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Abstract 

 

Ultra-wideband (UWB) technology stands out among numerous indoor positioning techniques due to its high operating frequency, 

low interception capability, resistance to multipath effects, and strong penetration. The UWB uses the time-of-arrival (TOA) to 

estimate the distance between the transmitter and receiver anchors in centimeter accuracy. However, in complex indoor positioning 

environments, obstacles such as walls, glass windows, metal plates, and wooden doors may block and reflect signals, inevitably 

causing non-line-of-sight (NLOS) errors that significantly affect positioning accuracy. The NLOS signal has lower signal energy due 

to the reflections. Thus, the channel impulse responses (CIR) from NLOS and LOS are different. To address the NLOS signal 

identification issue in UWB positioning, we utilize UWB CIR data collected from various positioning scenarios as the data source. 

CIR waveform input features are provided for the NLOS signal recognition model, and four machine learning models—Support 

Vector Machine (SVM), Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN), and XGBoost—are trained and optimized for 

NLOS signal recognition. The aim of the study is to analyze the performance of different machine learning algorithms for NLOS 

signal recognition in UWB indoor localization using these features. Experimental results indicate that machine learning-based NLOS 

signal recognition algorithms can achieve an accuracy of approximately 77.46%, precision of 80.46%, and an F1 score of 0.81. 

Among the four models, the XGBoost model demonstrates generally better recognition performance. 

 

 

1. Introduction 

With the continuous development of the mobile internet, society 

has entered a new era of massive construction in the Internet of 

Things (IoT). The application areas of Location-Based Services 

(LBS) technology are becoming increasingly extensive and 

crucial. For instance, in the field of autonomous vehicles, the 

absence of location services support would severely limit its 

development. In outdoor positioning applications, the Global 

Navigation Satellite System (GNSS) stands out among 

numerous outdoor positioning technologies due to its all-

weather and all-time characteristics, effectively meeting the 

outdoor positioning requirements. In indoor positioning 

applications, Ultra-Wideband (UWB) technology is widely 

employed, holding significant development prospects. The 

UWB has been widely applied for the indoor navigation (Henk, 

2012) due to low cost and high positioning accuracy. The 

commonly used UWB positioning method relies on Time 

Difference of Arrival (TDOA), utilizing the time difference in 

signal transmission and reception between the target and base 

stations to provide precise distance estimates. The three-

dimensional coordinates of the target are then determined 

through the geometric relationships among multiple base 

stations. The schematic diagram of TDOP positioning principles 

is illustrated in Figure 1. However, in indoor positioning, 

influenced by obstacles such as walls and furniture, signal 

propagation between the target and base stations is not limited 

to Line-of-Sight (LOS) scenarios but may also include 

obstructed Non-Line-of-Sight (NLOS) scenarios, leading to 

significant distance estimation biases and, consequently, 

affecting the accuracy of target positioning. The schematic 

diagram of NLOS scenarios is presented in Figure 2. 

 

Currently, NLOS identification methods can be broadly 

classified into two categories. The first category approaches the 

issue from the perspective of ranging accuracy, treating NLOS 

range measurements as outliers. These methods employ 

techniques such as residual weighting to smooth out anomalous 

signals, thereby enhancing positioning accuracy. The traditional 

methods treat the NLOS as an outlier, and down weights their 

contribution to the state estimate based on the robust estimation 

theory (Yang, 2002). The robust estimation methods, however, 

are limited by 50% of data contamination (XU, 2005). The 

second category focuses on wireless channel characteristics, 

utilizing Channel Impulse Response (CIR) data. By identifying 

and eliminating NLOS conditions based on CIR data, these 

methods aim to improve positioning accuracy (SUN, 2023).  

 

 
Figure 1. TDOA localization method. 

 

With the widespread application of machine learning in wireless 

communication, an increasing number of scholars are utilizing 

machine learning methods to identify Non-Line-of-Sight 

(NLOS) signals. Methods such as Support Vector Machine 

(SVM) (Yang, 2023), Relevance Vector Machine (RVM) 

(Nguyen, 2015), and Multilayer Perceptron (MLP) (Klemen, 

2016), as well as Random Forest (BARRAL, 2019), have been 

successfully applied UWB NLOS detection applications. In this 

paper, we use the Channel Impulse Response (CIR) waveform 
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features to optimize the signal recognition models of SVM, 

MLP, and KNN, as well as XGBOOST, and assess their 

performance in NLOS signal recognition. 

 

The organization of this paper is as follows: Section 2 provides 

a brief introduction to the machine learning algorithms 

employed and the input features used. In Section 3, we will 

present the experiments and datasets used to analyze the 

performance of different machine learning algorithms in NLOS 

signal identification. Finally, Section 4 summarizes the findings 

and draws conclusions. 

 

 
Figure 2. NLOS signal formation scenario. 

 

2. Theory and Principles 

2.1 Channel Impulse Response 

The acquisition of Channel Impulse Response (CIR) is 

accomplished by assessing the correlation between the 

accumulated incoming samples and the expected pre-sequence. 

The calculation formula is as follows: 
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where  ia  = Amplitude 

 i  = Time Delay 

 ( )n t   = Gaussian White Noise 

 ( )p t  = Gaussian Radio Waveform 

 

The UWB ranging chip offers a CIR output interface, and the 

analysis of the CIR waveform allows for the identification of 

whether the received signal is LOS or NLOS. Refer to Figures 3 

and 4 for an illustration of the CIR waveforms. 

 

In Figure 3, the CIR waveform represents a LOS signal, where 

the initial direct path is clearly discernible as the peak, followed 

by subsequent waveforms resulting from signals reflected by 

indoor walls. During this scenario, accurate measurement of 

signal reception time is achievable, with minimal impact on 

positioning accuracy. Figure 4 illustrates an idealized CIR 

waveform for a NLOS signal. In this case, multiple peaks are 

evident, and the first arrival peak is not the highest. 

Consequently, precise measurement of signal reception time is 

challenging, significantly affecting positioning accuracy.  

 

 
Figure 3. LOS channel impulse response. 

 

The distinctive characteristics of CIR data under varying 

propagation conditions provide a theoretical foundation for 

utilizing machine learning methods. This foundation facilitates 

the extraction of CIR data features and the establishment of a 

mapping relationship between CIR data and ranging errors. 

 

 
Figure 4. NLOS channel impulse response. 

 

2.2 CIR Waveform Features 

The input features for machine learning algorithm training is 

selected based on the differences in CIR waveforms between 

NLOS signals and LOS signals. 

 

1) Energy 

 

Energy represents the comprehensive signal processing energy, 

denoted as r . 

 

 
2

( )r r t dt
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−

=   (2) 

 

2) Maximum amplitude 

 

Maximum amplitude represents the maximum value of the 

amplitude during signal transmission, denoted as maxr . 

 

 max max ( )
t

r r t=  (3) 
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3) Rise time 

 

Rise time represents the time it takes for the signal to go from 

0.1 times the maximum amplitude to 0.9 times the maximum 

amplitude, denoted as riset . 

 

 rise H Lt t t= −  (4) 

 

where  Lt = min{ : ( ) }nt r t   

 Ht = maxmin{ : ( ) }t r t r , and n is the standard 

deviation of the thermal noise. The values of 0  and 

0 1  are chosen empirically to capture the rise time; in our 

study, these values are 6 = and 0.6 = . 

 

4) Mean excess delay 

 

Mean excess delay represents an important parameter of the 

time dispersion characteristics of a multipath channel, denoted 

as medT . 

 

 ( )medT t t dt
+

−

=   (5) 

 

where  ( )t = 
2

( ) rr t   

 

5) Rms delay 

 

RMS delay is another parameter, distinct from Mean excess 

delay, that represents the time dispersion characteristics of a 

multipath signal, denoted as rmsT . 

 

 
2( ) ( )rms medT t T t dt

+

−

= −  (6) 

 

6) Kurtosis 

 

Kurtosis is a statistical measure that describes the sharpness or 

flatness of the distribution shape of CIR waveform data. 
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2.3 Machine Learning Algorithm 

1) SVM 

 

SVM is a commonly used classification model, with its 

fundamental principle centered around maximizing the margin 

to construct the classifier. SVM exhibits strong capabilities in 

handling high-dimensional data and possesses excellent 

characteristics in classification performance and generalization. 

Therefore, SVM finds extensive application in the field of 

NLOS signal recognition. In SVM algorithms, the selection of 

kernel functions and regularization parameters (C) significantly 

impacts the model's recognition effectiveness. In this study, we 

adopted the radial basis kernel function. Regarding the selection 

of C values, we tested SVM models with C values ranging from 

0 to 100 on a subset of the dataset to assess their recognition 

effectiveness. The selection of a subset of the dataset was to 

ensure the efficiency of optimizing the model. As depicted in 

Figure 5, the model's recognition effectiveness is optimized 

when the C values is set to 77. 

 

 
Figure 5. Parameter tuning with SVM. 

 

2) MLP 

 

MLP, a machine learning algorithm based on the structure of a 

feedforward neural network, encompasses an input layer, 

hidden layers, and an output layer, with each layer fully 

connected to the next. The schematic diagram of the MLP 

model framework is shown in Figure 6. The number of neurons 

in the input layer is determined by the input features, while the 

number of neurons in the output layer is determined by the 

number of target classes. The number of hidden layers and the 

number of neurons per layer are determined based on the 

specific application, significantly impacting the classifier's 

classification performance. In our experimentation, we explored 

four different configurations of hidden layers and tested their 

recognition effectiveness on a subset of the dataset used in this 

study. As depicted in Table 1, the model's recognition 

effectiveness is optimized when there are three hidden layers, 

each containing 100 neurons. 

 

 
Figure 6. Schematic diagram of the MLP model framework. 
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Hidden Layer Precision 

(50) 74.71% 

(100,) 77.20% 

(50,50,50) 76.04% 

(100,100,100) 77.69% 

Table 1. Different choice of hidden layer configuration affects 

precision. 

 

3) KNN 

 

K-Nearest Neighbors (KNN) is a fundamental supervised 

learning algorithm utilized for classification and regression 

tasks. Its basic principle involves predicting the label of an 

unlabeled sample by searching for the nearest labeled samples 

in the feature space. In the KNN model, the settings of 

n_neighbors and weights significantly impact the model's 

recognition effectiveness. We conducted experiments testing the 

recognition effectiveness of the model under different settings 

of n_neighbors ranging from 1 to 100, using both "uniform" and 

"distance" weights settings. As illustrated in Figure 7, the model 

performs optimally when n_neighbors is set to 5 and weights 

are set to "uniform". 

 

 
Figure 7. Parameter tuning with KNN. 

 

4) XGBOOST 

 

XGBOOST, an ensemble gradient boosting model proposed on 

the foundation of the Gradient Boosting Decision Tree (GBDT) 

algorithm, adopts an integrated approach to iteratively train 

weak learners, thus improving the model's performance. The 

framework diagram of the XGBOOST model is shown in 

Figure 8. In the field of NLOS signal recognition, numerous 

identification algorithms are based on decision tree models. 

XGBOOST, functioning as an algorithm that integrates multiple 

decision trees, continuously generates new trees to fit the 

residuals of preceding tree models, thereby reducing loss and 

achieving superior results. In this paper, the settings for the 

XGBOOST model are presented in Table 2. 

 

 

Figure 8. Schematic diagram of the XGBOOST model 

framework. 

 

Setting Value 

learining_rate 0.1 

max_depth 12 

n-estimators 500 

Table 2. Settings for the XGBOOST. 

 

Based on the results of hyperparameter tuning for the four 

models, the final hyperparameter configurations for the four 

machine learning models can be found in Table 3. 

 

Setting Model 

 SVM 

Kernel “rbf” 

C 77 

 MLP 

Hidden Layer (100,100,100) 

 KNN 

n_neighbors 5 

weights uniform 

 XGBOOST 

learining_rate 0.1 

max_depth 12 

n-estimators 500 

Table 3. Parameter settings for the four models. 

 

3. Experiment 

3.1 Dataset 

This study utilized the open-source UWB dataset provided by 

Klemen. The dataset employs the low-cost DecaWave DW1000 

UWB sensor and was collected in seven different indoor 

environments, including Office, small apartment, small 

workshop, kitchen with a living room, bedroom, and boiler 

room. In each indoor location, 3000 LOS samples and 3000 

NLOS samples were collected. The selection of diverse 

locations aims to prevent the creation of location-specific LOS 

and NLOS models. In total, 42,000 samples were collected, 

with 21,000 for LOS and 21,000 for NLOS channel conditions. 

To prepare the dataset for constructing LOS and NLOS models, 

the samples were randomized to avoid overfitting the model to 

specific locations. Two UWB nodes were used for 

measurements: one as an anchor and the second as a tag. The 

dataset exclusively includes traces of LOS and NLOS channel 

measurements without any reference positioning, making it 

unsuitable for localization evaluation. 

 

3.2 Experiment Result 

The confusion matrix is commonly used for the visualization of 

supervised learning outcomes. For binary classification, the 

resulting classification can be divided into four categories: True 

Positive (TP), False Negative (FN), False Positive (FP), and 

True Negative (TN). The schematic diagram of the confusion 

matrix is shown in Figure 9. To evaluate the performance of the 

model, standard metrics based on the confusion matrix are 

provided, including accuracy, precision, recall, and F1 score, 

defined mathematically as follows: 

 

 
( )

( )

TP TN
accuracy

TP TN FP FN

+
=

+ + +
 (8) 
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TP FN

=
+

 (10) 

 

 2
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F
precision recall


= 

+
 (11) 

 

 
Figure 9. confusion matrix. 

 

Using the dataset introduced in Section 3.1, we trained four 

machine learning models: SVM, MLP, KNN, and XGBOOST. 

We analyzed the models' performance under the same inputs. 

The dataset was randomly divided into training and testing sets 

in a ratio of 80% to 20%. The classification results' confusion 

matrices for the four models and standard performance metrics 

based on the confusion matrix are shown in Figure 10 and Table 

3, respectively. 

 

From the experimental results, the precision of NLOS signal 

recognition for the four models are 78.2%, 77.85%, 77.85%, 

and 75.96%, with an average precision of 77.46%. Among them, 

XGBOOST exhibited the best recognition performance. The 

accuracy of the models is 82.8%, 81.76%, 80.29%, and 76.99%, 

with an average accuracy of 80.46%. Specifically, XGBOOST 

achieved the highest overall precision. The F1 scores for the 

four models are 0.84, 0.83, 0.81, and 0.77, with an average F1 

score of 0.81. 

 

It can be observed that the models exhibit relatively poor 

performance in NLOS signal recognition. An analysis of this 

phenomenon reveals that the dataset used was collected from 

various indoor environments, where different materials 

obstructing signal propagation may have varied impacts on the 

training feature information. Overall, XGBOOST performed the 

best among the four machine learning models used in this study, 

while the KNN model showed poorer performance. 

 

Model Score 

 accuracy precision recall F1 

XGBOOST 82.80% 78.20% 90.27% 0.84 

SVM 81.76% 77.85% 88.04% 0.83 

MLP 80.29% 77.85% 83.67% 0.81 

KNN 76.99% 75.96% 78.00% 0.77 

Table 4. Standard metrics results for the four models. 

 
Figure 10. confusion matrix results for the four models. 

 

4. Conclusion 

This paper introduces the CIR waveform features of used NLOS 

signal recognition models, trains four machine learning 

classifiers: SVM, MLP, KNN, and XGBOOST, and evaluates 

their performance in NLOS signal recognition. The results 

indicate that machine learning-based NLOS signal recognition 

algorithms achieve an precision of approximately 77.46%, a 

accuracy of 80.46%, and an F1 score of 0.81. Among the four 

models, the XGBOOST model demonstrates relatively superior 

overall recognition performance. This study provides a 

theoretical basis and practical reference for low-cost UWB 

indoor positioning methods. 
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