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Abstract 

 

To address the absence of GNSS signals in underground coal mines and the susceptibility of mainstream LiDAR SLAM to 

degradation due to insufficient feature constraints, this paper proposes a tightly-coupled SLAM algorithm incorporating LiDAR and 

IMU for use in such environments. The paper initially introduces a dynamic feature point extraction strategy, where the number of 

corner feature points can be dynamically adjusted based on the occurrence of degradation in the underground coal mine environment. 

This approach constructs a constraint matrix with rich and robust feature information, enhancing pose estimation accuracy in 

environments with inadequate feature constraints, mitigating degradation effects, and reducing global cumulative error. Subsequently, 

the consistent building of the underground coal mine environment is achieved through back-end factor graph optimization. Finally, 

to validate the effectiveness of the method, experimental analysis is conducted in an underground coal mine. The results demonstrate 

that LeGO_LOAM exhibits poor robustness in underground coal mines and fails to construct a globally consistent pose estimation 

and map. Conversely, the pose estimation error of the proposed method in this paper is 50.93% lower in the plane direction and 

42.13% lower in the elevation direction compared to LIO_SAM. This underscores the method's significance as crucial technical 

support for the intelligent perception and positioning of robots in underground coal mines. 

 

 

1. Introduction 

Coal mine intelligence is one of the key research and 

development directions advocated by the state, and it is also the 

key to realize the transformation of the coal mine industry and 

solve the problem of coal mine safety mining. The realization of 

coal mine intelligence requires three aspects of technology 

support: intelligent perception, intelligent decision-making, and 

automatic execution (RHE Haitao et al., 2021; Wang Guofa, 

2022). Simultaneous Localization and Mapping (SLAM) is one 

of the key technologies to construct maps and localization of 

complex environments and realize unmanned autonomy for 

underground coal mine operation vehicles (Wang Guofa et al., 

2019). 

 

In recent years, domestic scholars have proposed unmanned 

mining, intelligent mining, and other related definitions through 

SLAM-related research. Zhao Yuan et al. (2021) believe that 

the key technology of mining intelligent interconnected new 

energy trackless auxiliary transportation system lies in the 

vehicle scheduling system, vehicle intelligent driving system, 

and its technical barriers lie in the real-time accurate position 

estimation of the vehicle and the intelligent perception of the 

environment, and put forward the use of 5G Internet of things 

technology to promote the application of intelligent driving 

technology in the trackless auxiliary system. Zhang Chao et al. 

(2021) and others proposed a cantilevered digging position 

estimation method based on binocular vision for the complex 

working conditions of low illumination, high dust, and high 

water mist in the coal mine underground, which utilizes the 

image composed of infrared LED light source to measure the 

target and artificially constructs the image features to solve the 

problem of missing feature information. Bao Wenliang (2021) 

discusses the applicability of laser ranging sensors by analyzing 

the underground scene in coal mine. Finally, the applicability of 

the Monte Carlo localization method based on laser-ranging 

sensors in the roadway environment is verified through 

simulation experiments. 

 

Foreign scholars have conducted a lot of research on SLAM 

algorithms based on vision (Forster, C. et al., 2014; Engel, J. et 

al., 2018; Qin, T. et al., 2018; Campos, C. et al., 2021) and 

LiDAR (Rusu, R. et al., 2010; Fernandes, D. et al., 2021; Zhao, 

S. et al., 2019; Shan, T. et al., 2020; Liu, Z. et al., 2021). 

Because LIDAR has the ability of intuitive map representation, 

high ranging accuracy, is not easily affected by changes in 

lighting and viewing angle, and operates under all-weather 

conditions (Zhou, Z. et al., 2021), it is widely used in unmanned 

fields (Hu, Y. et al., 2021), and is more suitable for SLAM in 

the complex and variable coal mine environment with poor 

lighting conditions. Huber and Vandapel (2006) used a high-

precision LIDAR scanner to establish a high-precision coal 

mine 3D geological model, but this method requires post-

processing of the point cloud, which cannot meet the real-time 

localization and mapping requirements and has a high cost. Ren 

et al. (2019) investigated a lightweight closed-loop detection 

and optimization algorithm based on the generalized ICP (GICP) 

(Segal, A. et al., 2009), and proposed an optimization method of 

SLAM based on the 3D point cloud alignment of GICP, but its 

accuracy still needs to be improved. Considering the real-time 

and accuracy of localization and map building, there are still 

many problems to be solved for SLAM in coal mine 

underground environment. 

 

Aiming at the real-time positioning and mapping needs of coal 

mine underground, a laser SLAM algorithm method with 

dynamic extraction of features is proposed, which evaluates the 

degree of degradation online and adaptively adjusts the number 

of feature points extracted according to the actual environment 

of the coal mine roadway to make full use of the feature point 

information in degraded environments and improve the 

accuracy of the point cloud alignment. An adaptive key frame 

selection method is adopted in the factor graph optimization, 

and the keyframes are selected according to the bit position 

difference between the two frames before and after. The 
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effectiveness of the algorithm in coal mine underground 

applications is verified by experiments. 

 

2. System Overview 

The SLAM algorithm based on the tight coupling of LiDAR 

and IMU proposed by the author is illustrated in Figure 1. It 

employs a dynamic feature point extraction algorithm to 

increase the number of edge feature points in areas with limited 

feature constraints. Additionally, an adaptive keyframe selection 

scheme is used in factor graph optimization, enhancing the 

algorithm's real-time performance by setting a positional 

transformation threshold between two frames of the point cloud 

and adaptively selecting keyframes. The key steps of the 

algorithm are as follows: 
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Figure 1. Flowchart of the method 

 

(1) IMU Pre-Integration: Integrate angular velocity and linear 

acceleration using the IMU motion equations at a certain 

sampling interval to obtain the position of the LiDAR point 

cloud at the corresponding moment. 

 

(2) Aberration Correction and Feature Point Extraction: Correct 

motion distortion in the LiDAR point cloud using the relative 

motion position obtained from IMU pre-integration, and extract 

edge and plane points using the depth image. 

 

(3) Feature Matching and Pose Estimation: Perform matching 

using the scan-map matching method, compose LiDAR 

odometry factors, and optimize them with IMU pre-integrated 

factors by adding them to local map matching, correcting the 

pose of the LiDAR odometry solution in real-time. 

 

(4) Factor Graph Construction and Optimization: Optimize the 

attitude estimation using the LiDAR odometer factor, IMU pre-

integration factor, and closed-loop factor to update all keyframe 

factors. 

 

(5) Closed-Loop Detection: Perform scan-map optimization, use 

the ICP matching method to obtain the optimized position, 

delay updating the current frame's position, generate the closed-

loop factor, and update the factor graph. 

 

(6) Global Mapping: Receive the 3D point cloud corresponding 

to the optimized positions from the factor graph, and stitch the 

point clouds together to create a globally consistent trajectory 

and map. 

 

3. Front-End Odometers 

The estimation of the relative position between frames of the 

LiDAR point cloud relies on IMU pre-integration information 

to eliminate displacement and rotational distortion in the point 

cloud. The corrected point cloud is used for feature point 

extraction, combined with edge and planar features for 

matching, using the predicted value of the IMU pre-integrated 

pose as the initial value for matching. The pose is then 

determined using the scan-map matching algorithm. 

 

3.1 Dynamic Feature Point Extraction 

With the dynamic threshold feature point extraction method, the 

threshold can be adaptively adjusted according to the richness 

of environmental features to obtain more high-quality edge 

feature points. This approach provides more feature information 

in feature-rich environments, thereby improving the robustness 

of local pose estimation.  

 

(1) Projection to Depth Image: The LiDAR point cloud set 

acquired by single-frame scanning is projected into the depth 

image, where each depth point has a corresponding pixel 

position in the depth image. The image depth value is the 

Euclidean distance from the point cloud to the origin of the 

LiDAR coordinate system. 

 

(2) Curvature Calculation: The curvature of a point cloud is 

calculated using the difference in depth between the left and 

right 5 points located on the same scan line as the point to 

minimize computational overhead. 

 

 
,

i j i

j S j i

c r r
 

= −  (1) 

 

where ic denotes the curvature of the i point, r denotes the depth 

of the point, S is the set of points consisting of 5 points taken 

from the left and right sides of the point, and jr  denotes the 

depth of the points in the set of points. When the feature point is 

located in the plane, the distance of the points on the plane from 

the far point is approximately the same, then the sum of the 

squares of the curvature difference will be a very small value, 

on the contrary, when the feature point is located in the position 

of the protrusion of the plane, then the depth difference between 

the point in the position of the protrusion and the surrounding 

points is larger, then the sum of the squares of the depth 

difference is a larger value. 

 

(3) Dynamic Extraction of Feature Points: To ensure uniform 

distribution of extracted feature points, the point cloud acquired 

by the VLP-16 LiDAR is divided into 6 parts, each covering a 

60° range and containing up to 300 points. The point cloud is 

traversed and sorted according to the curvature value, and the 

curvature thresholds cornerT  for edge points and surfT  for plane 

points are set. The points with curvature less than surfT  are 

extracted as candidate planar feature points. Considering the 

large number of planar feature points in the environment, the 

number of planar feature points is not limited here, and all the 

candidate points with curvature less than the threshold are 

subjected to voxel filtering, which is used as the final extracted 

planar feature points. 

 

The points with curvature greater than cornerT  are extracted as 

candidate edge feature points N  , and the maximum number of 
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extracted edge feature points involved in feature matching is 

M  . According to Zhang et al. (2016) degradation judgment 

theory in the LIO-SAM algorithm based on the additional 

online degradation judgment, the size of the degree of 

degradation can be judged by the degradation factor   (   

smaller represents the more serious degradation). As shown in 

Figure 2, with an empirically set degradation occurrence 

threshold 100th = . If th   , 50% curvature greater will be 

selected from the candidate edge feature points as edge feature 

points (i.e., 0.5M N=  , 0.5 is the empirical threshold). 

Otherwise, the number of candidate edge feature points with 

80% greater curvature will be used as the maximum extraction 

number threshold. 
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λmin <100?

Jacobi 

decomposition

M=0.5N

M=0.8N

No

Yes

 

Figure 2. Dynamic threshold flowchart 

 

By performing the above process for each scan line for each 

copy of the point cloud, uniformly distributed feature points are 

obtained. The set of edge feature points is denoted as cF ; the 

set of planar feature points is denoted as F  , and the number of 

planar feature points is not limited, which tends to be more than 

the number of edge points. 

 

3.2 Feature Matching-Based Positional Solving 

After extracting feature points, feature association is necessary 

to construct the residual function for position optimization. The 

author employs a Principal Component Analysis (PCA)-based 

algorithm for line and surface feature fitting. The feature-based 

matching algorithm optimizes the positional transformation by 

minimizing the sum of squares of the distances from point to 

line and point to surface. 

 

Residual function construction: Let the translation-rotation 

parameter of the solution be x . The optimization objective 

function constructed from the point-to-line and point-to-surface 

distances can be expressed as: 

 
 ( , )E Ef p x d=  (2) 

 ( , )S Sf p x d=  (3) 

 

where Ep denotes the set of edge points, Ed is the distance from 

its corresponding point to the line, Sp denotes the set of plane 

points, and Sd is the distance from its corresponding point to the 

plane. This can be further expressed as: 

 

 ( , )f p x d=  (4) 

 

where p  denotes all the feature points and d  denotes their 

corresponding point-to-line and point-to-plane distances. This 

formula represents the objective function of the final 

optimization. 

By constructing the residual functions of the distances from 

points to lines and points to surfaces as described above, they 

are optimized to solve the bitmap transformation. The Jacobian 

matrix for solving the coordinate transformation is computed 

using the Levenberg-Marquardt (L-M) two-step method. First, 

plane points are used to solve for the vertical direction change, 

roll angle, and pitch angle. Then, edge feature points are used to 

solve for the lateral direction change, forward direction change, 

and heading angle. Finally, the positional transformation 

between adjacent frames is obtained through joint two-step 

optimization. 

 

4. Back-End Optimization and Map Building 

To improve the efficiency of back-end computing, only 

representative keyframes are selected for optimization 

estimation, without optimizing the entire map point cloud. 

Keyframes are selected based on the principle that the positional 

change exceeds a certain threshold, rather than relying on a 

fixed distance or a fixed time interval. 
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Figure 3. Factor graph optimization model 

 

As shown in Figure 3, the LiDAR odometry factor, the IMU 

pre-integration factor, and the closed-loop factor are used as 

edge update state nodes. Each time a new node is inserted, the 

entire factor graph is optimized to update the current position 

estimate. The created position graph is optimized using the g2o 

optimization library. Once optimization is complete, the 3D 

point clouds corresponding to the position nodes are stitched 

together to form a globally consistent trajectory and map. 

 

5. Experiments 

 

 
 

Figure 4. Roadway environment 
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To verify the effectiveness of the algorithm, data was collected 

from an underground coal mine using the Autolabor robotic 

trolley platform integrated with a Velodyne VLP-16 LiDAR 

and an Ellipse2-N IMU, as shown in Figure 4. The roadway 

forms a small loop with a total length of about 280 meters and a 

width of about 3 meters. Due to the complexity of the roadway 

environment, the robotic trolley had to travel close to the side of 

the roadway. There is no GNSS signal in the roadway, so seven 

checkpoints were observed using a total station to serve as 

reference points for evaluating trajectory accuracy. 

 

5.1 Feature Point Extraction Experiments 

 

（a）LIO-SAM

（b）Our  
 

Figure 5. Comparison of feature point extraction algorithms 

 

（a）Experimental scene

（b）Three-axis position deviation diagram

 

Figure 6. Pose deviation diagram between the experimental 

scene and the forward direction 

The dynamic feature point extraction algorithm was compared 

with the original algorithm by analyzing data from the alleyway. 

The number of feature points extracted by both methods was 

compared in the same scene and at the same moment. As shown 

in Figure 5, the dynamic feature point extraction method adjusts 

the number of edge feature points based on scene changes, 

allowing for the extraction of more high-quality edge feature 

points in feature-rich scenes. Compared to the fixed threshold 

extraction method, the dynamic method improves both the 

number and quality of local LiDAR point cloud edge feature 

points, providing better feature information for local map pose 

estimation.  

 

5.2 Pose Estimation Accuracy Analysis 

Due to the failure of the LeGO-LOAM algorithm, the trajectory 

accuracy of the proposed algorithm is evaluated only against the 

LIO-SAM algorithm. Figure 6 shows the comparison of 

trajectories, scenarios where deviations occur, and the deviation 

along each coordinate axis. In Environments 1 and 2, the width 

of the travel paths is less than 1 meter. Consequently, the 

scanning range on both sides of the robot trolleys is 

significantly restricted, reducing the extracted feature 

information and resulting in considerable discrepancies between 

the two algorithms in both planar and vertical directions. 
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Figure 7. Comparison of control point distribution and 

algorithm error 
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Because there is no GNSS signal in the roadway, accurate 

traveling trajectories cannot be obtained. Therefore, seven 

checkpoints are deployed at roadway turns with good 

observation conditions to verify the accuracy of the output 

trajectory results (Figure 7). The experimental results show that 

the in-plane error of the proposed algorithm is 0.212 meters, 

and the elevation error is 0.820 meters. The cumulative errors of 

both algorithms in the vertical direction are significant, with the 

maximum deviation of the proposed algorithm being 2.683 

meters and that of LIO-SAM being 4.012 meters (Tables 1 and 

2). The proposed algorithm demonstrates reduced cumulative 

deviation in both planar and elevation directions compared to 

the LIO-SAM algorithm, verifying its improved accuracy for 

SLAM pose estimation. 

 

Algorithm Min/m Max/m Mean/m RMSE/m 

LeGO_LOAM N/A N/A N/A N/A 

LIO_SAM 0.041 0.530 0.382 0.432 

Our 0.052 0.460 0.236 0.212 

Table 1. Statistical results of plane error 

 

Algorithm Min/m Max/m Mean/m RMSE/m 

LeGO_LOAM N/A N/A N/A N/A 

LIO_SAM 0.013 4.012 0.787 1.417 

Our 0.012 2.683 0.474 0.820 

Table 2. Statistical results of elevation error 

 

5.3 Mapping Analysis 

 

（c）Our

（b）LIO_SAM

（a）LeGO_LOAM

 
 

Figure 8. Mapping comparison 

 

As shown in Figure 8, the LeGO_LOAM algorithm exhibited 

obvious breaks in the lane traveling, resulting in failed map 

building. In contrast, both the proposed LiDAR SLAM 

algorithm and the LIO_SAM algorithm successfully constructed 

a complete map. Through local zoom-in, it can be observed that 

the map output from the LIO_SAM algorithm is more cluttered, 

with more noise and a thicker point cloud layer. Thus, the 

proposed algorithm demonstrates higher accuracy in map 

building. 

 

6. Conclusions 

(1) By assessing the degradation of the underground coal mine 

environment, the number of feature points extracted is 

dynamically adjusted. This approach ensures real-time 

performance while obtaining a larger number of high-quality 

feature points that constitute the feature constraint matrix, 

providing a basis for accurate local pose estimation. 

 

(2) The LiDAR SLAM algorithm, which incorporates dynamic 

feature point extraction, fully utilizes feature constraint 

information even in degraded scenes with missing features. This 

improves the accuracy of local pose estimation, effectively 

reduces the accumulation of global error, and enhances the 

accuracy of global pose estimation and map building. 

 

(3) Compared to mainstream LiDAR SLAM algorithms, the 

proposed algorithm improves the accuracy of pose estimation 

and map building. It also better handles degraded scenarios, 

providing a valuable reference for the intelligent perception of 

robots in underground coal mines. 
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