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Abstract

Event cameras are bio-inspired visual sensors that output changes in pixel-level brightness asynchronously instead of standard
intensity frames at a fixed rate. These cameras offer reliable visual information in high-speed motion and high dynamic range (HDR)
scenes, addressing the limitations of traditional cameras in such scenarios. Therefore, research of integrating event cameras into
established visual algorithms holds significant value. In this study, based on traditional Visual-Inertial Odometry (VIO) frameworks,
we proposed an innovative asynchronous monocular event-based inertial odometry method to fully exploit the benefits of event
cameras. First, the corner features are extracted separately from the raw event stream and the time surface map, followed by uniform
feature selection to accurately describe three-dimensional spatial geometry. Then, feature tracking is achieved by integrating these
two event representation methods. In addition, our method obtains stable and high frequency state estimation by fusing event and
IMU measurements through graph optimization. We validate the effectiveness of our proposed approach, comparing with several
state-of-the-art EVIO systems and VIO systems.

1. Introduction

The task of estimating a sensors ego-motion has important ap-
plications in various fields, such as augmented/virtual reality or
autonomous robot control. In recent years, significant attention
has been directed towards the development of visual-inertial
state estimation systems. This is primarily due to the com-
plementary nature of information provided by visual sensors,
such as cameras, and inertial sensors, specifically Inertial Meas-
urement Units (IMUs), which enhance the robustness of con-
ventional camera pose estimation systems. However, due to
the limitations of standard cameras, visual-inertial systems still
struggle to cope with some challenging situations.

Event cameras, also referred to as Dynamic Vision Sensors
(DVS), hold significant promise in addressing challenges en-
countered by SLAM systems in real-world scenarios(Gallego et
al., 2020). Unlike conventional cameras that capture intensity
values of all pixels at fixed time intervals, event cameras trans-
mit information via an asynchronous event stream, which re-
cords changes in luminance. This unique characteristic equips
event cameras with superior performance in scenarios involving
high-speed motion and High Dynamic Range (HDR), but also
posing challenges for their integration into traditional frame-
based visual SLAM algorithms.

Existing research attempts to tackle this challenge through
various approaches, including reconstructing images from
events(Kim et al., 2016), accumulating events over time to form
event frames(Rebecq et al., 2017), or integrating event cameras
with other sensors like standard cameras(Hidalgo-Carrió et al.,
2022) and RGBD cameras(Zuo et al., 2022). However, these
methods often lack real-time capability, limiting the potential
effectiveness of event cameras in high-speed motion scenarios.

To maximize the benefits of event cameras, our study proposes
a monocular Visual-Inertial Odometry method that integrates
event stream corner extraction and matching. This approach de-
tects corners in the event stream through two distinct methods

Figure 1. Our proposed method combined event-corners from
raw event stream and corners from TS without polarity to provide
robust state estimation in real-time. Bottom Left: Events, Bottom
Middle: Event-corners, Bottom Right: Time Surface with polar-
ity (blue: positive events, red: negative events).

and utilizes them for matching and tracking to achieve asyn-
chronous real-time pose estimation. The primary contributions
of this study are outlined as follows:

• We propose a method for feature selection and tracking
that integrates raw event stream and event frame data,
which decrease the computational load of feature track-
ing and pose estimation in SLAM systems. Consequently,
our system is capable of real-time pose estimation using a
maximum of 60Hz feature tracking output.

• Our EVIO algorithm presents an asynchronous event-IMU
tightly coupled framework. Additionally, our proposed
system cam bootstrap from unknown initial states stably.

• We validate the feasibility of the algorithm across chal-
lenging scenarios on multiple datasets, including high-
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speed motion and significant changes in brightness. Fur-
thermore, we conduct various comparative experiments
to comprehensively evaluate the algorithm’s performance
from multiple perspectives.

The rest of the paper is organized as follows: Chapter 2 dis-
cusses the relevant traditional visual SLAM and event-based
camera SLAM algorithms. Chapter 3 presents the overall
framework of the proposed EVIO. Chapter 4 describes a series
of experiments and their outcomes conducted on the publicly
available Event Camera Dataset(Mueggler et al., 2017) and In-
door datasets (Guan and Lu, 2022). Chapter 5 provides the pa-
per’s conclusion.

2. Related Work

2.1 Visual Odometry with Event Camera

Event-based monocular VO has been intensively researched
for challenging scenarios in recent years. The earliest purely
event-based 6-DoF VO(Kim et al., 2016) recovers image in-
tensity, performing real-time event-based SLAM through three
decoupled probabilistic filters that jointly estimate the 6-DoF
camera pose, 3D-map of the scene, and image intensity.
EVO(Rebecq et al., 2016) proposed to solve the SLAM prob-
lem without recovering image intensity, performs a geomet-
ric approach which combines a tracking approach based on
image-to-model alignment and semi-dense 3D reconstruction
algorithm(Rebecq et al., 2018) in parallel. Subsequent monocu-
lar visual odometry tasks are typically enhanced by the integ-
ration of additional sensor information. EDS(Hidalgo-Carrió et
al., 2022) introduces a monocular visual odometry method that
integrates brightness change events from an event camera with
conventional frame imageswhile Zuo et al.(Zuo et al., 2024)
presents a semi-dense 6-DOF tracking method for event cam-
eras under challenging conditions by integrating depth cam-
era information or pre-built map data. Newest purely event-
based monocular SLAM algorithms are mostly based on the
contrast maximization(CM) framework(Gallego et al., 2018),
which directly recover the parameters that describe the relat-
ive motion between the camera and the scene by raw events.
Kim and Kim(Kim and Kim, 2021) estimates rotational mo-
tion over globally aligned events using this framework. CMax-
SLAM(Guo and Gallego, 2024) the aforementioned research
and proposes the first event-based SLAM system which lever-
ages CM framework to optimize rotational motion estimation.
However, these methods currently can only estimate pure ro-
tation and require large computational resources, making them
unsuitable for real-time pose estimation systems.

2.2 Visual-Inertial Odometry with Event Camera

Monocular vision-based SLAM systems encounter scale un-
certainty issues. Therefore, a trend is to integrate IMUs into
visual SLAM systems. IMUs can rapidly provide independ-
ent estimates of position and attitude, which is crucial for scen-
arios where visual information is unreliable or infrequently up-
dated. For traditional visual SLAM, VINS(Qin et al., 2018) and
ORB-SLAM3(Campos et al., 2021) are two of the most classic
optimization-based VIO frameworks. For event-based SLAM,
Zihao Zhu et al.(Zihao Zhu et al., 2017) proposed the first event-
based VIO that tackles the incomplete estimation of scale and
provides accurate 6-DoF state estimation based on Extended

Kalman Filter (EKF). Rebecq et al.(Rebecq et al., 2017) ob-
tains a discrete number of states based on a spatio-temporal
window of event streams, and introduces virtual event frames to
achieve nonlinear optimization that refines estimated poses. Ul-
timate SLAM(Vidal et al., 2018) furthered the aforementioned
research by combining event streams, image frames, and IMU
measurements with nonlinear optimization, which leverages
the complementary advantages of event cameras and standard
cameras. Mueggler et al.(Mueggler et al., 2018) adopted a
continuous-time framework based on cubic spline for smooth
trajectory estimation and fused both event streams and IMU to-
gether. EKLT-VIO(Mahlknecht et al., 2022) integrated an ac-
curate state-of-the-art event-based feature tracker EKLT(Gehrig
et al., 2020) with EKF backend to achieve event-based state
estimation on Mars-like datasets. Xu et al.(Xu et al., 2023)
proposes a tightly coupled method for direct velocity estima-
tion using a dynamic vision sensor and an inertial measurement
unit, enhancing the accuracy and robustness of velocity estima-
tion in high-dynamic scenarios through trifocal tensor geometry
and a two-layer RANSAC scheme. However, the accuracy of
these loosely coupled methods still needs to be improved, and
tightly coupled methods usually do not have real-time capabil-
ities, even with low-resolution event cameras (240*180).

3. Methodology

The EVIO framework proposed in this study is illustrated in
Figure 2. The algorithm primarily consists of two modules:
1) The front-end odometry module for corner extraction and
feature tracking based on raw event streams and event frames.
We utilize asynchronous corners directly extracted from the raw
event stream and image corners extracted from event frames as
features, followed by matching and tracking on the Time Sur-
face image with polarity. Finally, asynchronous pose estima-
tion results are obtained based on feature tracking, generating
a sparse map of feature points. 2) The back-end graph optim-
ization module tightly couples visual landmarks from the event
camera and IMU pre-integration information, resulting in the
final asynchronous 6-degree-of-freedom pose estimation.

3.1 Event Representation

The event camera outputs a series of asynchronous event
streams. Each event ek = {xk, yk, tk, pk} comprises spatio-
temporal coordinates of intensity changes along with their po-
larity p, taking values from {−1,+1}. Our system utilizes the
Time Surface (TS) with polarity generated by the Surface of
Active Events (SAE) technique for front-end odometry. The
time surface, serving as a two-dimensional map, assigns each
pixel the timestamp of the last event recorded at that pixel, de-
noted as tlast(x, y). Using an exponential decay kernel, the time
surface emphasizes recent events over past events. Specifically,
at any given event time t, the intensity value at pixel (x, y) when
t ≥ tlast (x, y) is defined as

T (x, y, t) = p · exp
(
− t− tlast (x, y)

η

)
(1)

where η is the decay rate parameter (30-40ms in our experi-
ments). We use TS with polarity due to their computational and
memory efficiency, along with their rich information content
on edges. The polarity proves advantageous for feature track-
ing as it indicates the direction of event changes, which easily
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Figure 2. Overview of our proposed EVIO pipline

respond to edges in the scene in presence of different relative
motions. However, in some situation, as shown in Figure 3, TS
maps exhibit poor quality when there are few events, leading to
unstable feature tracking. We address these scenarios by histo-
gram equalization or other strategies, which will be introduced
in Section 3.2.

Figure 3. Tracking under reverse motion.The decreasing speed
results in fewer events being generated, which consequently de-
grades the quality of TS map, leading to the failure of a significant
number of tracking points.

3.2 Feature Extraction and Tracking based on Event
Stream and Time Surface Map.

Traditional methods fail to yield an adequate number of consist-
ently trackable feature points, while event-based corner detec-
tion struggles to distinguish noise from true corner points, thus
hard to accurately representing spatial geometric relationships.
To tackle this challenge, our study proposes a method that com-
bines event-based corner detection with traditional techniques
for feature extraction and tracking. This integration enhances
the accuracy of feature tracking results in expressing spatial
geometric relationships, reducing the required number of fea-
ture points for tracking. Specific comparative results are illus-
trated in Figure 4. We emphasize the distinctions between the
feature extraction outcomes of the two methods using yellow
boxes for clarity. By incorporating the camera’s motion direc-
tion into corner extraction, our method achieve a more accurate
mapping of the 3D object edges onto the TS maps, which en-
hance the stability and precision of feature tracking. In contrast,
the Harris method relies solely on TS maps, tends to lose track
of features across successive multiple continuous TS maps.
Furthermore, our method transcends the limitations imposed by
varying image qualities within a single TS plot, ensuring a more
consistent feature point acquisition process. This results in a
superior representation of the three-dimensional spatial inform-
ation, capturing the essence of the scene more effectively.

Our study enhance the publicly available Arc* algorithm to per-
form corner detection based on SAE for event-based corner ex-
traction. The Arc* detector creates two sets of elements with
different radii circular regions centered at the location of a new
event, then calculates the lengths of contiguous circular arcs
within these sets. If the length of a circular arc falls within
a certain threshold, a corner point is considered to be detec-
ted. Notably, unlike traditional methods such as FAST corners,
event-based corner detection methods lack the capability to as-
sign scores to corners. The prioritization of corners relies solely
on the time interval between the moment of corner detection
and the current moment. This approach is susceptible to noise
interference in regions with low texture, often leading to inac-
curacies in selecting event corners that fully represent spatial
geometric relationships. To overcome this challenge, we em-
ploy a supplementary strategy. When the number of points re-
quiring detection exceeds a certain threshold, a limited number
of corners with significant geometric information are extracted
from the TS map using traditional corner detection methods.
Otherwise, only event corners are utilized for spatial geometric
information supplements. To enforce the uniform distribution,
a minimum distance (10-20 pixels for different resolution event
camera) is set between two neighboring event-corner features.

After feature extraction, we begin by applying the Lucas-
Kanade (LK) optical flow method to match feature points ex-
tracted from TS maps. However, as we have previously noted,
the TS plot may occasionally suffer from a dearth of events,
leading to suboptimal quality. Such a shortfall substantially in-
fluences the efficacy of the Lucas-Kanade optical flow tracking,
underscoring the need for robust methods to address these lim-
itations. To address this challenge, when the tracking fails and
the distribution of the surrounding feature points is relatively
sparse, we search for the matching event corner by referring to
the optical flow of succeeded tracked features. Especially, when
the number of successfully tracked feature points falls below a
certain threshold, we assume the camera to be in a stationary
state, retaining the features extracted from the previous frame
and the TS plot for use in the subsequent tracking process.

Feature pairs are identified after tracking. All the event-corner
features are first undistorted based on the camera distortion
mode. These features are then projected onto the normalized
camera coordinate system. To remove outliers, we use the Ran-
dom Sample Consensus (RANSAC) for further filtering. Sub-
sequently, we recover the inverse depth of the features that
are successfully tracked between two consecutive timestamps
through triangulation. The landmark whose 3D position has
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Figure 4. Comparison of our feature extraction method and Harris under several scenarios. Feature extraction from SAE takes into
account the direction of motion and can uniformly extract points even in areas where the TS map quality is poor.

Figure 5. Tracking results using different method: (a) Our proposed method; (b) Harris.

been successfully calculated would be fed to the sliding win-
dow for pose graph optimization.

3.3 Pose Graph Optimization

In our proposed system, the full state vector χ in the sliding
window is defined as:

χ =
[
x1,x2, . . . ,xn, λ1, λ2, . . . , λm,Tb

c

]
xi =

[
pw
bi ,q

w
bi ,v

w
bi ,bai ,bgi

]
, i ∈ [0, n]

(2)

where Tb
c =

[
Rb

c, t
b
c

]
is the extrinsic transformation from the

camera frame c to the body (IMU) frame b; λj is the inverse
depth of the j-th point feature from its first observation; xi rep-
resents the body state in the i-th sliding window, which is made
up of the following parameters: position pw

bi
, orientation qua-

ternion qw
bi

, velocity vw
bi

of the IMU in the world frame, accel-
eration bias bai , and gyroscope bias bgi .

The maximum a posteriori(MAP) estimation of χ is solved by a
joint nonlinear optimization, which cost function can be written
as:

J(χ) = ∥ep∥2 +
n∑

k=1

∥∥∥eki ∥∥∥2

+

n∑
k=1

∑
l∈ξ

∥∥∥ek,lc

∥∥∥2

(3)

where ep, eki , ek,lc represent the marginalization residual, the
IMU pre-integration residuals and the event measurement re-
siduals from the re-projection function, respectively. The set χ
contains the event features that have been tracked at least twice
in the current sliding window, and the re-projection function is
defined as:

ek,lc = zkl − πc

(
Tb

c

)−1

T
bk
bi
Tb

cπ
−1
c λ−1

l zil (4)

where zkl and zil is the measured image coordinate of the l-th
feature in the k-th and the i-th keyframe, respectively. πc is the
event camera projection model, obtained from prior intrinsic
calibration, and T

bk
bi

is the incremental transformation between
the camera poses at the k-th and the i-th keyframe. In addi-
tion, we employ the Ceres solver to carry out sliding window
optimization. For marginalization, we adopt a two-way mar-
ginalization strategy to eliminate states from the sliding win-
dow, implementing marginalization via the Schur complement
method. This approach ensures real-time performance of the
system while optimizing computational efficiency, enabling it
to handle large amounts of data while maintaining high accur-
acy.

3.4 Additional Implementation Details

(a) Initialization: Adopted from (Qin et al., 2018), the initial-
ization of our EVIO starts with a vision-only structure from mo-
tion (SfM) to build the up-to-scale structure of camera pose and
event-corner feature positions, then loosely aligning the SfM
with the pre-integrated IMU Measurements. During initializ-
ation, we chose to generate time-surface maps using a fixed
number of events, and extract FAST corners. This strategy can
reduce the effect of stationary motion and event corner from
noise, improving the accuracy and stability of initialization.

(b) Still State: Since the event cameras output very little events
(only noise) when the sensor is still, this will always lead to a
failure feature detecting and tracking. To tackle this problem,
we set a threshold, and when the number of events at the interval
is less than the threshold, the old time surface map and event
corners will copy to the new event frame.

4. Experiments

To validate the effectiveness of our system, we performed
experiments on different sequences from two public data-
sets(Mueggler et al., 2017, Guan and Lu, 2022). To demonstrate
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Figure 6. Comparison of translation estimates of our proposed EVIO against ground truth, TS+Harris method and accumulated event
frame method; The relative errors of the translation of our method.

the advantages of our algorithm, we first we compare it with
different state-of-art EVIO methods. Then, we conduct com-
parative experiments VINS-Mono and ORB-SLAM3 without
loop detection to highlight event cameras’ superiority in chal-
lenging scenarios. All experiments run in real-time on a com-
puter equipped with an Intel Core i7-14700k processor. Our
algorithm is implemented in C++ on Ubuntu 20.04 and ROS
Noetic. Pose estimation results are evaluated using open-source
tools(Grupp, 2017, Zhang and Scaramuzza, 2018).

4.1 Comparison with EVIO Works

To compare the accuracy of our EVIO framework with other
state-of- art EVIO, we conducted experiments on the Event
Camera Dataset(Mueggler et al., 2017). This dataset is the
most commonly used publicly available datasets among EVIO
research, captured using a DAVIS240C camera with a resolu-
tion of 240*180 pixels, featuring rapid six degrees of freedom
motion and scenes with High Dynamic Range (HDR). The ex-
trinsic and intrinsic parameters of the camera and IMU were
calibrated using the calibration sequence of this dataset with
Kalibr. Due to the lack of open-source EVIO code and difficulty
of fine-tuning the parameters, we use the raw result from two es-
tablished algorithms for comparison: Ultimate SLAM(Vidal et
al., 2018), an optimization-based EVIO algorithm, and EKIT-
VIO(Mahlknecht et al., 2022), a filter-based EVIO algorithm.
The estimated and ground-truth trajectories were aligned with a
6-DOF transformation in SE3) using 5 seconds of the resulting
trajectory as Ultimate SLAM(USLAM) and EKIT-VIO, calcu-
lated by open-source tool(Zhang and Scaramuzza, 2018). Su-
perior performance highlighted in bold black. As seen in Table
1, we find that our system performs comparably to state-of-art

EVIO systems.

Sequence Ours TS+Harris USLAM EKLT-VIO

poster_translation 0.29 0.45 0.15 0.35
poster_6dof 0.37 0.29 0.30 0.35

dynamic_6dof 0.40 0.60 0.38 0.79
hdr_boxes 0.44 0.57 0.67 0.46
hdr_poster 0.29 0.30 0.49 0.65

Average 0.36 0.64 0.40 0.52

Table 1. Performance Comparasion on Event Camera Dataset.

We conducted further experiments on an indoor dataset(Guan
and Lu, 2022). This dataset comprise indoor scenes captured
using the high-resolution event camera DAVIS346 (346*260)
under HDR conditions, characterized by very low light or
strong light variations. Ground truth is provided by Vicon, and
some sequence spans over 140 seconds. Our experiments util-
ize only event streams and IMU data, with extrinsic and in-
trinsic parameters provided by the dataset. The frontend output
frame rate souranges between 40 and 60 Hz, with 80 - 100 fea-
tures extracted. We evaluate the localization accuracy using the
root mean square errors (RMSE) of the absolute trajectory er-
ror (ATE) and relative pose error (RPE), calculated using the
open-source evo tool(Grupp, 2017).

We tried our best to fine-tune the parameters of Ultimate
SLAM. However, the system fail to provide comparable pose
estimation results because of poor initialization and insufficient
number of tracked features. Therefore, we choose to com-
pare our system with two different methods: algorithm using
Harris instead of our proposed feature extraction method and
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Sequence Ours TS+Harris Accumulate

hdr1 0.61 0.71 failed
hdr2 0.66 0.63 failed
hdr3 0.40 1.33 0.97
hdr4 0.32 0.43 0.68

darktolight1 0.62 0.84 0.71
darktolight2 0.47 1.39 failed
lighttodark1 0.66 0.80 failed
lighttodark2 0.28 0.37 0.31

dark1 1.08 1.44 failed

Average 0.57 0.88 0.67

Table 2. Performance Comparasion on Indoor Dataset.

Vins-fusion with event accumulated image as input(Xiao et al.,
2022). Table 2 presents the computed and compared average
RMSE for each VIO system. We define a situation in which
pose estimation interruptions or errors within a sequence ex-
ceed the average level by an order of magnitude as "failed."
From Table 2, it’s evident that the method relying on event ac-
cumulated images struggles to maintain stable state estimation
output over these sequences. This is because the fixed number
of accumulated events is unable to adapt fluctuations in event
data generation caused by varying camera motion speeds, es-
pecially with higher-resolution cameras (346*260). This un-
derscores the significance of using TS maps as event represent-
ation for tracking, which reduce parameter tuning complexity
and improve feature extraction and tracking robustness. Our
proposed approach outperforms both the TS+Harris and event
accumulation methods on 9 out of 10 sequences.

We also calculate the runtime of each module, which is the av-
erage runtime across all sequences in these two publicly data-
sets, as shown in Table 3. It is evident that the corner detection
algorithm we utilized significantly improves the feature extrac-
tion efficiency.

Models
Ours

Davis240c
Harris

Davis240c
Ours

Davis346
Harris

Davis346

TS Creation 2.506 2.526 5.251 5.250
Feature Extraction 0.017 0.613 0.018 1.174
Front-end Process 1.610 2.292 1.795 2.981
Back-end Process 8.222 8.332 6.753 7.340

Table 3. Running Time of different model(ms)

4.2 Comparison with VIO Works

We also compared our proposed EVIO method with the most
common VIO methods. In the Indoor dataset, standard images
were captured using Davis346, and their intrinsic and extrinsic
parameters match those used for capturing the event stream. We
employed these standard images and IMU data to run Vins-
mono and VO version of ORB-SLAM3 with loop detection.
This is because the VIO version of ORB-SLAM3 failed or can-
not initialize in all the sequences, and it cannot estimate pose
through the whole sequence without loop detection. The com-
parisons are presented in Table 4, with ORB-SLAM3 results
shown in the gray columns.

Our system achieves robust and accurate pose estimation even
in scenarios with high-speed motion and intense HDR condi-
tions. The main reason is better feature extraction shown as
Figure 7. Vins-mono uses histogram equalization to address
dark scenarios, while both Vins-mono and ORB-SLAM3 can’t

Sequence Ours
Vins-mono
w/o loop

ORB-SLAM3
w/ loop

hdr1 0.61 1.07 0.24
hdr2 0.66 0.93 0.20
hdr3 0.40 0.42 0.20
hdr4 0.32 0.33 0.36

darktolight1 0.62 2.54 0.28
darktolight2 0.47 1.19 0.14
lighttodark1 0.66 0.50 failed
lighttodark2 0.28 0.24 0.25

dark1 1.08 0.48 failed

Average 0.57 0.86 0.24

Table 4. Performance comparasion with VIO.

extract features on the opening light due to the principle of cam-
era imaging. The VO version of ORB-SLAM3 seems to be out-
performs our system, however, its efficacy largely depends on
its relocalization strategies and loop detection. Notably, ORB-
SLAM3 would track failures and lose tracking frames during
the aggressive motion or too dark scenarios, affecting descriptor
generation severely and causing interruptions in pose estima-
tion as Figure 8 shown. In contrast, our system ensures con-
tinuous and smooth state estimation, rendering it better suited
for real-time navigation applications.

Figure 7. Comparison of feature extraction in our EVIO method,
VINS-mono and ORB-SLAM3 under high dynamic range and
high speed motion scenarios.

Figure 8. Comparison of translation estimates of our proposed
EVIO method and ORB-SLAM3 in darktolight1 sequence.

5. Conclusion

In this paper, we introduce an asynchronous monocular event-
based inertial odometry system, which provides real-time es-
timation of 6-dof pose up to 60Hz. To enhance the system’s
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real-time performance and accuracy, we propose a method that
combines event stream and event frame for corner extraction
and tracking. Additionally, we present an initialization strategy
aimed at improving the accuracy and stability of dynamic ini-
tialization for event cameras under unknown initial conditions.
Our experimental evaluations on publicly available datasets
demonstrate that our approach exhibits commendable perform-
ance compared to state-of-the-art EVIO and VIO systems. In
future research, we will explore the fusion of traditional im-
agery with EVIO systems by establishing event generate model.
Moreover, leveraging deep learning techniques for event stream
feature extraction and tracking may offer valuable insights for
enhancing the overall system performance.
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