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Abstract

Indoor crowds can be regarded as dynamic obstacles and they could impede the movement of pedestrians. For instance, the scope
of crowds could significantly impact accurate path choices. There are few discussions from an individual’s perspective to reveal
the decision-making process of reasonable path choices. In this paper, we aim to address how an indoor pedestrian would walk
in a crowded indoor environment. We propose a method to simulate a pedestrian’s path choices during wayfinding process. It is
wrapped in a workflow that can capture near-real-time crowd uncertainty. First, the measurement errors of crowds are alleviated
with a Bayesian filter. According to crowd locations at each moment, the method of Kernel Density Estimation (KDE) is applied
to a grid model of the building to obtain the uncertainty map of the crowds. Based on a two-level spatial model, the logical path
represented by a room sequence can be derived from a ’room-door’ network, while detailed path choices on the ’operational’ level
are refined in each room. By considering both crowd uncertainty and time cost, path choices for a user are determined by using the
A* algorithm at each time slot. By iterating the optimal path to the next door/the target in the current room, the user location of the
next moment can be inferred. Our test initially validated the feasibility of the method on the path choices of a pedestrian. In the
future, we plan to further conduct field tests with different users in crowded indoor environments.

1. Introduction

Indoor navigation services have been significantly developed,
and corresponding technologies lay the foundation for indoor
location-based services. Path planning is one of the core tasks.
For pedestrian navigation in daily scenarios, indoor networks
are abstracted to represent the space where users are located and
are used for path planning. Commonly indoor access networks
are pre-generated based on indoor maps. However, a fixed net-
work could not fit a dynamic scenario where indoor crowds can
block the pre-generated paths (Boguslawski et al., 2022).

Crowds are mobile obstacles and their boundaries may change
over time (Wang et al., 2017a, Wang et al., 2017b). Differ-
ent from indoor static obstacles (Liu and Zlatanova, 2015), mo-
bile obstacles are hardly reflected in navigation networks, yet
their density can be regarded as a variable for path planning.
The traffic of indoor crowds can obviously affect a user’s path
choice. A wayfinding study in a virtual shopping mall shows
indoor pedestrians may follow crowds and slowly walk (Li et
al., 2019). Some researchers (Tan et al., 2019) used a support
vector machine (SVM) and designed VR experiments to cal-
ibrate route selection parameters influenced by crowdedness.
Other indoor pathfinding studies (Liu et al., 2021) considered
such dynamic changes in building as well. Nevertheless, with
the development of indoor positioning and localization technol-
ogy, crowd locations could be obtained in a near-real-time way.
Accordingly, it is possible to distinguish path selections within
the spaces of finer granularity (Zlatanova et al., 2020) in such
cases.

The key factor for path selection is to identify the influence
range of crowds. Uncertainty is common in dynamic envi-
ronments, and path planning and individual behavior simula-
tions need to take it into account. Correspondingly, location

uncertainty would essentially impact path choices. For exam-
ple, indoor traffic could lead a user to follow people ahead,
shortly stay in congested regions, or avert them using an alter-
native path. However, related research seldom brings real-time
path choices into discussions, especially from an individual’s
perspective. In this sense, it is helpful to check the decision-
making process of a pedestrian’s path choice along with envi-
ronmental changes.

Therefore, we aim to simulate the decision-making process of
wayfinding of a single pedestrian in this paper, especially for
those in the presence of crowds. We plan to investigate the re-
action on path options and related movements along with dif-
ferent room traffic. The simulation method is proposed and
wrapped in a workflow to capture real-time crowd changes and
their influence on path options of a pedestrian user. First, the
errors in the raw measurements of crowd locations are allevi-
ated with a Bayesian filter. According to crowd distribution at
each moment, the method of Kernel Density Estimation (KDE)
(Gramacki, 2018, Georgievska et al., 2019) is applied to a grid
model of the building. The kernel density map represents the
uncertainty caused by these filtered crowd locations. We also
create a ’room-door’ network to depict the connections between
different rooms and their transition openings. After assigning
the start and target locations, all accessible logical paths (Liu et
al., 2019) can be computed in the ’room-door’ network. These
doors in logical paths are supposed the anchors of wayfinding
of the user in the relevant rooms. For each time slot, we search
paths in the current room for the user with the A* algorithm
on the uncertainty map in a stepwise manner. In this way, the
current path choice is defined and calculated with the Heuristic
function h(n) of the A* search.

We conducted an initial test on a floor plan of a campus build-
ing. 120 samples of pedestrians are simulated to represent in-
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door crowds. By searching with time cost, we simulated the
wayfinding process of a single pedestrian in terms of different
walking speeds. The test results demonstrate the path choices
of a pedestrian user can be addressed in each time step of crowd
location measurements. In this way, the user’s path choices can
reflect the wayfinding process in the presence of crowds. In ad-
dition, several key factors could influence wayfinding simula-
tion results, such as the bandwidth of KDE and correspondence
between crowd density and walking speed.

The remainder of this paper is organized as follows. Section
2 introduces the background of this work. Section 3 intro-
duces the proposed method for simulating user path selection
in crowded rooms. Section 4 presents the initial test and its
results. Section 5 concludes this paper with some future work.

2. Background

For the topics of indoor pathfinding and wayfinding, researchers
have considered crowd density for indoor route planning (Tan
et al., 2019). Some other researchers aim to introduce crowd
objects into BIM (Li et al., 2022), and try to infer user spatial
experiences including mobility.

Crowds are mobile obstacles, and their boundaries may change
over time and impede the movements of a pedestrian. For in-
stance, Tan et al. (Tan et al., 2019) employed support vector ma-
chines (SVM) and VR experiments to model how crowdedness
impacts route selection. Li et al. (Li et al., 2019) observed that
though crowdedness did not affect initial route choices, it influ-
enced locomotion. Pedestrians could avoid crowds by moving
to the boundaries of the indoor environment. In addition, some
studies (Fang et al., 2021, Kinateder and Warren, 2021, Zhang
et al., 2023) have demonstrated that indoor crowds significantly
influence path choices in evacuation. Another group of studies
(Xie et al., 2022, Xie et al., 2023) suggested that pedestrians
may adjust their local path choices under emergencies via 3D
motions (e.g., bent-over walking, low crawling, jumping) lead-
ing to motions above/below indoor objects.

Recently, some researchers have started to consider such dy-
namic changes in path choices influenced by indoor crowds
in indoor navigation. For instance, Ibrahim et al. (Ibrahim et
al., 2023) introduced a simulation model that performs Monte
Carlo simulations to forecast possible crowds/congestion areas
and then dynamically guide pedestrians away from congestion
areas. Aleksandrov et al. (Aleksandrov et al., 2023) employed
a connectivity graph between building entities to model hazard
flow and its interaction with indoor pedestrians. Liu et al. (Liu
et al., 2021) predict time-dependent flows and indoor popula-
tions and conduct Indoor Crowd-Aware Fastest Path Query and
Indoor Least Crowded Path Query among subdivided regions.
The cost of time and the density of areal crowds have been in-
corporated into the pathfinding process. However, related re-
search seldom brings detailed path choices into discussions and
mainly represents indoor crowds in simplified spatial models of
simulation/prediction. These representations of indoor crowds
may be not reliable enough to confirm the precise path choices
of a pedestrian user.

With the fast development of indoor localization technology,
it is possible to investigate precise path choices inside rooms.
Some studies (Jung et al., 2016, Xu et al., 2018, Chen et al.,
2020, Liu et al., 2020, Chen and Liu, 2021, Liu et al., 2021,
Alamri et al., 2022) used Internet of Things (IoT) technologies

to locate indoor pedestrians’ positions and performed pathfind-
ing for each pedestrian. For example, Chen and Liu (Chen and
Liu, 2021) proposed a framework where the real-time position
of each user is detected by her/his smartphone. Under normal
situations, the framework can estimate the density of mobile
users in each area and the moving speeds to pass through dif-
ferent areas. Then an indoor navigation path is planned to pro-
vide the shortest moving time for a mobile user. Alamri et al.
(Alamri et al., 2022) established an indoor multi-user routing
approach designed for social distancing, without causing con-
gestion on the same route. However, previous research seldom
reveals the decision-making process from an individual’s per-
spective, which may not justify a realistic and precise move-
ment of a pedestrian.

Shortest paths are not always the best option for users (Van-
haeren et al., 2020). Researchers point out that shortest path
calculation has limitations in capturing the impact of build-
ing structures on wayfinding (Gath-Morad et al., 2022). Au-
tonomous wayfinding (Kalakou and Moura, 2014) has been
studied for many years and visual perception has been intro-
duced into wayfinding (Gath-Morad et al., 2020). In this way,
one can attempt to optimize the indoor layout and plan by sim-
ulating wayfinding behavior. However, in this paper we focus
more on how to quickly and precisely make choices for pedes-
trians based on the sensing of environmental information. In
other words, we investigate a user’s possible detailed move-
ment on the so-called ’operational’ level, i.e., calculating the
next steps with consideration of obstacle-avoidance (Vizzari et
al., 2020).

Therefore, we plan to analyze path choices in a crowded micro-
scopic environment from a pedestrian user’s perspective. There
could be different path characteristics for distinct individuals.
Here we aim to answer an important question regarding indoor
pedestrian walking, that is, how would a specific user walk in
measurable crowd-impacted regions? This user may have dif-
ferent path preferences, e.g., the shortest, the fastest or the least
crowded choice for the next path segment. We can provide the
estimate of the time cost of the given user with a near-real-time
localization of crowds. So in this paper we use trajectory (with
errors) to represent indoor crowds, instead of predicting their
areal density change.

3. Method

We propose a simulation method to investigate the stepwise
path choices of a human user during a wayfinding process.
First, we adopt a two-level spatial model (Liu and Zlatanova,
2022, Liu and Zlatanova, 2023) for the simulation. This first
level is about the connectivity of rooms and doors (i.e., a log-
ical network), while the second level relies on grid models of
indoor environments. After deriving a room sequence RS be-
tween a given start and destination, the path selection of a user
can be calculated in every room of the RS. Meanwhile, all the
transition doors are affiliated with the related rooms of the RS.
In addition, crowd locations are determined at short time slots
(e.g., with WiFi passive localization). The crowd trajectories
consist of their locations at equally-divided time slots (e.g., 5s).
A Bayesian filter, such as the Kalman filter (Kalman, 1960), can
be applied to alleviate the errors of crowd locations. Further-
more, Kernel Density Estimation (KDE) (Georgievska et al.,
2019) is used to merge the location distribution and its uncer-
tainty, which results in an uncertainty map for the grid model in
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the related rooms. The above steps are included in the workflow
in Figure 1.

Figure 1. Workflow of the proposed method.

At each time slot, path choices for a user are determined via the
A* algorithm (Hart et al., 1968). In its Heuristic function h(n),
we combine the uncertainty of crowds and walking time cost
to consider the comfort of paths. In the first place, we calcu-
late the optimal path P0 to next door candidates in the current
room, and select the location of the next time step in P0 as the
next start point Si. The new optimal path Pi from Si to next
door candidates on the RS is continually calculated at each time
step from room to room, until entering the room of the target
location.

In each room, the optimal path is calculated to the next door
or the target and the user location of the next moment can be
inferred in this path. The stepwise computation of path choices
continues until the target location (see the workflow in Figure
1). As a result, time-dependent path choices at different mo-
ments are aggregated after this step-by-step calculation, which
also reflects the influence of crowds at each time step.

More specifically, we adopt time cost to reflect the weights for
the A* search when computing stepwise path options inside
rooms. In this paper we focus on the walking time of a user
and try to balance the impact of crowdedness and time cost.
Accordingly, we define the Heuristic function h(n) of the A*
algorithm as follows:

h(n) = u(n) ∗mdn/vn (1)

In Equation 1, u(n) is the uncertainty of location n, and vn is the
speed of the user at n; while mdn represents the Manhattan dis-
tance from n to the next door or the target location (see Figure
1). In a word, Equation 1 implies that h(n) positively correlates
to grid location uncertainty and the time cost.

To reflect the realistic influence of crowds on a user’s move-
ment, some rules are added to adjust the walking speed of the
user. This measure is employed to simulate user actions of ’fast
walk’, ’slow walk’, and ’stop’. In this paper, a user’s walking
speed is subject to location uncertainty on the grid model. Two
thresholds T1 and T2 (T1 > T2) related to crowd density are

defined. Comparing T1 with location uncertainty u(n), if u(n)
> T1, then the corresponding speed is 0 and the user would
stop at this grid n until the next time step. If u(n) <= T1 and
u(n) > T2, then the walking speed of the user is set to 0.4 m/s
(one to third of the initial speed). In other cases, we assume the
user will keep the initial speed of 1.2 m/s.

As mentioned above, after searching a possible path to the next
door or the target with h(n) (Equation 1), the time cost to each
grid of the path can be derived via cumulative calculation (Fig-
ure 1). Accordingly, we select the following location at the next
time step by comparing the time cost with the given time slot
(e.g., 5s). The selected location represents the user’s probable
option in terms of time and accessibility.

4. Experiment

In this section, we introduce our implementation of the pro-
posed method. An initial test is conducted to verify the feasi-
bility of the method on a building floor (Figure 2). To compare
with ground truth, we decided to simulate crowd trajectories
on the floor. The crowd trajectories are separated into equal
time slots (5s). Random errors were added to their locations to
simulate the realistic measurement errors, e.g., using a normal
distribution with a mean of 0 and a standard error of 3 meters
(m). For instance, the random errors can represent the fluctu-
ated accuracy of WiFi localization. In this way, we obtained
near-real-time crowd data at each time slot.

Figure 2. Rooms and doors of test floor.

On the detailed level, a grid model is created for each room and
it can be used to support the path selection inside the rooms
(see Figure 3). The red dots are grid centers for path selection.
For simplicity, we adopted 4-neighborhood (left, right, up, and
down) for path computation in this test.

Figure 3. Grid model of test floor.

Moreover, a Kalman filter (Kalman, 1960) was applied to these
crowd trajectories, which curbs their location errors. Figure 4
shows the raw data with noise (the simulated crowd locations)
at a moment. Figure 4 presents the location RMSE of crowd
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samples (individuals). The RMSE of filtered data (in red) indi-
cates the Kalman filter effectively curbs noise and improves the
location accuracy of samples.

Figure 4. Example of RMSE of raw data and filtered results at a
moment.

Figure 5. Logical network of rooms and doors.

For a pair of start and destination, we first computed the short-
est room sequence RS and extracted relevant doors. Figure 5
presents the logical network of rooms and doors. Given a start
and a target location, their rooms are located and accessible
routes between both rooms are computed, including their transi-
tion doors. In the following example, we randomly picked two
locations in two rooms ’r37’ and ’r44’. Then we calculated the
logical path via doors and packed them into a sequence: [’r37’,
’o29’, ’r39’, ’o25’, ’r20’, ’o24’, ’r17’, ’o19’, ’r25’, ’o17’, ’r10’,
’o6’, ’r7’, ’o36’, ’r44’]. In this sequence, the first character ’r’
or ’d’ indicates the type of node, i.e., ’r’ and ’d’ represent rooms
and doors, respectively.

(a)

(b)

(c)

(d)

Figure 6. Crowd initial locations and uncertainty maps derived
with filtered crowd locations. (a) genuine initial locations (t=0);
(b) initial locations with noise (t=0); (c) uncertainty map (t=1);

(d) uncertainty map (t=5).
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120 samples of pedestrians are simulated as crowds and set to
several groups in this test. Figure 6a presents the ground truth
of their initial locations (t=0) and Figure 6b shows the initial lo-
cations with noise (representing measurements). Starting from
time step 0 (t=0), they head to different destinations via these
corridors (Figure 6c and d). We checked the influence of varied
crowds on a user’s path choices. Based on the filtered trajecto-
ries, KDE is employed to generate an uncertainty map of crowd
locations at each time slot. Figure 6c gives an example of un-
certainty map at time step 1 (t=1), while Figure 6d presents that
at time step 5 (t=5). We set a small bandwidth of KDE and the
impacted region is relatively limited (Figure 6c and d). By com-
paring Figure 6c with d, one can find the uncertainty maps are
inevitably shaped by location errors of the crowds, such as the
parts outside these rooms. Nevertheless, the uncertainty maps
still provide relatively precise trends of crowdedness and they
are supportive in the following computation of path choices.

In each room, the user starts from the current location and
she/he needs to approach a door to the next room. Accord-
ing to the criteria of obstacle-avoidance and fast walking, we
applied the A* algorithm to search appropriate path choices in
a stepwise way. If the user has to cross the areas influenced
by crowds, those with low uncertainty are preferred for path
choices.

Moreover, if the current path to the next door/ the target is
longer than the previous one, it indicates a detour impacted by
the current crowd distribution. According to the speed setting
rules in Section 3, we update the grids where the user would
stop and those regarding the slower speed. Consequently, path
choices at each moment were obtained for the given start and
target locations, i.e., a complete wayfinding process of the user.

Figure 7. Example of wayfinding process in a room at different
time steps.

In Figure 7, the groups of dots represent the genuine locations
of the crowds, and the green one stands for the current location
of the user at each time step. According to the test result in
Figure 7, the proposed method can deal with the potential col-
lisions during the user’s movement. At the time steps in Figure
7, we employed the A* algorithm to yield the optimal path to
the door of the next room.

Figure 8 presents the complete path choices of the user, which

reflects the wayfinding movement. As mentioned before, we
have incorporated the actions of ’fast walk’, ’slow walk’, and
’stop’ into the wayfinding weights. In each room, the wayfind-
ing process is ’door-oriented’ and the walking speed is subject
to the current distribution of crowds and their uncertainty. Ob-
viously the movement is not the shortest-distance route and it
takes obstacle-avoidance into account.

Figure 8. Test example of simulating user wayfinding process
between two locations.

By comparing all these path choices with the ground truth of
crowds at each time slot, we initially validated the feasibility of
the proposed method on path selection in the preliminary result.
The selection process shows the user follows the crowds while
keeping a certain distance from them, which achieves our goal
of wayfinding simulation to some extent.

To sum up, the proposed method can simulate the path choices
of a user. Although the test result is promising, the rules re-
garding walking speed are relatively simple in this phase. For
instance, the ’slow walk’ and ’stop’ conditions are triggered by
two thresholds defined with crowd uncertainty. So far we have
not discussed the appropriate values of these thresholds, their
selection method needs to be further confirmed in future work.

5. Conclusions

Aiming to simulate path choices of human users within a
crowded indoor environment, we proposed a feasible method to
support path selection of pedestrian wayfinding. This method
incorporates crowd location measurements and adopts their fil-
tered locations to generate the uncertainty map at each time
step. Based on a two-level spatial model, a logical path can
be computed and presented as the sequence of rooms and tran-
sition doors. Specifically, this method focuses on stepwise path
choices inside rooms of the logical path. We defined the rules
to reflect the influence of crowds on walking time costs, and
applied the A* algorithm to obtain the current path choice.
The test has initially validated the feasibility of the proposed
method.

At present, this work is still in development and several aspects
need to be further investigated. Path selection results would
vary with several factors, including KDE bandwidth selection
and the correlation between crowd uncertainty and walking
speed. Their distinct combinations could shape different path
choices of a user, which will be investigated in the next phase.

Moreover, the proposed method can support distinguishing path
preferences between different users by adjusting the Heuristic
function h(n). In the future, we plan to test the method in dif-
ferent indoor environments and conduct field tests with indi-
viduals, which could facilitate investigating and revealing the
decision-making process of different pedestrians.
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