

As a comparison, we take the original acceleration data as zp (t)
and input it directly into Step 2 for processing, yielding a cor-
responding optimal detection threshold of 7,,; = 0.8613. Mean-
while, in order to evaluate the performance of the proposed
method in compared with other methods, we designed a But-
terworth digital low-pass filter (LPF) and used this LPF to pro-
cess the A,.f(t), and then the filtered acceleration data were fed
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into Step 2 for processing, and the optimal detection threshold
Nopt = 0.48 was obtained. The parameters of the SR and the
designed Butterworth digital LPF are summarized in Table 1,
along with the optimal detection thresholds corresponding to
the three methods.
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Figure 4. Step detection results for the priori acceleration data
Aqrey(t). (a) Original, (b) LPF filtering, (c) SR-enhanced.

Figure 4 shows the acceleration data waveforms corresponding
to the three methods, as well as the step detection results for
Arey(t), which are obtained by using the parameters in Table 1.
In Figure 4, the blue lines indicate the acceleration data, the red
circle represents the detected step point, and the magenta num-
bers indicate the total number of detected steps. It should be
noted that all the acceleration data in this section refer to the
combined acceleration, i.e., acom = y/aZ + a? + a2, where
Gz, Gy, a, correspond to the acceleration data of X, Y, and Z
axes, respectively. In addition, we have demeaned and normal-
ized the combined acceleration. If there is no particular ex-
planation, the acceleration data in the following text will still
undergo the same processing.

Figure 5 demonstrates the results of processing the acceleration
data for slow-speed walking using the parameters in Table 1.
As can be seen from the figure, the number of step detections
of the acceleration data processed using original, LPF, and SR
are 33, 99, and 100, respectively. The actual number of steps is
100. Among the three methods, the detection result of directly
using the original acceleration data is the worst. Therefore, the
processing of the acceleration data using both SR and LPF gives
better detection results, with SR being slightly more accurate
than LPF.

The results of processing the acceleration data for fast-speed
walking using the parameters in Table 1 are shown in Figure 6.
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Figure 5. Step detection results after processing the acceleration
data collected in slow-speed walking mode using three methods.
(a) Original, (b) LPF filtering, (c) SR-enhanced.

As can be seen, the number of step detections of the accelera-
tion data processed by the original, LPF and SR are 56, 97, and
100, respectively, and the actual number of steps is 100. The
accuracy of acceleration data processing using LPF and SR is
improved by 41% and 44%, respectively. It can be seen that
there are three missed detections in the detection results of the
LPF-processed acceleration data, resulting in a decrease of 3 in
the total number of steps. In contrast, there are three false de-
tections in the detection results of the SR-enhanced acceleration
data, but the total number of paces was correct.

In order to test the robustness of the algorithm in different mo-
tion states of pedestrians, we processed the collected IMU data
in the jogging mode, and the results are drawn in Figure 7. On
the one hand, the detection result of using the thresholds in
Table 1 directly on the original acceleration data is only 5. The
reason for this result is that the IMU data produces a burr around
the 40s, compared to the other moments of the acceleration data
with low amplitude, which leads to poor results of the uniform
threshold detection. On the other hand, the detection result us-
ing LPF is 98, and it can be seen that three relatively small peaks
are not detected. Although LPF can filter out some of the burrs,
the contribution of LPF to the improvement is relatively small
due to the significant differences in the peaks of the acceleration
waveforms. In contrast, the SR-processed acceleration data de-
tected all the peak points with a detection rate of 100%, this is
because the SR-processed data not only have a specific filtering
effect on the burr filtering effect but also improves the problem
of inconsistent acceleration waveform peaks to a certain extent.

From Figures 5, 6,and 7 after verifying the measured data under
different pedestrian movement rates, the SR-processed accel-
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Figure 6. Step detection results after processing the acceleration
data collected in fast-speed walking mode using three methods.
(a) Original, (b) LPF filtering, (c) SR-enhanced.

eration data for step detection proposed in this paper achieves
100% detection probability. The proposed algorithm is more ro-
bust than directly using the original acceleration data and LPF-
filtered data for step detection. At the same time, the accelera-
tion data after SR-enhanced has better peak consistency.

4. Conclusions

This paper addresses the problem of poor peak consistency of
the acceleration data from the cost-limited IMU in smartphones,
which is not conducive to step detection. A method for SR-
enhanced acceleration data is proposed. The processing results
of the measured data show that the SR-enhanced smartphone
acceleration data have better peak uniformity. Under the veri-
fication of several sets of acceleration data of pedestrians with
different walking speeds, a peak step detection method with a
single threshold was used to detect the original, processed by
Butterworth digital LPF, and SR-enhanced acceleration data.
The results show that our proposed method has a higher step
detection rate, which fully demonstrates the effectiveness and
robustness of the present algorithm.

However, the proposed SR-enhanced acceleration method has
some drawbacks, i.e., acquiring the system parameters relies on
processing a priori data set. Fortunately, the same SR system
parameters can be used to process acceleration data in multiple
motion modes for a particular smartphone.
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