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Abstract

Visible light positioning (VLP) is one of the most promising technologies for providing high-precision, low-cost indoor positioning
and navigation services. However, the traditional calibration methods of VLP are complex and unfriendly to users, which hinders
the large-scale commercial deployment of VLP systems. In this letter, a fast and stable calibration method for Lambert model in the
received signal strength (RSS)-based VLP system is proposed, which dispenses with geometric measurement and greatly simplifies
the calibration procedures. The proposed method calibrates the Lambert model through two steps, firstly using a ratio method to
calibrate the Lambert order, and then estimating the constant term. The actual processes only require moving a robot equipped with
a photo-detector (PD) along a rectangular trajectory once, and then the program will automatically estimate the required parameters
by analyzing the RSS during this period. Experimental results show a good stability of the calibrated parameters, as well as a
excellent distance measuring accuracy within 12 cm. And the entire processes, including signal collection and processing, only take
a total of no more than four minutes.

1. Introduction

Location based services (LBS) are becoming increasingly im-
portant in indoor scenes, such as parking lots, logistics cen-
ters, and smart shopping malls, where the radio frequency (RF)
based global navigation satellite system (GNSS) does not per-
forms well since signals are easily obstructed [Bastiaens et al.,
2024]. Therefore, several indoor positioning systems (IPSs)
such as wireless local area network (WLAN), bluetooth low
energy (BLE), acoustic tag, ultra-wideband (UWB) and vis-
ible light positioning (VLP) have been proposed [Lin et al.,
2024, Huang et al., 2023]. Compared with other IPSs, most
VLP systems has been demonstrated with a high accuracy and
low cost [Guan et al., 2020, Abou-Shehada et al., 2021, Chen
et al., 2021]. What is more, they have the advantages of im-
munity to RF-induced electromagnetic interference, a free and
unrestricted spectrum, and a much higher level of security at the
physical layer [Fang et al., 2023, Yang et al., 2020].

The VLP systems usually use several LEDs as its transmitters
(Txs) and a photo-detector (PD) or an image sensor (IS) as its
receiver (Rx) [Zhuang et al., 2018]. Because of the low frame
rate and small field of view (FoV), the IS-based VLP systems
usually have a poor robustness and mobility. Even worse, the
Rx camera may threaten the privacy of the users. PD-based
VLP systems usually estimate the distances between the Rx and
the Txs by a channel model, mostly the Lambert model, and
then calculate the Rx position by the trilateration method. The
unknown parameters for the Lambert model should be calib-
rated before running the VLP system [Zhuang et al., 2018, Ma-
heepala et al., 2020]. The traditional methods calibrated the
Lambert model have complex processes [Yang et al., 2023].
Firstly, it is necessary to select some calibration points (CPs)
that are evenly distributed from close to far to ensure a more
universal fitting result. Meanwhile, the RSS of all these CPs
should be measured as well calculating the distances from each
CP to each LED. Then, they can use linear least squares to fit
the logarithms of distances and RSS in the Lambert model [Hua
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Figure 1. Framework of the proposed calibration method.

et al., 2021]. The traditional calibration processes of Lambert
models not only require a lot of measurement work, but also
have a certain learning cost, which makes it difficult to pro-
mote VLP systems in real life. Therefore, a simple, fast, and
user-friendly calibration method is important for the industrial-
ization of VLP systems.

In this letter, we propose a fast and stable calibration method
of the Lambert model for VLP system without any geometric
measurement. As is shown in Fig. 1, we use a robot to drive
the Rx moving along a rectangular trajectory around the LEDs,
while continuously measuring RSS using a PD. Because each
LED has been modulated by a micro-controller unit (MCU)
with a pulse width modulation (PWM) wave at a unique fre-
quency, we use a band pass filter (BPF) to process the RSS to
get the timing RSS of each LED during this period. We pro-
pose a solution to match the processed RSS with the geometric
position on the rectangular trajectory. Based on the matching
relationship, we finally estimate the Lambert order through a
nonlinear optimization model (NOM), and further calculate the
constant term. Experimental results show a good consistence
of the calibration parameters of three different routes and mean
distance measurement error < 12 cm. And the entire calibra-
tion processes, including signal collection and processing, only

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-639-2024 | © Author(s) 2024. CC BY 4.0 License.

 
639



take a total of no more than four minutes.

The rest of the letter is organized as follows: in Section II, the
channel model and the two-step calibration approach is pro-
posed. Sections III presents the procedures of the proposed cal-
ibration method, and Sections IV shows the experiments and
results. Finally, Section V summarizes the conclusions.

2. Channel Model

Assuming that the LED is a Lambert light source, the light of
sigh (LOS) transmission channel gain of the visible light from
the LED to the PD can be expressed as [Zhuang et al., 2018]:

H(0) =

{
AT (Ψ)g(Ψ)(m+1)

2πd2
cosm(ϕ) cos(Ψ), 0 ≤ Ψ ≤ Ψc

0, Ψ > Ψc

(1)

where d=distance from the LED to the PD
A= effective photoelectric effect area of the PD
ϕ = radiation angle
Ψ =incident angle
T (Ψ)=optical filter gain
g(Ψ)= optical concentrator gain
m = Lambert order

Assuming that Pt represents the LED emission power, through
the channel propagation, the received power Pr of the PD is:

Pr = PtH(0). (2)

The Pr can further expressed as:

Pr =
(m+ 1)APt

2πd2
Ts(Ψ)g(Ψ) cosm(ϕ) cos(Ψ). (3)

Note that in the absence of a lens between the LED and the
PD, Ts(Ψ) and g(Ψ) are both 1. When both the LED and PD
are placed horizontally, there will be cos(Ψ) = cos(ϕ) = h/d.
Since Pr ∝ RSS, Eq. (3) can be represent as:

RSS =
a(m+ 1)hm+1

dm+3
, (4)

where a = simplified constant term

The traditional calibration methods usually take a logarithm of
both sides of Eq. (4) and then linearly fit it. It may lead to a
problem where the constant term a and exponential term inter-
act with each other and fluctuate greatly in several consecutive
tests. In order to reduce the influence on the constant term a
and better fit m, we propose a ratio fitting method. We substi-
tute two test-points into the Eq. (4), and get the ratio of the both
sides:

RSS1/RSS2 = dm+3
2 /dm+3

1 . (5)

And then take the logarithm of both sides of the Eq. (5), there
will be:

log(RSS1/RSS2) = (m+ 3)log(d2/d1). (6)

The Eq. (6) is a form of proportional function, where the coef-
ficient (m + 3) is easily fitted by using a linear least square
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Figure 2. Geometric model of LOS transmission

method with by several test-points. After that, we estimate a
by that test-points. Using n represents the number of these test-
points, there will be:

a =
1

n

n∑
i=1

RSSid
m+3
i

(m+ 1)hm+1
i

. (7)

Finally, we estimate the two required parameters a and m in Eq.
(4).

3. Calibration Method

In this letter, we propose a fast and robust method to calibrate
the Lambert model, which is unnecessary to take any geomet-
ric measurement. It means that we can not directly use Eq. (6)
and (7) to estimate the unknown parameters a and m, because
the parameters d and h are also unknown. In order to estab-
lish more geometric relationship between the positions and RSS
of the Rx, the proposed method requires moving the Rx along
a rectangular trajectory once, and then estimates the required
parameters by analyzing the RSS during this period.

3.1 RSS Collection and Processing
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Figure 3. The block diagram of the procedures of RSS collection
and processing.

Fig. 3 shows the block diagram of the procedures of the RSS
collection and processing. Firstly, we use a robot to drive the Rx
moving along a rectangular trajectory around the LEDs, while
continuously measuring RSS using a PD that is the only one
sensor required in this method, the original signals of the output
of the PD is shown in Fig. 4(a). Secondly, we use a BPF to
process the RSS since each LED works at a unique frequency.
Then we get the timing RSS sequences of each LED, which has
a temporal resolution of 1/fs, where fs is the sample rate of
PD. Because of the original modulated signal of each LED is
a PWM wave, we find the maximum of a appropriately sized
sliding window (MSW) as the amplitude of the PWM signal
during this period. Then we get the amplitude sequences of
each LED as shown in Fig. 4(b). A moving mean filter (MMF)
and a quadratic polynomial fitting-based smoother (SM) will
be used to smooth the amplitude sequences to get the processed
RSS of each LED that are shown in Fig. 4(c).

3.2 Matching RSS with Position

Fig. 4(a) and (b) show the dynamic changes of the RSS of each
LED over time. According to Eq. (4), the distance from the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-639-2024 | © Author(s) 2024. CC BY 4.0 License.

 
640



(a)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
× 1 0 4

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

RS
S

T i m e  [          m s ]

 L E D 1   L E D 3   L E D 5
 L E D 2  L E D 4  L E D 6

(b)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
× 1 0 4

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

Pr
oc

es
se

d R
SS

T i m e  [          m s ]

 L E D 1   L E D 3   L E D 5
 L E D 2  L E D 4  L E D 6

(c)

Figure 4. Data Processing: (a) the original signals, (b) the
amplitude sequences, and (c) the processed RSS.

PD to each LED changing all the time when the robot moves
through the vertices A,B,C,D and A of the rectangular traject-
ory successively as shown in Fig. 5(a). There is the expression
of di that is the distance from the PD to each LED:

di =
∣∣∣ ⃗PLi

∣∣∣ =

√

(xi − xa)2 + (yi − y)2 + h2 , P ϵAB√
(xi − x)2 + (yi − yc)2 + h2 , P ϵBC√
(xi − xc)2 + (yi − y)2 + h2 , P ϵCD√
(xi − x)2 + (yi − ya)2 + h2 , P ϵDA

(8)
where P represents the position of PD whose coordinates are
(x, y), and Li is the position of i-th LED with the coordinates
of (xi, yi). The height difference between PD and the plane
of LEDs is expressed as h, which is a constant. We assume
that the coordinates of the two vertices A and C are (xa, ya)
and (xc, yc). We can observe that each segment of a piecewise
function contains only one variable. when PϵAB, di has the
minimum value at y = yi. P1 is used to represent the position
of P at this moment with the coordinates of (xa, yi). Simil-
arly, di has the minimum value when P at the position of P2,
P3 and P4 in each segmented interval BC, CD and DA with
the coordinates of (xi, yc), (xc, yi) and (xi, ya), respectively.
According to Eq. (4), RSS increases as d decreases. Therefore,
RSS has the maximum value in each segmented interval when
P at the position of P1, P2, P3 and P4. Fig. 5(b) shows the
RSS of LED3 change over time, where T1, T2, T3 and T4, re-
spectively, present the time when the robot moves through the
vertices B,C,D,A successively.

Assuming that there are N LEDs, the maximum point of the
RSS in each segmented interval of each LED can be expressed
as:

[vij , tij ] = max(RSSi(t)), tϵ(Tj−1, Tj) (9)

where vij and tij represent the RSS value and its time of the i-
th LED in the j-th segmented interval. RSSi(t) is the function
of the i-th LED RSS with time t, and i = {1, 2, ..., N}, j =
{1, 2, 3, 4}. At the time of tij , the RSS values of all N LEDs
can be found, which are:

RSS(tij) = {RSSi(tij), i = {1, 2, ..., N}} (10)
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Figure 5. Signal processes: (a) the designed rectangular
trajectory, (b) RSS of LED3, and (c) the second-order derivative

of each LED after zeroing and its sum sequences.

where i-th LED RSS can be regarded as RSSi(tij). We can
also express the coordinates of the PD at the time of tij :

Pij =


(xa, yi) , j = 1

(xi, yc) , j = 2

(xc, yi) , j = 3

(xi, ya) , j = 4

(11)

By Eq. (9), (10) and (11), we can get a matching relationship
that PD located on Pij can get the RSS values of RSS(tij)
from all LEDs at the time tij .

3.3 Determine Vertex Time

If we express the di as the function of time t, there will be:

di(t) =


√

(xi − xa)2 + (yi − y(t))2 + h2 , tϵ(0, T1)√
(xi − x(t))2 + (yi − yc)2 + h2 , tϵ(T1, T2)√
(xi − xc)2 + (yi − y(t))2 + h2 , tϵ(T2, T3)√
(xi − x(t))2 + (yi − ya)2 + h2 , tϵ(T3, T4)

(12)
I is very easily to find that di is a continuous function of time t
because of the following relationship at the time of each vertex:

di(T
−
j ) = di(Tj) = di(T

+
j ), j = {1, 2, 3, 4} . (13)

Clearly, di(t) increases monotonically on (Tj−∆t, Tj) and de-
creases monotonically on (Tj , Tj +∆t), where (Tj −∆t, Tj +
∆t) is a smaller interval around Tj . Thus, di(t) has a maximum
point at Tj and RSS has a minimum point at Tj . We have de-
signed a algorithm to determine the vertex time Tj . Firstly, we
use a MMF to process the amplitude sequences in Fig. 4(a).
Since the second derivative is adept at identifying minimum
points, we apply the derivative operation to the MMF output
twice. Before each derivation, we employ the SM to mitigate
noise effects on the derivative calculation. If the value of one
second-order derivative < 0, set its value as 0, as the second-
order derivative at a minimum point should be > 0. Fig. 5(c)
shows the second-order derivative of each LED after zeroing.
Next, we accumulate the second derivatives of each LED to ob-
tain a second-order derivative sum sequences, represented as
’ACC’ in Fig. 5(c). The graph reveals four prominent peaks,
which correspond to vertex times T1, T2, T3 and T4, respect-
ively. Additionally, another prominent peak appears at the be-
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ginning of the graph, denoted as T0. This peak is caused by the
robot shaking when it abruptly starts moving from a stationary
position, causing the PD to tilt and resulting in a sudden RSS
decrease. As the robot stabilizes, the PD returns to a relatively
horizontal state. Therefore, T0 actually is the exact start time of
the robot.

3.4 Parameters Estimation by Nonlinear Optimization

When we determined the vertex time T1, T2, T3 and T4, we find
the vij and tij using Eq. (9). Then, we get the RSS(tij) and
Pij using Eq. (10) and (11). Finally, we get a position matrix
P and a signal matrix RSS, which are made up of 4N Pij and
RSS(tij). We establish a NOM that use both the P and R to
estimate the Lambert order of each LED, according to Eq. (6).
If the distance from Pij to the i-th LED is dij and the RSSij is
the RSS value of the i-th LED when PD is at Pij , the objective
function f of the NOM can be expressed as:

f =

N∑
i=1

4N∑
j=1

w(i, j)(log
RSSi1

RSSij
− (mi + 3)log

dij
di1

)2. (14)

The solver of the objective function f is:

S = argmin f
s→s0

, (15)

where mi means the Lambert order of i-th LED and w(i, j)
means the weight of RSSij . When we carefully compare Fig.
5(a) and Fig. 5(b), we will find that the positions P2 and P4 in
Fig. 5(b) are unreasonable. This is because when the signal-to-
noise ratio (SNR) is low, the maximum value may not necessar-
ily correspond exactly to its position. Therefore, we set a certain
threshold TH here to filter the lower RSS values. When it less
than TH , w(i, j) = 0. There are 4+ 1+N unknown paramet-
ers in the objective function, which are constrained in a certain
range. So we choose the Sequential Quadratic Programming
(SQP) algorithm to solve this constrained optimization prob-
lems [Curtis and Overton, 2012]. The main idea of the SQP
algorithm is to transform nonlinear optimization problems into
a series of quadratic programming sub-problems, and approach
the global optimal solution by solving these sub-problems, as
Algorithm 1 shown. After estimating m, the constant term a
can be calculated by substitute m into the Eq. (7).

Algorithm 1 Nonlinear Optimization Model.

INPUT
RSS (N × 4N )

OUTPUT
{mi, ai , i = 1, 2, ..., N}

PARAMETERS
{mi, ai , i = 1, 2, ..., N, xa, ya, xc, yc, h}

OBJECTIVE FUNCTION
for i = 1 : 1 : N
for j = 1 : 1 : 4N
if( RSSij < TH) w(i, j) = 0
else w(i, j) = 1
end
dij =

∣∣∣−−−→PijLi

∣∣∣
f ← Eq.(14)
end

end
SOLVER

S
SQP← Eq.(15)
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Figure 6. Hardwares system.

4. Experiments and Results

4.1 Experimental Environments

Fig. 6 is the test environment, where 6 LEDs are fixed on the
ceiling at a height of 2.8m. The Tx of each LED is made up
of the ESP32 MCU operating at a specific frequency and with
a direct-current (DC) power supply. The Rx integrated a PD
and STM32 MCU powered by a portable host Raspberry Pi,
which also have a data access to the Rx. Both the Rx and the
Raspberry Pi are fixed on Robomaster EP, which has come up
of a mobile wireless data collection platform. The detachable
battery provides power for the robot and the Raspberry Pi. All
the key experimental parameters are given in Table 1.

Table 1. Experimental Parameters

Parameters Values
LED voltage / V 14
Frequencies of LEDs / Hz (157, 289, 437, 589, 777, 943)

(1.37, 1.65), (3.73, 1.62)
Coordinates of LEDs / m (1.96, 3.38), (3.19, 3.40)

(1.35, 5.19), (3.69, 5.79)
Height of LEDs / m 2.8
Sample rate of PD / kHz 2
Size of room /m2 5.5× 8

We have verified the proposed method by four aspects includ-
ing the time cost, parameters stability, performance of distance
measurement and positioning accuracy. As a comparison, we
have also manually measured the RSS values and positions of
12 CPs to estimate the parameters using the traditional calib-
ration method (Trad). The Robomaster EP is programmed to
move on three different rectangular trajectories (Trajs).

4.2 Stability

The calibrated results of the proposed method are shown in
Table 2 and Table 3. In Table 2, the m of all LEDs are from
0 to 0.27, and LED1 has the largest variation, reaching 0.13,
while other LEDs have smaller fluctuations. When we put the
maximum and minimum of m of LED in Eq.4, and set the same
value of other parameters, we find the relative change of the
RSS is very small. It means that the Lambert orders of each
LED in three trajectories are stable. Table 3 shows the differ-
ences in a of each LED, but the fluctuation of a of each LED
in the three trajectories is small. LED3 has the largest variation
with 21, which is 7 percent of the maximum of 300. The dif-
ference in a for other LEDs is smaller that stands the calibrated
constant terms of all LEDs are consistency.
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Table 2. Calibrated Lambert order

Trajs LED1 LED2 LED3 LED4 LED5 LED6
traj 1 0.27 0.13 0 0.08 0.18 0
traj 2 0.14 0.08 0 0.09 0.19 0
traj 3 0.14 0.06 0 0.09 0.11 0.02

Table 3. Calibrated constant term

Trajs LED1 LED2 LED3 LED4 LED5 LED6
traj 1 282 298 298 298 340 319
traj 2 292 297 277 278 320 300
traj 3 297 307 290 278 340 296
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4.3 Time Cost

We recorded the total time required for the proposed calibra-
tion method on three different trajectories, including data col-
lection and program running time. As a comparison, we also
recorded the time required for traditional methods, where the
data collection time for each CP is approximately one minute,
and the 12 CPs take 12 minutes. From Fig. 7, the proposed
calibration method is faster, and the entire processes, including
signal collection and processing, only takes a total of no more
than four minutes. Users for traditional method have to spend
much time to learn how to correctly choose CPs and some other
procedures. If we take the learning cost into consideration, the
proposed method are more efficient because of its almost auto-
mated program.

4.4 Distance Measurement Performance

In order to test the performance of distance measurement us-
ing the calibrated parameters in Table 2 and Table 3, we have
selected some test-points (TPs) in the central area of the room
(inside the blue rectangle in the graph) and the edge area within
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Figure 9. CDF of the distance measurement errors.

1 meter from the wall as shown in Fig. 8. The result of the mean
error (ME) of distance measurement of each LED is shown in
Table 4 and 5. We find that in the central areas, the MEs of
each LED in all trajectories are at a level of less than 12 cm,
while it less than 40 cm in the edge areas of the room. The
main reason is that the measured RSS are severely influenced
by the reflected lights in the edge areas of the room. It can be
seen that the traditional method has a better accuracy in all LED
in the central areas. This may be because all the three rectan-
gular trajectories we designed did not pass through the central
areas. Even though we also has a good accuracy of each LED in
the central areas. In the edge areas, the proposed method has a
roughly the same level of accuracy with the traditional method.
We have calculated the cumulative distribution function (CDF)
of all the TPs both in central and edge areas and plot them in
Fig. 9, from which we also find that the proposed method has
similar performance of distance measurement with traditional
methods, and all LEDs in trajectory 1 have a less than 31 cm
with a confidence level of 0.8.

Table 4. Distance measuring performance in central areas [cm]

Trajs LED1 LED2 LED3 LED4 LED5 LED6
Traj 1 7.6 6.5 5.0 11.9 5.4 5.9
Traj 2 5.1 6.8 10.3 5.0 8.8 4.4
Traj 3 5.5 6.0 6.4 4.9 7.0 4.6
Trad 4.6 6.1 4.5 2.9 4.4 3.0

Table 5. Distance measuring performance in edge areas [cm]

Trajs LED1 LED2 LED3 LED4 LED5 LED6
Traj 1 19.4 11.6 22.3 20.3 27.0 26.0
Traj 2 19.4 13.1 26.4 17.0 28.6 27.0
Traj 3 19.0 12.9 23.6 17.0 27.2 27.3
Trad 18.8 14.2 23.1 18.9 23.6 25.3

4.5 Positioning Accuracy

The static positioning performance has also been verified by
using the calibrated parameters in Table 2 and Table 3, and the
results are also shown in Fig. 8. Fig. 8 shows the 2D posi-
tioning performance of both the proposed and traditional meth-
ods, from which we gte the conclusion that both have excellent
performance, except for some TPs closely attached to the wall
(circled in red). We have also calculated the CDF of all the
TPs both in central and edge areas and plot them in Fig. 9,
from which we also find that the proposed method has similar
performance of positioning accuracy with traditional methods.
The CDF curves of the proposed method rises rapidly in the
early stage and is relatively flat in the later stage. This indicates
that the positioning errors of the proposed method are more po-
larized, reflecting a higher positioning accuracy in the central
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Figure 10. Cumulative distribution function of the positioning
errors.

ares but a severe performance degradation at the edges due to
the influence of reflected light.

The stability of the proposed method can be seen from the small
differences in the parameters calibrated by three different tra-
jectories. Compared to traditional methods, one-third of the
time cost reflects the speed advantage of the proposed method.
The distance measuring and positioning accuracy represent that
the proposed calibration method for RSS-based VLP system
has a good performance.

5. Conclusions

In this letter, we have proposed a fast and highly stable calib-
ration method for RSS-based VLP system. Compared with the
traditional calibration methods that are complex and unfriendly
to users, the proposed calibration method is unnecessary to take
any geometric measurement and greatly simplifies the calibra-
tion procedures. It only requires moving the receiver along a
rectangular trajectory once, and then automatically estimating
the required parameters by matching the positions with the RSS
during this period. We have implemented a fully automated cal-
ibration processes, allowing users to have almost no learning
cost. Experimental results show a high consistence and stabil-
ity of the calibrated parameters in different trajectories, as well
as a excellent distance measuring accuracy with the level of less
than 12 cm in the central areas of the floor. And the entire pro-
cesses, including signal collection and processing, only take a
total of no more than four minutes. In the future, the proposed
method can be used for rapid access to indoor VLP systems
for high-precision positioning when unmanned aerial vehicles
(UAV) enter indoor scenes. In addition, it will be beneficial for
the large-scale commercialization of VLP systems.
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