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Abstract 
 
With the advancement of technology, unexposed spaces have emerged as a new type of strategic area, attracting significant attention 
from researchers. These spaces often present complex environments, such as extreme lighting variations, irregular geometries, and the 
lack of external positioning signals, making human entry hazardous. Fortunately, advancements in robotics and artificial intelligence 
have enabled unmanned systems to mitigate these challenges, allowing for safer exploration of unexposed spaces. UAVs, as vital 
unmanned system platforms, are extensively used across various industrial scenarios and are particularly effective for detecting 
unexposed spaces. To facilitate automated exploration of these areas, we propose the autonomous UAV system, LUOJIA Explorer. 
Equipped with a LiDAR sensor, data transmission module, and external anti-collision devices to protect the aircraft, LUOJIA Explorer 
is designed for effective unexposed space detection. We have integrated a laser point cloud positioning and mapping subsystem, along 
with a planning and control subsystem, into the LUOJIA Explorer. Through both simulation and actual experiments, the Luojia 
Explorer has demonstrated the capability to achieve stable flight based on self-positioning in unexposed spaces, with an exploration 
efficiency of 88.83 m³/s. 

 
 

1. Introductions 

Unexposed space is a type of space that is closely related to 
human activities and includes underground spaces, indoor spaces 
and other spaces that are not open to the outside world. While it 
is often characterised by a complex environment, large light 
changes, poor passability, feature degradation and signal denial, 
which pose challenges for human beings to carry out productive 
activities(Rouček et al., 2020). Unexposed space surveying 
means a lot for people. By precisely surveying unexposed space 
such as underground space and so on, people can obtain space 
information for further application. For a long time, researchers 
have concentrated on measuring and modelling external space, 
often overlooking unexposed spaces, which are a significant 
resource. Furthermore, indoor space is one kind of  important 
unexposed space. The precise measurement of interior spaces is 
crucial. Accurate measurements of indoor and other non-exposed 
areas are of great significance for smart cities, emergency 
evacuations, fire protection, and more(Cui et al., 2023). 
Underground space is a crucial type of non-exposed area. 
Accurate measurement of non-exposed spaces, such as urban 
underground space (UUS), can help alleviate urban resource 
scarcity, enhance environmental conditions, and improve 
residents' quality of life(Yu et al., 2023). In addition, data 
acquisition technology for studying naturally occurring non-
exposed spaces, such as karst caves, can provide a technical basis 
for geological research(Sauro et al., 2020) and extraterrestrial 
lava tube detection(Xiao et al., 2018).  
 
Although the exploration of non-exposed spaces is of great 
significance, it faces challenges such as limited terrain conditions 
and difficulties in data and information collection(Lai et al., 
2023). Unmanned systems are a crucial technical means for 
gathering data and information in non-exposed spaces like 
underground areas. Common unmanned systems include 
platforms with various motion modes, such as unmanned aerial 
vehicles (UAVs), unmanned ground vehicles, and quadruped 
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robots, which are used for detecting unexposed spaces. However, 
the complex terrain in non-exposed spaces can be challenging for 
unmanned ground vehicles, and quadruped robots may also face 
limitations due to their size. In such situations, drones have 
distinct advantages; their unique motion capabilities and small 
size allow them to navigate through spaces with poor traffic 
conditions where other unmanned vehicles cannot pass.  
 
As an important aerial platform, UAVs have been widely used in 
various fields due to their unique motion modality and data 
acquisition perspective(Chen et al., 2022; Cheng et al., 2023; 
Deng et al., 2018; Sun et al., 2023). And with the rapid 
development of artificial intelligence(Hunt, 2014), computer 
vision and robotics(Al-Kaff et al., 2018), the degree of 
intelligence of UAVs has been further improved, which can be 
used for unexposed space exploration, but it also faces signal 
denial and complex positioning(Adamkiewicz et al., 2022). In 
unexposed spaces, developing UAV self-positioning and 
planning algorithms can enable the UAV to fly autonomously, 
eliminating the need for human control. However, due to 
limitations in visual sensors(Zhou et al., 2021; X. Zhou et al., 
2020), current autonomous UAV systems have a small field of 
view, leading to instability in the autonomous detection of non-
exposed spaces.  
 
To realize unmanned intelligent exploration of unexposed space, 
we propose an intelligent UAV system, LUOJIA Explorer UAV, 
which realizes autonomous positioning, planning and mapping 
algorithms for unexposed space exploration based on solid-state 
LiDAR data, providing a new solution for unmanned exploration 
of unexposed space. 
 

2. Related Work 

Autonomous UAVs for exploring non-exposed spaces primarily 
involve unmanned aerial systems, SLAM (Simultaneous 
Localization and Mapping), and planning algorithms. 
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2.1 UAV System 

Rotary-wing unmanned aerial vehicles (UAVs) have gained 
attention due to their flight characteristics, including stability, 
agility, and hovering capabilities. With the advancement of 
technology, the performance of rotary-wing UAVs has become 
increasingly stable. As a result, they are gradually transitioning 
from military applications to specialized and civilian applications, 
integrating into all aspects of production and daily life, and 
opening up a vast market. Several UAV enterprises have already 
developed a comprehensive production mode and produced a 
variety of quadcopter products to meet different needs. Examples 
of such enterprises include DJI, Daotong Intelligence, and Parrot, 
which specialize in producing rotor UAVs. Additionally, 
academic institutions have also produced rotor UAVs(Chen et al., 
2023; Kong et al., 2021; Mohta et al., 2018; Tang et al., 2023; 
Tranzatto et al., 2022) (Zhou et al., 2022)for scientific research 
purposes. These UAVs serve as carriers for scientific research 
tasks and are used to conduct validation experiments. 

 
2.2 SLAM 

Many filter-based methods use the traditional Extended Kalman 
filter (EKF)(Bloesch et al., 2015), the Unscented Kalman Filter 
UKF(Wan, n.d.), or the improved Multi-State Constraint Kalman 
Filter(MSCKF)(Abdollahi et al., n.d.). 
 
Back in 2007, the University of Minnesota proposed a visual 
inertial navigation framework called MSCKF(Mourikis and 
Roumeliotis, 2007), which is based on Extended Kalman 
Filtering. This framework extracts FAST feature points and 
tracks them using the KLT optical flow algorithm at the front end. 
At the back end, it uses EKF filtering for state estimation. In 2015, 
the Autonomous Systems Laboratory (ASL) of ETH Zurich 
proposed a monocular visual inertial odometry ROVIO based on 
Iterative Extended Kalman Filtering (IEKF)(Bloesch et al., 2015). 
 

Currently, the field is dominated by optimization-based methods. 
These methods heavily rely on image filtering, feature extraction, 
and matching. In 2015, the Autonomous Systems Laboratory 
(ASL) at ETH Zurich proposed the OKVIS(Leutenegger et al., 
2015), a keyframe-based visual inertial odometer that uses 
nonlinear optimization. The optimization is restricted to a 
bounded window of keyframes through marginalization to ensure 
real-time operation. The probabilistic cost function constructed 
includes both the reprojection error of landmarks and the inertial 
term. In 2017, Mur-Artal et al. proposed a tightly coupled 
monocular vision inertial SLAM system(Mur-Artal and Tardos, 
2017) that utilizes closed-loop detection and map reuse to 
significantly improve the performance of SLAM systems in 
revisited areas. Thanks to this system, zero-drift localization is 
achieved in previously mapped areas, and centimeter-level 
accuracy is achieved on UAV-collected EuRoC datasets. 
Stumberg et al. proposed a direct method for visual-inertial 
odometry (VI-DSO) (von Stumberg et al., 2018), which 
incorporates scale and gravity direction into the model for joint 
optimization. 

 

In addition to vision sensors, LiDAR is also a very popular sensor, 
because of its ability to directly obtain the 3D point cloud of the 
surrounding environment.  Loosely coupled approaches to laser 
inertial odometry dominated the early laser inertial odometry 

methods due to their low computational cost and simple system 
structure. The classic loosely coupled laser inertial measurement 
method LOAM(Zhang and Singh, 2014), proposed by Carnegie 
Mellon University, extracts the effective edge and plane feature 
point information from the laser point cloud data, and then 
constructs the error function by using the distance from the point 
to the line and plane to solve the nonlinear optimization problem 
of the position, and then uses the integral operation of the six-
axis IMU measurements to obtain the a priori position, which 
further improves the accuracy of the LiDAR odometer, but there 
is no closed-loop detection and optimization at the back-end of 
LOAM. Patrick Geneva et al. proposed a laser inertial SLAM 
method using planar features-LIPS (Geneva et al., 2018) at 
IROS2018, which is based on the graph optimization framework 
and proposes a nearest-point planar representation that 
parameterizes a set of point clouds into planar features, and then 
converts the residual function into the difference between the 
planar parameters of the two frames, which together with the 
residual term of the IMU pre-integration constitutes the final 
optimization function, which has been applied in both simulation 
and real experiments. Cedric Le Gentil et al. presented 
IN2LAMA (Gentil et al., 2019) at ICRA2019, which uses the 
pre-integration of the IMU to eliminate motion aberrations in the 
original point cloud, and jointly optimizes the IMU and LIDAR 
measurements together. 

 
2.3 Planning 

Yi Lin et al(Lin et al., 2018) used monocular vision inertial 
odometry for UAV self-localisation and an online trajectory 
planner for local planning on a UAV equipped with a fisheye 
camera and IMU to achieve autonomous navigation of a UAV in 
complex indoor and outdoor environments. In response to the 
case of serious aircraft failure during the planning process, Sihao 
Sun et al. proposed a planning and control method when paddle 
stall occurs during UAV flight(Sun et al., 2020), using a depth 
camera and an event camera.Boyu Zhou et al. proposed a 
replanning method(B. Zhou et al., 2020) that systematically 
solves the problem of the existence of local minima in gradient-
based trajectory optimisation. A topological path search 
algorithm was developed to capture a collection of different 
useful paths in a 3D environment, and then each path guides an 
independent trajectory optimisation. It activates a more 
comprehensive exploration of the solution space and is able to 
output superior replanned trajectories. In order to solve the high-
speed navigation problem of UAVs, Boyu Zhou et al. also 
proposed RAPTOR(Zhou et al., 2021), which is a perceptually 
based replanning framework to support fast and safe flights, 
which designs a path-guided optimisation method including 
multiple topological paths to ensure that feasible and high-quality 
trajectories are found in a very limited time, and also introduces 
a perceptually aware planning strategy to proactively observe and 
avoid unknown obstacles, which can ensure that UAVs observe 
unknown obstacles that may endanger themselves earlier and 
avoid them in time. Fei Gao et al. proposed a planning framework 
for aggressive flight of autonomous quadcopters(Gao et al., 
2020). 

 
3. System and Methods 

3.1 Hardware System of LUOJIA Explorer UAV 

The hardware system of LUOJIA Explorer UAV consists of a 
UAV450 frame, solid-state lidar, on-board processing unit, flight 
controller, motor, propellers, 6s model aircraft battery, data 
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transmission module, and anti-collision structure, as shown in 
Figure 1. The sensor details are shown in Table 1. 
 

 

Figure.1 Hardware System of LUOJIA Explorer UAV 

 

 

Sensors descriptions 
LiDAR DJI Livox MID-360 

data 
transmission 

device 

transmit power from 100mW to 
1W;902-928 MHz frequency band; 

Range up to 60km 
IMU Lidar built-in 

Flight Control Pix32 V6 mini 
Table 1. Sensor Information. 

 
3.2 Workflow of LUOJIA Explorer UAV 

The system of LUOJIA Explorer UAV includes the positioning 
and mapping subsystem, the planning and control subsystem. 
The workflow is shown in Figure 2. 

 

 

Figure.2 Workflow of LUOJIA Explorer UAV 

 
3.2.1 Localization and Mapping Subsystem 
 
The localization and mapping subsystem uses an iterative 
Kalman filter to process the point cloud and IMU data from the 
solid-state lidar to achieve robust localization in degraded 
unexposed environments while supporting fast and aggressive 
flight states. 
 
The feature extraction module processes the LiDAR inputs to 
identify planar and edge features. These features, combined with 
IMU measurements, are subsequently used by our state 
estimation module, which performs state estimation at a rate of 
10 Hz~50 Hz. The estimated pose then registers the feature points 
to the global frame and merges them with the feature points map 
built so far. The updated map is finally used to register further 
new points in the next step. 
 
The Kalman gain calculation in Eq. (1) is used to achieve 
efficient computation during the state estimation process, which 
is based on the state dimension rather than the measurement 
dimension, thus avoiding the computation of a large number of 
measurements and significantly improving the computational 
efficiency. After derivation, Eq. (1) calculates the Kalman gain 
in the state dimension to achieve the same effect as the 
calculation in the measurement dimension, but can greatly reduce 
the amount of calculation. Where 𝐾𝐾 is the Kalman gain, 𝐻𝐻 is the 
Jacobi matrix associated with the state, 𝑅𝑅 is the diagonal array of 
the external reference rotation parameters, and 𝑃𝑃  is the 
covariance matrix. 
 

𝐾𝐾 =  (𝐻𝐻𝑇𝑇𝑅𝑅−1𝐻𝐻 +  𝑃𝑃−1)−1𝐻𝐻𝑇𝑇𝑅𝑅−1                 (1) 

 
Instead of extracting the features of the point cloud data, the data 
processing stage directly uses the feature points in the 
environment together with the forward propagated IMU data to 
enter the state estimation process, which reduces the 
computational cost and improves the accuracy, thus directly 
registering the points to the map. In the map building part, an 
incremental k-d tree data structure is used to maintain the map, 
which realizes the incremental update and maintenance of the 
map. In order to provide the planning and control subsystem with 
a planning database, a distance-based thinning module has been 
added to the map building module to ensure the construction of 
stable navigation maps within neighbouring distances. 
 
Initialization is essential for obtaining a reliable initial estimate 
of the system state, such as the gravity vector Gg, bias, and noise 
covariance, which in turn accelerates the state estimator. In 
localization and mapping subsystem, the initialization process is 
straightforward: keeping the LiDAR stationary for a few seconds 
(2 seconds in all the experiments described in this letter), the 
collected data is used to initialize the IMU bias and gravity vector. 
If the LiDAR supports non-repetitive scanning (e.g. Livox 
AVIA), remaining stationary also enables the LiDAR to create 
an initial high-resolution map, which is advantageous for 
subsequent navigation. 
 
3.2.2 Planning and Control Subsystem 
 
The planning and control subsystem first constructs an 
occupation grid navigation map based on the point cloud map 
after thinning, and then computes the optimal trajectory and 
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outputs control commands based on the current state estimation 
and the given target points. 
 
The planning algorithm is a gradient-based local planning 
algorithm without Euclidean Symbolic Distance Field (ESDF). 
The Euclidean Symbolic Distance Field can quickly query the 
gradient and distance information in the obstacles, which is 
convenient for the planning algorithm to calculate the cost 
function in the re-optimization part, but the process of trajectory 
optimization only needs to update the information in the limited 
space within the range, so there are a lot of redundant calculations. 
We use a local planning framework without Euclidean symbolic 
distance fields, which is achieved by generating the collision 
penalty term in the penalty function by constantly comparing the 
trajectories that have collisions with the collision-free bootstrap 
paths, and storing the resulting obstacle information only when 
the generated trajectories encounter new obstacles. In the 
trajectory generation section, the classical A* algorithm is used 
to generate the initial trajectory. In the trajectory optimization 
section, a penalty function 𝒯𝒯𝑡𝑡 consisting of a smoothing penalty 
term 𝒯𝒯𝑠𝑠 , a dynamic feasibility term 𝒯𝒯𝑑𝑑 , and a collision penalty 
term 𝒯𝒯𝑑𝑑  is constructed to continuously optimize the generated 
trajectory by minimizing the penalty function. A time 
reallocation strategy is also incorporated into the back-end part 
of the trajectory planning to make the generated trajectories 
satisfy the dynamics of the unmanned system platform.  
 

𝒯𝒯𝑡𝑡 =  𝒯𝒯𝑠𝑠 + 𝒯𝒯𝑑𝑑 + 𝒯𝒯𝑐𝑐                                 (2) 
 
A smoother trajectory enhances the stability of the unmanned 
system during execution, conserves energy, and extends 
operating time. To achieve a smooth trajectory, a smoothing 
penalty is applied. Due to the convex hull property of B-splines, 
ensuring the smoothness of the initialized B-spline requires that 
the control points maintain small second and third derivatives. 
This guarantees that the overall B-spline curve's derivatives 
remain minimal, ensuring smoothness. In Eq. (3), 𝐀𝐀𝑖𝑖 represents 
the second derivative (acceleration) of the B-spline control point, 
while 𝐉𝐉idenotes the third derivative (the derivative of acceleration) 
of the B-spline control point. 
 

𝒯𝒯𝑠𝑠 = �‖𝐀𝐀𝑖𝑖‖22
𝑁𝑁𝑐𝑐−2

𝑖𝑖=1

+ �‖𝐉𝐉i‖22
𝑁𝑁𝑐𝑐−3

𝑖𝑖=1

                                (3) 

 
When the unmanned system moves, it must adhere to its dynamic 
constraints, ensuring that the generated trajectory meets this 
fundamental requirement. This guarantees that the speed and 
acceleration in each dimension of motion remain within 
acceptable limits. For dynamic feasibility, it is necessary to 
restrict only the higher-order derivatives in each dimension of the 
trajectory. Similar to the smoothing penalty term, the derivatives 
of the trajectory's control points are also constrained. The 
dynamic feasibility penalty term is defined as shown in equation 
(4), where 𝐕𝐕𝑖𝑖 , 𝐀𝐀𝑖𝑖 , and 𝐉𝐉𝑖𝑖  representssss the first-order derivative 
(velocity), second-order derivative (acceleration), and third-order 
derivative (jerk) of the control point, respectively. 𝐹𝐹(⋅)  is a 
quadratic, continuously differentiable metric function of the 
higher-order derivatives of the trajectory control point, used to 
constrain 𝐕𝐕𝑖𝑖 , 𝐀𝐀𝑖𝑖 and 𝐉𝐉𝑖𝑖  within the dynamics-compliant range. 
 

𝒯𝒯𝑑𝑑 = � 𝜔𝜔𝑣𝑣

𝑁𝑁𝑐𝑐−1

𝑖𝑖=1

𝐹𝐹(𝐕𝐕𝑖𝑖) + � 𝜔𝜔𝑎𝑎

𝑁𝑁𝑐𝑐−2

𝑖𝑖=1

𝐹𝐹(𝐀𝐀𝑖𝑖)

+ � 𝜔𝜔𝑗𝑗

𝑁𝑁𝑐𝑐−3

𝑖𝑖=1

𝐹𝐹(𝐉𝐉𝑖𝑖)                                 (4) 

 
The collision penalty term is a crucial part of the algorithm, 
ensuring that the trajectory effectively avoids obstacles. This 
penalty generates a simulated thrust to move the trajectory away 
from obstacles into a safe space. When the trajectory encounters 
an obstacle, the A* search algorithm is used to find two points on 
the trajectory outside the obstacle. Tangents and planes are 
created through point Q, which is located between these two 
points. The point p and the unit vector v are determined on the 
obstacle; v points to the intersection of the path found by the A* 
algorithm with the tangent at point Q, and p is the intersection 
with the obstacle in the direction of vector v. Points p and vector 
v are essential for determining whether the trajectory collides 
with the obstacle. The collision penalty term is defined in Eq. (4), 
where 𝑁𝑁𝑐𝑐 is the number of obstacles in the trajectory, 𝑁𝑁𝑝𝑝 is the 
number of p,v pairs, and 𝑗𝑗𝑐𝑐(. )  is a quadratically continuous 
differentiable penalty function used to impose specific limits on 
p and v to ensure no collisions occur. 
 

 
Figure 3. Collision Trajectory Generation 

 

𝒯𝒯𝑐𝑐 = �𝑗𝑗𝑐𝑐(𝐐𝐐𝑖𝑖)
𝑁𝑁𝑐𝑐

𝑖𝑖=1

= ��𝑗𝑗𝑐𝑐(𝑖𝑖, 𝑗𝑗)

𝑁𝑁𝑝𝑝

𝑗𝑗=1

𝑁𝑁𝑐𝑐

𝑖𝑖=1

                                 (5) 

 
In the control part of the UAV, we send the state information 
output from the laser inertial odometer directly to the UAV flight 
control to obtain the current position information of the UAV, 
and then construct a control node supporting two control modes, 
which can support both manual control mode and planning 
control mode, to realize the one-button switching of the control 
mode of the UAV to ensure the stability of the flight. 
 

4. Experiment and Results 

We have conducted simulation experiments and real aircraft 
experiments, respectively.  
 
In both simulation and live scenarios, our proposed LUOJIA 
Explorer UAV achieves stable autonomous flight. One of the 
simulation experiments was conducted in an unexposed space 
without GNSS.  

 
4.1 Simulation Experiment 

Using one of the outdoor environments in XTDrone(Xiao et al., 
2020), we conducted simulation experiments in a software-in-
the-loop manner. In the simulation environment, the UAV is 
unable to receive GNSS signals, so its local position is 
determined solely through our proposed positioning and mapping 
subsystem. To ensure the UAV can fly normally in this 
environment, the odometry data obtained by our algorithm is fed 
into the aircraft's flight controller. Figure 4 shows a screenshot of 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-689-2024 | © Author(s) 2024. CC BY 4.0 License.

 
692



 

the UAV flying autonomously in the simulation environment, 
while Figure 5 displays a point cloud map of the same 
environment. Our experiments in this simulation setting 
demonstrate that the proposed system can achieve stable 
autonomous flight even in the absence of GNSS signals. The 
UAV relies on the positioning and mapping subsystem we 
developed, which ensures accurate localization and navigation. 
These results underscore the effectiveness of our approach in 
maintaining autonomous UAV operation under challenging 
conditions. 

 

 
Figure 4. Simulation Environment 

 

 
Figure 5. Point Cloud Map in Simulation Environment 

 
4.2 Real Experiment 

The real flight experiments were conducted on the fifth floor of 
the Star Lake Comprehensive Experiment Building of the 
Department of Informatics, Wuhan University, also without 
GNSS and other external positioning signals, and the LUOJIA 
Explorer UAV was able to fly and build maps in a stable manner. 
The unexposed space test site is 6.28 m long, 4.74 m wide and 3 
m high as shown in the Fig. 6. We conduct a flight test at the test 
site, and it takes only 15 seconds to autonomously fly to the target 
point while avoiding obstacles, and at the same time, it takes only 
about 1 second to complete the construction map of the 
experimental site, and the exploration efficiency reached 88.83 
m³/s. The experimental results are shown in Table 2. Figure 7 

shows a screenshot of the UAV in flight, while Figure 8 displays 
the established point cloud map and obstacle grid map. 
 

 

Figure 6. Real Environment 
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Figure 7. Real Flight  

Figure 8.  Real Cloud Point Map and Occupy Grid Map 

 

Test Site Size(m) Flight Time(s) Exploration 
Efficiency(m³/s) 

6.28 ×4.74 ×3 15.32 88.83 
Table 2. Quantitative Results. 

 
5. Conclusion and Future Work 

We propose LUOJIA Explorer UAV, an autonomous UAV based 
on solid-state LiDAR that can be used for unexposed space 
exploration. LUOJIA Explorer UAV consists of two subsystems: 
localization and mapping, and planning and control. The 
localization and mapping subsystem is a laser inertial odometer 
based on distance dilution, which can provide the planning      
algorithm with point cloud maps and state information. The 
planning and control subsystem greatly improves the planning 
efficiency by using an ESDF-free trajectory optimization method; 
the control node supports two control modes. The experimental 
results show that LUOJIA Explorer UAV can provide a robust 
solution for unexposed space exploration and offers new 
opportunities for air-ground cooperative exploration. In the 
actual test site, measuring 6.28 m in length, 4.74 m in width, and 
3 m in height, an exploration efficiency of 88.83 m³/s was 
achieved. In the future, we plan to expand autonomous UAS 
capabilities to include target-based exploration, enabling a 
broader range of real-world applications. 
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