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Abstract

Event cameras offer significant advantages over traditional cameras, including high temporal resolution, high dynamic range, and
low power consumption. However, reconstructing images from the asynchronous events generated by these cameras presents unique
challenges. This paper investigates the optimal number of events needed for high-quality image reconstruction using event cameras.
We evaluate two primary reconstruction strategies—fixed time window and fixed number of events—across various dynamic and
static scenes. Our study includes scenarios with different lighting conditions and camera movements. Using the state-of-the-
art E2VID algorithm, we perform both qualitative and quantitative analyses of the reconstructed images, comparing them with
reference frames from a traditional RGB camera. Our results demonstrate the trade-offs between temporal resolution and image
quality for each reconstruction strategy, providing insights into the optimal settings for different applications. This research offers
practical guidelines for selecting appropriate reconstruction parameters to achieve the better image quality from event cameras.

1. Introduction

The event camera is an optical sensor that generates images
based on changes in brightness rather than uniform exposure
at a fixed frame rate. Each pixel asynchronously generates a
series of events. Compared to traditional cameras, event cam-
eras offer advantages such as high temporal resolution (approx-
imately 1 microsecond), high dynamic range (over 140 dB), no
motion blur, lower data redundancy, and lower power consump-
tion (Gehrig et al., 2020). This makes event cameras a new
option for robotic applications, serving as auxiliary sensors in
scenarios where traditional cameras face challenges, and they
hold significant potential in many application domains such as
feature detection, tracking, and visual simultaneous localization
and mapping (SLAM).

A widely used approach to processing event data involves con-
verting the data into lower frequency frames, such as recon-
structed images or videos. This serves as an interface between
event cameras and traditional frame-based computer vision (Gal-
lego et al., 2017). While this method may result in the loss of
some advantages, such as ultra-high frequency data, it also of-
fers clear benefits. Image reconstruction can provide humans
with an intuitive understanding of the rich information encoded
by events, enabling people to visually interpret events and gain
an intuitive understanding of information embedded in the event
data. Reconstructed images can also serve as a useful represent-
ation for traditional frame-based computer vision. Additionally,
existing visual localization algorithms can be directly applied to
event data when events are reconstructed for intensity frames.

Although event cameras generate asynchronous events, an in-
dividual event only marks the brightness change of a certain
pixel, thus one event alone does not provide sufficient inform-
ation for estimation. Therefore, past events or additional in-
formation are required. When reconstructing images from event
data, each intensity image is reconstructed from a certain num-
ber of event data. However, this approach presents a problem:
how many events are needed for one reconstructed image using

an event camera? The number of events selected for image re-
construction is crucial for event cameras. If too few events are
used, the image reconstruction may fail due to insufficient in-
formation; if too many events are used, ghosting may appear in
the reconstructed image due to overlapping events with differ-
ent timestamps. For example, the background objects vary in
different environments, thus the event data volume changes in
various scenarios. Besides, the complexity of camera motions
can lead to the change in event data volume, resulting in image
blurring, large feature extraction errors, and dispersion of loc-
alization results. Therefore, it is important to strike a balance
and select the appropriate number of events for accurate image
reconstruction.

This paper aims to investigate the effect of event data volume
on image reconstruction, with respect to various environments
as well as various camera motions. Firstly, event data in vari-
ous scenarios is collected, including different environments and
camera movements. These scenarios included indoor and out-
door environments, event camera movements at different speeds,
and straight and turning movements of the camera. Then, differ-
ent image reconstruction strategies are used to process the event
data, including reconstruction with a fixed number of events and
with a fixed time window. Finally, the reconstructed images
under different reconstruction strategies are compared, and the
relationship between image reconstruction and different recon-
struction strategies in different scenarios is analysed.

The contributions of this article are as follows: (1) Collect event
camera data in various scenarios, and intuitively compare the
performance of event camera image reconstruction methods in
various scenarios. (2) Use different image reconstruction strategies
for event camera data in different scenarios, and comprehens-
ively compare the differences between different reconstruction
strategies. (3) Establish the connection between the scene and
the image reconstruction strategy, and provide some guiding
suggestions for the setting of image reconstruction parameters.
Conclusions from this paper can pave the way for optimized
event camera reconstruction strategies across varied scenarios.
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2. Related Work

In recent years, reconstruction models based on deep neural net-
works have shown remarkable performance in processing event
camera data. These models aim to reconstruct high-quality in-
tensity images or videos from the sparse and asynchronous events
generated by event cameras. The development of these models
addresses the need for bridging the gap between the unique data
structure of event cameras and traditional frame-based com-
puter vision methods.

Munda et al. (Munda et al., 2018) presented a method for in-
tensity reconstruction by framing it as an energy minimization
problem. Their approach allows for image reconstruction at
arbitrary frame rates, but their experiments were conducted in
static environments, lacking significant camera motion changes,
which limits their applicability in dynamic real-world scenarios.
Barua et al. (Barua et al., 2016) used K-SVD to map small
patches of events to an image gradient and applied Poisson in-
tegration to reconstruct intensity images. This method performs
well in static scenes but struggles with dynamic scenes, as it
does not account for rapid changes in the environment or the
camera’s motion.

These two works reconstruct independent intensity images from
small windows of events, while Rebecq et al. (Rebecq et al.,
2019al Rebecq et al., 2019b)) introduced E2VID, a recurrent
neural network designed to handle the high-speed and high dy-
namic range nature of event streams. E2VID reconstructs high-
quality videos from long event streams, capturing temporal de-
pendencies in the data, which is crucial for reconstructing ac-
curate intensity frames from events. Similarly, Scheerlinck et
al. (Scheerlinck et al., 2020) developed FireNet, a fully convo-
lutional network that performs fast video reconstruction from
events. FireNet is optimized for efficiency, requiring fewer para-
meters and less memory compared to E2VID, making it suitable
for real-time applications.

Later, Wang et al. (Wang et al., 2020) proposed an unsupervised
pipeline that first reconstructs low-resolution images from event
streams and then enhances the image quality through super-
resolution techniques. Their method effectively upsamples the
enhanced images, providing high-quality reconstructions without
relying on ground-truth data for training. Besides, Ercan et
al. (Ercan et al., 2024) introduced HyperE2VID, which util-
ized hypernetworks to combine current events with previously
reconstructed images. This approach improves the reconstruc-
tion quality by incorporating temporal information from past
frames, thus maintaining consistency in the reconstructed video.
For high dynamic range (HDR) video reconstruction, Zou et
al. (Zou et al., 2021) proposed a convolutional recurrent neural
network, while Yang et al. (Yang et al., 2023) introduced a mul-
timodal learning framework that combines low dynamic range
videos and event data.

However, these methods often rely on ground-truth data from
conventional cameras, which may not accurately capture HDR
scenarios. Paredes-Vallés et al. (Paredes-Vallés and De Croon,
2021)) took a different approach by using self-supervised learn-
ing to reconstruct intensity images from events. Their method
estimates optical flow simultaneously with intensity reconstruc-
tion, eliminating the need for ground-truth data and making the
system more adaptable to various scenarios.

Despite these advances, challenges remain in optimizing re-
construction algorithms for diverse environments and dynamic

camera motions. This paper builds upon existing research by
evaluating different reconstruction strategies across a variety
of scenarios, aiming to identify optimal parameters for high-
quality image reconstruction from event data.

3. Image Reconstruction Methodology

The process of reconstructing images from event data is critical
for utilizing the high temporal resolution and dynamic range
offered by event cameras. Unlike traditional cameras, which
capture frames at fixed intervals, event cameras generate a con-

tinuous stream of events representing pixel-level brightness changes.

This asynchronous nature of event data necessitates specialized
strategies and algorithms for effective image reconstruction.

Image reconstruction from event data can be broadly categor-
ized into strategies based on the integrated process of events
over fixed durations or fixed quantities. These strategies aim to
balance the trade-off between temporal resolution and the qual-
ity of the reconstructed images. Fixed-duration strategies en-
sure consistent frame rates but can lead to variable image qual-
ity depending on scene dynamics. Conversely, fixed-number
strategies maintain a consistent number of events per frame but
result in variable frame rates.

This section looks into the fundamental aspects of event repres-
entation, outlines the prominent reconstruction strategies, and
introduces a prominent reconstruction algorithm, E2VID, which
is used to reconstruct images from events in this paper. The sub-
sequent sections provide a detailed examination of these meth-
odologies, highlighting their implementation and effectiveness
in various scenarios.

3.1 Event Representation

An event camera detects changes in brightness at the pixel level
and triggers asynchronous events when the brightness surpasses
a predefined threshold. Given an event sequence E = {e;} with
a total time duration of 7" and comprising a total of N events,
where W and H represent the width and height of the event
camera, respectively, each event can be defined as:

e; = (i, Y, ti, Di) (D

where (x;,y;) represents the pixel position, ¢; represents the
timestamp of the event, and p; is a polarity flag that signi-
fies whether the brightness increases or decreases. Here, ¢ €
[0,N—-1],z; € {0,1,..., W—1},y; € {0,1,..., H—1},¢; €
[0,T],p; € {—1,1}.

3.2 Reconstruction Strategy

The current event-to-image reconstruction strategy is mainly
based on event-batching algorithms, which integrate a fixed time
interval or a fixed number of events to reconstruct one intens-
ity image. The basic concept is to divide the continuous stream
of events into consecutive windows. All the events within each
window will be used to reconstruct an intensity frame. Two
primary strategies are employed: fixed-duration and fixed-number
reconstruction.

3.2.1 Fix-duration Reconstruction Strategy In this strategy,
events are accumulated over a fixed time interval to reconstruct
an intensity image. Formally, the events within each time win-
dow are:

I, « By ={ekT < t; < (k+ 1T}, ke {0,1,...} (2)
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where T denotes the fixed duration. This method ensures a con-
sistent frame rate, but the number of events in each reconstruc-
ted image can vary significantly depending on the scene’s dy-
namics, as shown in Figure. [T]
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Figure 1. Fixed-duration reconstruction strategy.

3.2.2 Fix-number Reconstruction Strategy In this approach,

a fixed number of events are used to reconstruct each intensity
image. The events are accumulated as:

I; « Ej = {eilkN <i < (k+1)N—1},k € {0,1,...} (3)

where N represents the fixed number of events. This method
maintains a consistent number of events per frame, but the frame
rate may vary depending on the event generation rate, as shown
in Figure. 2}
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Figure 2. Fixed-number reconstruction strategy.

3.3 Reconstruction Algorithm

Among the various reconstruction algorithms, E2VID has laid
the groundwork and shown superior performance in generating
high-quality images from event data. Developed by Rebecq et
al. (Rebecq et al., 2019a), E2VID uses a recurrent neural net-
work (RNN) to process streams of event data and produce in-
tensity frames with high temporal resolution.

E2VID processes the event data through several stages: Firstly,
events are grouped into batches, ensuring a manageable and
consistent data input size. Then the network employs convo-
Iutional layers to extract spatiotemporal features from the ac-
cumulated events. A Long Short-Term Memory (LSTM) mod-
ule processes the extracted features, maintaining temporal con-
text and effectively handling the asynchronous nature of the
events. This recurrent layer ensures that the temporal depend-
encies between events are preserved. Next residual connections
are integrated into the network to facilitate the flow of informa-
tion and gradients, aiding in the learning process and improving
the network’s ability to reconstruct fine details. After recurrent
processing, the network uses upsampling techniques to increase
the spatial resolution of the feature maps. This step ensures
that the final reconstructed image has the desired resolution and
quality. The final stage involves additional convolutional layers
that transform the upsampled feature maps into an intensity im-
age. These layers refine the features and produce high-quality

frames that accurately capture the underlying scene dynamics.
Figure. 3] displays the architecture of the E2VID reconstruction
algorithm.
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Figure 3. Architecture of the E2VID reconstruction algorithm.

This paper uses E2VID as an example to process events, aiming
to provide a comprehensive analysis of image reconstruction
using an event camera across diverse scenarios.

4. Evaluation

In this section, we compare reconstructed images using dif-
ferent reconstruction strategies across various scenarios, and
present both quantitative and qualitative results. Our evalu-

ation relies on authentic event data captured by a DVXplorer
sensor with a resolution of 640x480. To establish a bench-
mark, an RGB camera, specifically the Intel RealSense, is used
to provide ground-truth frames at a rate of 30 frames per second
(fps). Both the event camera and the RGB camera are mounted
on a wheeled robot, as illustrated in Figure. E[

Figure 4. Setup of event camera and RGB camera mounted on a
wheeled robot.

These scenarios include diverse lighting conditions, ranging from
bright indoor to dim indoor and outdoor environments. Addi-
tionally, the scenarios include in camera motion speed, span-
ning from slow to swift movements. Moreover, the scenarios
feature challenges such as high dynamic range situations, where
the camera faces direct sunlight, as well as environments with
many moving objects in the background.

For image reconstruction strategies, we employ two reconstruc-
tion principles to process the event data: reconstruction with
a fixed time window and reconstruction with a fixed number
of events. In terms of reconstruction with a fixed number of
events, we use large, medium, and small event volumes to re-
construct one intensity image; in terms of reconstruction with a
fixed time window, we use long, medium, and short time win-
dows to reconstruct one intensity image. These reconstruction
strategies will be applied to all the scenarios mentioned earlier,
and the reconstruction results will be compared and analyzed.

For each reconstructed image, we query the corresponding ground-
truth frame with the closest timestamp to the reconstructed im-
age, and then compare the similarity of the two frames accord-
ing to several quality metrics. Prior to the comparison, we em-
ploy local histogram equalization to both the ground-truth and
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Figure 5. Reconstruction results using fixed-duration strategy across different scenes.

Scene I  Scene2 Scene3 Scened4d Scene5 Scene 6
T=5ms 0.58 0.63 0.58 0.59 0.66 0.50
T =30 ms 0.55 0.58 0.67 0.59 0.61 0.41
T =55ms 0.56 0.66 0.67 0.59 0.61 0.41

Table 1. pHash similarity results for fixed-duration reconstruction.Low value represents higher similarity.

reconstructed frames, ensuring that both grayscale images are
standardized to the same intensity range and can be compared.

To compare the reconstructed images using different reconstruc-
tion strategies, we use a quantitative metric that is widely used
in this field as well as the reference images obtained from an
RGB camera. The primary evaluation of the reconstruction
strategies relies on the similarity between the reconstructed and
reference frames. The metric is pHash similarity
Goljan, 2000), a perceptual hashing method that quantifies the
similarity between images. Lower pHash values indicate higher
similarity.

4.1 Reconstruction with a Fixed Time Window

The fixed-duration reconstruction strategies are evaluated at 5
ms, 30 ms, and 55 ms intervals, respectively. The six scenes in-
clude making a turn, moving objects, slow motion, indoor dim
lighting with a hand-held camera, and indoor bright lighting
with a hand-held camera.

Figure. [B]displays the qualitative results, and Table. [I| displays
pHash results. Low pHash value represents higher similarity.

In the first two scenes, the camera is making a turn, introdu-
cing significant motion blur and dynamic changes in the field of
view. For the fixed-duration strategy, shorter duration of time
windows achieves higher similarity, effectively capturing rapid
changes without significant overlap of events. The longest dur-
ation (55 ms) sees a decrease in similarity, likely due to the
compounded motion blur.

The third scene involves significant motion within the frame,
such as people walking or vehicles moving. For short time

window, the short accumulation period captures the movement
crisply, but may lack sufficient context for complex scenes. For
medium time window, the balance between context and detail
is optimal, capturing movements effectively without excessive
blurring. For long time window, the increased time window
introduces more blurring, especially noticeable in fast-moving
objects.

The fourth scene features slow and steady movements. All time
windows (5 ms, 30 ms, 55 ms) perform relatively well due to
the slow motion, but the 5 ms window might result in too sparse
data, creating false ghost. The 30 ms window seems to offer the
best balance, providing enough events to create a smooth and
detailed reconstruction. The 55 ms window performs similarly
and might slightly blur very slow movements.

The last two scenes involve indoor lighting and hand-held cam-
eras. Low light conditions often pose challenges for traditional
cameras due to noise and poor contrast.For short time windows,
the short exposure time limits the amount of data collected,
leading to potentially noisy reconstructions. For longer time
windows, there is a significant improvement as more events are
captured, enhancing the image quality. However, a problem
arises when the reference images themselves face certain chal-
lenges, such as high dynamic range in this case, reducing their
reference value.

4.2 Reconstruction with a Fixed Number of Events

The fixed-number reconstruction strategies are evaluated using
50000, 100000, and 200000 event volumes, respectively.

Figure. [6] displays the qualitative results, and Table. [2] displays
pHash results. Low pHash value represents higher similarity.
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Figure 6. Reconstruction results using fixed-number strategy across different scenes.

Scene 1 Scene2 Scene3 Scened4 Scene5 Scene 6
N =50000 0.61 0.61 0.67 0.64 0.60 0.53
N = 100000 0.64 0.58 0.66 0.63 0.61 0.48
N =200000 0.55 0.64 0.67 0.61 0.60 0.47

Table 2. pHash similarity results for fixed-number reconstruction. Low value represents higher similarity.

For Scene 1, the best reconstruction quality (lowest pHash value)
is observed with 200,000 events, indicating that a higher num-
ber of events leads to more accurate reconstruction during the
turn. While in Scene 2, using 100,000 events results in the low-
est pHash value, suggesting it provides the best reconstruction
quality for this particular turning scenario. The two scenes both
involve cameras making a turn. The difference between Scene
1 and Scene 2 highlights the variability in the amount of data
required for similar types of motion.

Scene 3 shows minimal variation in pHash values across differ-
ent event numbers, indicating that the reconstruction quality is
relatively stable regardless of the number of events. This could
imply that moving objects might be sufficiently captured with a
moderate amount of event data.

For slow motion in Scene 4, the quality of reconstruction im-
proves slightly as the number of events increases, with the best
results at 200,000 events. Slow motion might benefit from more
events to better capture finer details and gradual changes.

Scene 5 demonstrates that the pHash values are quite close across
all event numbers, suggesting that dim lighting conditions might

not significantly benefit from more events. The similarity in

pHash values implies that the reconstruction is relatively unaf-

fected by the number of events in low-light conditions. While in

Scene 6, the pHash values show improvement with an increas-

ing number of events, with the lowest value at 200,000 events.

This indicates that bright lighting conditions benefit from more

events to achieve higher reconstruction quality, likely due to the

greater contrast and details that can be captured.

Overall, the analysis shows that the optimal number of events
for image reconstruction varies with the scene and motion dy-

namics. Fast motions, such as turning, generally benefit from
more events, while scenes with moderate changes, like mov-
ing objects or slow motion, show stable reconstruction quality
across different event numbers. Lighting conditions also play
a significant role, with bright conditions benefiting more from
higher event counts compared to dim lighting scenarios. These
insights can guide the selection of appropriate event volumes
for different scenarios to achieve the best image reconstruction
quality.

4.3 Comparison and Analysis

It is clear that the optimal reconstruction strategy is highly de-
pendent on the specific scene and the nature of the motion.
Fixed time window strategies tend to perform better in scen-
arios with consistent motion or lighting conditions, providing a
reliable temporal resolution. However, fixed number of events
strategies offer better adaptability to varying scene complexit-
ies and motion speeds, ensuring that sufficient data is always
captured to reconstruct high-quality images.

In scenes with rapid motion, shorter time windows or smaller
event volumes help in maintaining sharpness and reducing blur-
ring. In contrast, scenes with slower motion or more complex
lighting conditions benefit from longer time windows or higher
event volumes to capture more contextual information, enhan-
cing the detail and quality of the reconstructed images.

Overall, the choice of reconstruction strategy should consider
the specific characteristics of the scene and the intended ap-
plication. Fixed-duration strategies are more consistent in tim-
ing but can vary in event density, while fixed-number strategies
provide consistent event density but variable timing. Under-
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standing the trade-offs between these approaches is crucial for
optimizing image reconstruction from event cameras.

5. Conclusion

This paper investigates the optimal number of events needed
for high-quality image reconstruction using event cameras. We
evaluated two primary reconstruction strategies—fixed-duration
and fixed-number—across various dynamic and static scenes
using the E2VID algorithm. The results show how different
reconstruction strategies affect the quality of the reconstructed
images, providing insights into selecting appropriate paramet-
ers for specific scenarios. Our findings demonstrate the trade-
offs between temporal resolution and image quality for each
strategy, providing insights into the optimal settings for differ-
ent applications.

The conclusions from this study offer practical guidelines for
selecting appropriate reconstruction parameters, enabling the
effective use of event cameras in various application domains.
Future work could explore adaptive reconstruction strategies
that dynamically adjust parameters based on scene dynamics
and camera motion, further enhancing the performance of event-
based vision systems.
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