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Abstract

Compared to conventional cameras, event cameras represent a noteworthy advancement in neuromorphic imaging technology, 
garnering considerable attention from researchers due to their distinct advantages. However, event cameras are susceptible to 
significant levels of measurement noise, which can detrimentally affect the performance of algorithms reliant on event stream for 
tasks such as perception and navigation. In this study, we introduce a novel method for denoising event stream, aiming to filter 
out events that do not accurately reflect genuine logarithmic intensity changes within the observed scene. Our approach focuses on 
the asynchronous nature and spatiotemporal properties of events, culminating in the development of a novel Asynchronous Spatio-
Temporal Event Denoising neural Network(ASTEDNet). This network operates directly on event streams, circumventing the need 
to convert event stream into denser formats like image frames, thereby preserving their inherent asynchronous nature. Drawing upon 
principles from graph encoding and temporal convolutional networks, we incorporate spatiotemporal feature attention mechanisms 
to capture the temporal and spatial correlations between events. This enables the classification of each active event pixel in the 
original stream as either representing a genuine intensity change or noise. Comparative evaluations conducted on multiple datasets 
against state-of-the-art methods demonstrate the remarkable efficacy and robustness of our proposed algorithm in noise removal 
while retaining meaningful event information within the scene.

1. Introduction

Recent advancements in technology and algorithms, along with
the increased compactness and affordability of information,
have made Active Pixel Sensor (APS) imaging sensors, such
as traditional cameras, essential for visual navigation and loc-
alization tasks, including visual simultaneous localization and
mapping (SLAM). However, APS sensors face significant chal-
lenges when subjected to high-speed motion or extreme light-
ing conditions, such as those found in tunnels. These conditions
can lead to issues like motion blur, overexposure, and underex-
posure, which adversely affect computer vision tasks.

The advent of event cameras offers a novel approach to tackling
the aforementioned challenges. Event cameras are asynchron-
ous sensors designed to mimic the biological structure of the
human retina. Traditional cameras integrate all pixels over in-
tegration calculation cycles and readout cycles to form a single
frame image. In contrast, event cameras detect logarithmic
changes in intensity at each pixel. As depicted in Figure 1,
When the change surpasses a predetermined threshold, an event
is triggered, providing the corresponding pixel’s row/column
index, timestamp, and polarity. This mechanism equips event
cameras with several advantages, including low redundancy,
low power consumption, high temporal resolution (micro-
seconds) and high dynamic range (up to 120 dB)(Gallego et al.,
2020). The innovative methods of visual data acquisition and
processing by event cameras have prompted a paradigm shift
in visual algorithms. Since their inception, event cameras have
demonstrated significant potential in challenging computer vis-
ion tasks such as object detection(Li et al., 2022), depth es-
timation(Rebecq et al., 2018), visual navigation and localiza-
tion(Vidal et al., 2018; Huang et al., 2023).

However, due to the immaturity of event camera hardware and

Figure 1. Event camera imaging principle. Events are generated
asynchronously.

its differential imaging mechanism, a significant amount of
noise is generated, which severely hampers the performance of
event cameras in subsequent visual tasks(Czech and Orchard,
2016). Under consistent illumination conditions, thermal noise
and junction leakage current contribute to this noise. This type
of noise is referred to as background activity noise(Guo and
Delbruck, 2022), which is the primary focus of current research
and also the central concern of this paper.

Given the distinctive data representation of event cameras, tra-
ditional frame-based denoising methods face challenges in dir-
ect application to event cameras. Mainstream denoising meth-
ods exploit the discrepancy between noise and the spatiotem-
poral correlation of genuine active events. Traditional event de-
noising methods typically assess spatiotemporal correlation by
statistically analyzing event counts in the neighborhood or tem-
poral disparities between events(Delbruck et al., 2008; Padala
et al., 2018). However, these methods often require predefined
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threshold settings, significantly influencing denoising accuracy
and causing fluctuations in performance across scenarios. Sub-
sequently, a series of methods(Liu et al., 2015; Khodamor-
adi and Kastner, 2018; Guo and Delbruck, 2022; Wu et al.,
2020; Guo and Delbruck, 2022) emerged that aim to reduce
operational complexity by employing different event storage
strategies. Nevertheless, these methods commonly overlook
potential knowledge between neighborhoods, limiting their ef-
fectiveness when noise sharply increases. To address this limit-
ation, deep neural networks(Duan et al., 2021b; Baldwin et al.,
2020; Fang et al., 2022) have been introduced to fully explore
latent spatiotemporal correlations and achieve better denoising
results. However, there are certain issues present in current
event denoising networks.: some methods require event streams
to be converted into frames or other intermediate forms, leading
to the loss of temporal information, while others solely focus on
spatial features, neglecting temporal properties. Deep learning
event denoising methods based on spatiotemporal correlation
remain largely unexplored.

In this context, we introduce a novel event-driven denoising
model named ASTEDNet, inspired by point cloud denoising
theory and tailored to the temporal dynamics of event streams.
ASTEDNet is capable of discerning spatiotemporal correla-
tions between newly detected events and previously active ones
within the same spatiotemporal vicinity. Our spatiotemporal
feature embedding module draws insights from DGCNN(Wang
et al., 2019b) and TCN(Bai et al., 2018). Embracing the prin-
ciples of Graph Neural Network(GNN), we construct localized
graphs and extract edge embeddings, facilitating the depiction
of inter-point relationships. Subsequently, we employ temporal
convolutional networks and introduce spatial and channel at-
tention mechanisms(Woo et al., 2018) to further capture spa-
tiotemporal features. Finally, genuine active events are iden-
tified through a binary classifier. Our approach handles events
strictly in the order of their occurrence, eliminating the need for
any intermediary conversions. Consequently, it effectively pre-
serves both the asynchronous and sparse characteristics of event
streams while fully leveraging their continuous temporal prop-
erties. Additionally, it facilitates the exploration of spatiotem-
poral correlations between newly arrived events and previously
active ones within the same spatiotemporal neighborhood. The
primary contributions of this paper are outlined as follows:

• We introduce a novel architecture for denoising event
streams, which preserves the asynchronous and sparse
characteristics of the data and supports end-to-end train-
ing.

• We develop dynamic graph-based feature encoding mod-
ules tailored to event stream and spatiotemporal feature
extraction modules leveraging temporal convolutional net-
works and attention mechanisms. These modules effect-
ively capture potential spatial correlations within the event
stream.

• We assess the performance of our method on event data-
sets with diverse noise and illumination conditions, and
analyze its excellence and robustness.

2. Related Works

2.1 Statistical-based Threshold Filter Methods

The earliest traditional method for event denoising involves a
straightforward threshold filter, employing statistical principles

to filter out anomalies by identifying low-density events. For
example, BAF calculates the density of each event within its
local spatiotemporal neighborhood and sets a threshold to re-
flect the spatiotemporal correlation between each event and its
neighbors. The nearest neighbor filter(Liu et al., 2015) iden-
tifies events with fewer neighboring events in the surrounding
pixels over a specific time frame as BA noise, thereby filtering
out BA noise in the event stream. Building upon this approach,
numerous more efficient and high-performance methods have
emerged. For instance, KNoise(Khodamoradi and Kastner,
2018) achieved an O(N) space complexity advantage by alloc-
ating two memory blocks to store the latest events in rows and
columns. The dual-window filter (DWF)(Guo and Delbruck,
2022) further reduces memory usage by employing a first-in-
first-out (FIFO) queue, storing only the most recent events and
comparing them with new events to determine whether to insert
the new event into the queue. To address memory and computa-
tional complexity concerns, Ynoise(Feng et al., 2020) proposes
a density matrix where each incoming event is projected into
its respective spatiotemporal region. By calculating the density
of each incoming event within its spatiotemporal domain and
prioritizing high-density events, event denoising is achieved.
While the aforementioned filters prove effective in certain scen-
arios, their denoising accuracy heavily relies on threshold selec-
tion, requiring manual threshold adjustments when event dens-
ity fluctuates, and they are susceptible to failure in high-noise
scenarios. Furthermore, PUGM(Wu et al., 2020) utilize Iterated
Conditional Modes (ICM) to minimize the energy function of
the Probabilistic Undirected Graph Model (PUGM) for denois-
ing events, but this denoising method is complex and computa-
tionally expensive, with a long run time.

2.2 Fitting-based Filter Methods

Some research investigates event denoising from alternative
perspectives, employing fitting strategies for this purpose. The
Time Surface (TS) approach(Lagorce et al., 2016) transforms
the Dirac function of time into a logarithmic representation that
monotonically decreases with time, facilitating the formation of
a regular manifold known as the time surface, and subsequently
removing events that disrupt surface smoothness. Another
method, termed Inceptive Event Time Surfaces (IETS)(Baldwin
et al., 2019) , recognizes that continuous events at individual
pixels result from significant intensity changes in the scene,
with initial events (IE) preceding subsequent tracking events
(TE). IETS filters noise by extracting initial events correspond-
ing to edge contours. EV-Gait(Wang et al., 2019a) adopts an
optical flow fitting perspective, verifying motion consistency
through velocity analysis and filtering events that disrupt the
smoothness of optical flow surfaces to achieve denoising. The
Guided Event Filter (GEF)(Duan et al., 2021a) , based on the
linear optical flow assumption, combines gradients of Active
Pixel Sensor (APS) frames, associating events with adjacent
image frames through a motion model. It then extracts mutual
structures between event frames and image gradients, removing
mismatched events for denoising. While these fitting methods
excel in handling individual moving objects, they may over-
look many useful spatiotemporal correlations, leading to per-
formance degradation in specific scenarios, such as low-light
conditions or complex scenes.

2.3 Learning-based Methods

Moreover, some academic researchers have integrated neural
networks to enhance denoising performance. Guo et al.(Guo
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and Delbruck, 2022) utilized a lightweight Multi-Layer Per-
ceptron Denoising Filter (MLPF) to calculate the probability
of noise occurrence for each event. Alkendi et al.(Alkendi et
al., 2022) introduce a GNN combined with transformers, which
classifies each active event pixel in the original stream as either
a real intensity change or noise. Furthermore, recent advance-
ments include Convolutional Neural Network (CNN) methods.
EDnCNN(Baldwin et al., 2020), for instance, integrates APS
and IMU data to compute event probabilities, which are then
used as labels for training a binary classification network. This
approach constructs multiple time surfaces for events and their
neighboring events, encodes them, and inputs them into the net-
work to identify noise events. Although AEDNet(Fang et al.,
2022) leverages the classical PointNet from point cloud deep
learning methods as its backbone to denoise events element-
wise, it does not fully exploit the temporal properties of event
streams at the network level. Additionally, EventZoom(Duan et
al., 2021b) employs an efficient U-Net network as the backbone
to perform event denoising and super-resolution in a noisy-to-
noisy manner. However, it introduces regularization operations,
sacrificing the advantage of the high temporal resolution of
event stream and failing to fully utilize temporal continuity.

3. Methodology

Our objective is to systematically eliminate BA noise events
from the asynchronous event stream. To achieve this, we begin
by dissecting the underlying mechanism of noise generation in
event cameras and the spatiotemporal characteristics of event
stream. Subsequently, leveraging these insights, we provide a
succinct overview of our proposed denoising methodology.

3.1 Problem Statement

We begin by elucidating how event cameras operate asynchron-
ously, responding to individual pixels and generating event
streams. The functionality of event cameras starkly contrasts
with that of frame-based cameras, which operate at fixed frame
rates. An event is represented as a tuple (u, t, p). Specifically,
in a noise-free scenario, when the logarithmic intensity change
L exceeds a constant threshold value C since the last event was
triggered at pixel u = (x, y), an event (u, t, p) is triggered at
pixel u and time t, as shown in formula (1).

p =

{
+ 1, L(u, t)− L(u, t−∆t) ≥ C

− 1, L(u, t)− L(u, t−∆t) ≤ −C
(1)

Where u = (x, y) represents the pixel position, t denotes the
timestamp, and p ∈ {−1, 1} indicates the polarity, signifying
the direction of brightness change (1 for increase and -1 for
decrease). ∆t denotes the time interval since the occurrence of
the last event at pixel u = (x, y). Triggering multiple events
(or event stream) can be expressed as:

E(x, y, t) = {pnδ (x− xn, y − yn, t− tn)}Nn=1 , (2)

where δ(·) denotes the Dirac delta function. In summary, the
distinctive data representation of event cameras presents chal-
lenges in directly applying frame-based denoising methods to
event cameras.

Event denoising represents a fundamental classification task.
Unlike tasks such as classification and segmentation, which
involve abstracting scene content at a higher level, event de-
noising focuses on inferring signal features at the pixel level.

The operational principle of event cameras suggests that genu-
ine events generated by intensity gradients often correspond
to scene or object edges, exhibiting continuous spatiotemporal
characteristics. Conversely, random BA noise typically appears
as isolated, unconnected points, lacking meaningful spatiotem-
poral correlation. In simpler terms, events clustered in both
space and time are more likely to represent genuine signals,
whereas isolated events are more likely to be attributed to noise.
Therefore, event denoising can be achieved by learning from
features that represent local time or space.

Generally, the approach to event denoising involves sampling
neighboring events within the spatiotemporal vicinity of the tar-
get event according to a specific strategy to analyze its spa-
tiotemporal properties and determine if it constitutes noise.
Given a spatiotemporal neighborhood W , an asynchronous
event E = {xn, yn, tn ∈ W : n = 1, . . . , N} is derived from
a pixel array. Unlike structured frames, the pixel array repres-
ents an intuitive set of discrete and sparse points in the spa-
tiotemporal domain. Therefore, the asynchronous spatiotem-
poral event stream poses distinct challenges compared to tradi-
tional frame-based techniques. To integrate asynchronous event
streams with deep learning methodologies, the transformation
of time-series point sets into continuous measurements using
kernel functions is essential(Gehrig et al., 2019). Formally, the
event representation can be described as follows:

F (x, y, t) =

N∑
n=1

E (xn, yn, tn) f (x− xn, y − yn, t− tn) ,

(3)
Here, f(x, y, t) represents the kernel function, which can be
either a manually designed function or a neural network ar-
chitecture. The kernel function is crucial for transforming
the asynchronous event stream into a continuous measurement
space or embedding.

As the asynchronous event stream consists of sparse points
in the spatiotemporal domain rather than structured frames,
we analyze event representation from the perspective of event-
based signal processing. Given the temporal properties of event
stream, the event stream can be seen as a time series with spa-
tial position information. For each event, we form an event se-
quence by sampling its neighboring events and directly process
these sequences using neural networks, without the need for
frame conversion. This approach preserves the spatial discrete-
ness and temporal continuity properties of the original events.
Such representation enables end-to-end spatiotemporal model-
ing and maximizes the utilization of spatiotemporal cues in the
event stream, thereby enhancing denoising task performance to
the fullest extent possible.

3.2 Spatiotemporal Neighborhood Sampling

Our approach employs a per-event binary classification strategy,
facilitating asynchronous processing to leverage the advant-
ages of preserving high temporal resolution of events. Upon
the arrival of a new event, we employ a straightforward Spati-
otemporal Sampling technique to select neighboring events of
the target event. Subsequently, through a neural network ar-
chitecture, we perform spatiotemporal modeling on the selec-
ted neighboring events to extract features of the newly arrived
event, thereby accomplishing the denoising classification task.
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Figure 2. Spatiotemporal neighborhood sampling strategy.
Green represents newly arrived events, and red represents
previously arrived events filtered out according to formula (4),
sorted by timestamp.

The sampling strategy is outlined as follows:

S(x, y, t) = {E(x, y, t)||x− xi |≤ xband ,
|y − yi| ≤ yband ,
t− ti ≥ −tband }

(4)

Where E(xi, yi, ti) represents the newly arrived event. xband

and yband indicate spatial sampling of neighboring events
within a rectangular region centered around the target event,
while tband specifies strict selection of events occurring before
the arrival of the new event. We strictly select events with
timestamps preceding the arrival of the new event to respect
the temporal nature of the event stream, avoiding the disruption
of the high temporal resolution characteristic of event cameras,
thereby showcasing the asynchronous processing advantage of
our method for event streams. Given the event camera’s high
temporal resolution, a large number of events are generated
within a short period. We employ a K nearest neighbor (kNN)
algorithm, similar to those commonly used in point cloud pro-
cessing, to select only the n events closest in time to the cur-
rent event in its neighborhood, sufficient for subsequent feature
extraction and to prevent computational resource wastage, as
depicted in Figure 2.

Moreover, if the number of events in the spatiotemporal neigh-
borhood of the newly arrived event falls below the set threshold,
as discussed in Section 3.1, there is a high likelihood of this
event being deemed noise. In such cases, our Spatiotem-
poral Sampling acts similar to traditional event threshold fil-
ters, with tband in equation (4) representing the parameters of
the threshold filter. A higher tband retains more events. To set
ttband reasonably, we utilize adaptive thresholds as proposed by
Fang et al.(Fang et al., 2022):

tband =
tend − tstart

int
(
N
K

) (5)

where N represents the event number in batch processing.
Equation (9) assumes that an average of K events adequately
describes a complete transient motion, and events generated
within tband are temporally correlated. The parameter K de-
pends on the hardware configuration of the camera and the com-
plexity of the scene.

It should be noted that in this study, we excluded the utilization
of event polarity as node features. This decision was made due
to the sensitivity of event polarity to changes in scene illumina-
tion, which can vary according to different camera parameters.
Therefore, in practice, we only utilize the three attributes: x, y,
and t.

3.3 Asynchronous Spatiotemporal Attention Embedding

As depicted in the Figure 3, our ASTAE integrates three com-
ponents: DGEM leverages the concept of graph encoding for
feature encoding of event sequences; TCAN models the spati-
otemporal dependencies within event sequences. Subsequently,
the data is passed to the ANP module for conventional neural
network processing. Prior to feeding the data into our net-
work framework, normalization is applied to the event values
sampled by STNS after subtracting them from the target event.

3.3.1 Dynamic Graph Encoding Module (DGEM)

Our module for embedding edge features in dynamic graphs
is inspired by the structure of DGCNN(Wang et al., 2019b)
for encoding event sequences. Illustrated in the Figure3(c),
this module follows the principles of GNN. It computes pair-
wise distance matrices in the feature space and selects the k
nearest events for each event. By constructing a local neighbor-
hood graph and leveraging local feature structures on connect-
ing edges between adjacent event pairs, it computes the differ-
ences between each event and its neighbors. These differences
are then concatenated with the original events to form local fea-
tures. This process facilitates feature encoding for each event
in the spatiotemporal neighborhood, promoting spatiotemporal
interplay among sampled neighborhood events and enhancing
the information content of each event. The set of k nearest
neighbors for an event varies across layers of the network and is
computed based on the embedding sequence. Consequently, the
local neighborhood graph is not static but dynamically updated
after each layer of the network.

The proximity relationships in the feature space differ from
those in the input, leading to non-local diffusion of information
throughout the entire event neighborhood when this module is
stacked. It’s important to note that not only does this module
influence the feature space, but subsequent TCAN modules and
their attention layers also play a role in integrating the feature
space. By incorporating spatiotemporal neighborhood informa-
tion for each event, this dynamic graph edge feature embedding
module, when applied in multi-layer network architectures, en-
hances the network’s ability to learn the global properties of the
entire event spatiotemporal neighborhood.

3.3.2 Time Convolution Attention Network (TCAN)

In some studies, events are initially transformed into two-
dimensional or three-dimensional representations such as event
images or event voxels before processing. However, this pre-
processing step restricts the utilization of the temporal aspect
of events. In essence, these approaches struggle to effectively
leverage the temporal properties of asynchronous events. In
contrast, as described in Section 3.1, we represent event neigh-
borhoods as time series. Building upon this representation,
we introduce a Temporal Convolution Attention Module to ef-
fectively explore the spatiotemporal information embedded in
continuous event streams. Our TCAN improves upon TCN by
modeling the spatiotemporal characteristics of event feature se-
quences encoded by DGEM. Additionally, it integrates channel
attention and spatial attention CBAM(Woo et al., 2018) to fo-
cus on which parts and features of the event sequence are rel-
evant for the current denoising task. TCAN combines dilated
causal convolutions, channel attention, spatial attention, weight
normalization layers, activation functions, dropout layers, etc.,
to form a residual structure(He et al., 2016). Following each

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-717-2024 | © Author(s) 2024. CC BY 4.0 License.

 
720



Figure 3. Architecture of ASTEDNet. (a)The architecture of ASTEDNet. Our architecture directly processes events sampled by STNS.
It is stacked by (b) Spatio-Temporal Attention Embedding (STAE). STAE consists of (c)Dynamic Graph edge feature Encoding Module
(DGEM) (d)Time Convolution Attention Network (TCAN) and ANP Block.

TCAN Residual Block is an ANP (ActivationNormalization-
Pooling) layer, which reduces feature dimensions and restores
the data shape to match the original input for subsequent con-
nection with DGEM.

Stacking multiple TCAN Residual Blocks with DGEM facilit-
ates the diffusion of information across the entire event neigh-
borhood, enabling TCAN and DGEM to collaboratively extract
spatiotemporal information. Subsequently, binary classification
is performed using fully connected layers. Since our approach
retains the original event stream format, subsequent tasks can
leverage time series processing techniques, such as Spiking
Neural Network(SNN) and Recurrent Neural Network(RNN),
for continuous advanced tasks.

4. Experiments

4.1 Evaluation Metric

An effective event denoiser should preserve the majority of
signals while effectively removing most noise events occur-
ring outside the tracker after denoising. Moreover, it should
demonstrate consistent performance across various scenarios.
To quantitatively assess the performance of our proposed de-
noising model and compare it with the latest models on training
and testing datasets, we first establish the following terms and
metrics for calculation based on both raw data and denoised
data.

TP represents the number of correctly predicted true positive
active events, TN represents the number of correctly predicted
true negative noise events, FP represents the number of noise
events incorrectly predicted as true positive active events, and
FN represents the number of true positive active events incor-
rectly predicted as noise. Our method retains events predicted
as true positive active events (TP and FP) and removes events

predicted as noise (TN and FN). The following metrics are
defined based on the data before and after denoising.

Remaining Signal Ratio. The percentage of Remaining Sig-
nal after denoising, denoted as RSR, is defined as the ratio of
the number of true positive active events after denoising to the
original number of true positive active events before denoising,

RSR =
TP

TP + FN
× 100 (6)

Remaining Noise Ratio. The percentage of Remaining Noise
after denoising, denoted as RNRf, is defined as the ratio of the
number of noise events after denoising to the number of noise
events before denoising,

RNR =
FP

TN + FP
× 100 (7)

Signal to Noise Ratio. Signal to Noise Ratio before denoising:

SNR = 10× log10

(
TP + FN

TN + FP

)
in dB (8)

Signal to Noise Ratio after denoising:

SNR = 10× log10

(
TP

FP

)
in dB (9)

RSR reflects the ability of a denoising model to retain true act-
ive events, while RNR represents the model’s ability to remove
noise. Meanwhile, SNR comprehensively reflects the relative
situation of signals and noise in the scene. A good denoising
model needs to preserve true active events to the maximum ex-
tent while removing noise events as much as possible. In fact,
a balance needs to be struck among SNR (in dB), RSRf, and
RNR. Good denoising models often exhibit high RSR and SNR
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values and low RNR values.

4.2 Results On DVSCLEAN

Our approach requires supervised learning on datasets with ac-
companying labels. DVSCLEAN(Fang et al., 2022) is an event
denoising dataset composed of simulated and real-world data.
Its simulated dataset consists of events generated by the ESIM
algorithm from provided image or video datasets, combined
with artificially added noise, thus providing labels that can be
used to train our model. The simulated dataset comprises 49
scenes, each containing data with noise event proportions of
50% and 100%. We select 10 scenes from these as a val-
idation set, while the remaining scenes are used to train our
model. The real-world dataset of DVSCLEAN includes three
levels of scene complexity: simple indoor scenes, complex in-
door scenes, and complex outdoor scenes. It consists of event
streams and frame-based image data recorded by Celex-V cam-
eras and traditional cameras with a resolution of 1280 × 800.
We validate the effectiveness of our model on both the simu-
lated and real-world datasets.

We conducted a comparative analysis of our method
with TS(Lagorce et al., 2016), DWF(Guo and Delbruck,
2022), Event Denoising Convolutional Neural Network (ED-
nCNN(Baldwin et al., 2020)), and Asynchronous Event De-
noising Neural Network (AEDNet(Fang et al., 2022)), all eval-
uated on the same dataset. The denoising performance of these
five algorithms is summarized in Table 1. TS exhibits a high
RNR score, indicating its limited ability to remove noise des-
pite retaining most true active events. Additionally, TS demon-
strates a relatively high RSR score, yet its SNR value is subop-
timal. Conversely, DWF shows a low RSR value, implying a
higher removal rate of true active events. Among the learning-
based methods, three exhibit comparable RSR values. Notably,
our ASTEDNet achieves the highest SNR score and the lowest
RNR value across both 50% and 100% noise ratio scenarios,
indicating superior performance.

Additionally, we conducted visualizations of the denoised event
streams from the DVSCLEAN dataset, presenting them cumu-
latively in the form of two-dimensional images, as depicted in
Figures 4 and 6. Due to the simplicity of the scenes and the
high resolution of 1280 × 800 in the simulated dataset, noise
that is close to real events in the denoised event stream may not
be readily apparent. Thus, we also included timestamps for 3D
visualization in Figure 5. Figures 4 and 5 reveal that, irrespect-
ive of the noise ratio scenarios, TS retains a substantial amount
of noise, while DWF loses many true events, indicating subop-
timal performance for both traditional filtering methods. The
three learning-based methods exhibit commendable perform-
ance. However, as depicted in Figure 5, EDNCNN retains more
noise in high noise ratio scenarios, and AEDNet shows some
isolated noise in such scenarios. Overall, as the noise ratio in-
creases, the denoising performance of EDNCNN and AEDNet
deteriorates. In contrast, our ASTEDNet not only preserves the
genuine event structure but also eliminates almost all noise in
both low and high noise ratio scenarios, demonstrating excep-
tional robustness.

Figure 6 displays the visualization effect of the DVSCLEAN
real-world dataset, encompassing both indoor and outdoor
scenes. TS and DWF exhibit significant performance variations
across different scenes due to their sensitivity to parameter set-
tings. EDNCNN effectively preserves object edge contours
in indoor scenes but eliminates many meaningful features in

50% noise ratio
Denoising Algorithms SNR RSR RNR

Raw 3
TS 9.321 97.02 22.69

DWF 22.29 40.13 0.4737
EDNCNN 17.97 97.97 3.128
AEDNET 26.27 97.42 0.4595

ASTEDNet(ours) 28.24 96.13 0.2884
100% noise ratio

Denoising Algorithms SNR RSR RNR
Raw 0
TS 4.109 97.14 37.72

DWF 17.92 37.62 0.6075
EDNCNN 15.38 97.05 2.814
AEDNET 24.89 95.69 0.3103

ASTEDNet(ours) 27.68 94.18 0.1607

Table 1. Performance comparison on simulated data of
DVSCLEAN

Goodlight-750lux
Denoising Algorithms SNR RSR RNR

Raw 19.71
TS 22.87 92.07 44.49

DWF 21.45 28.35 19.01
EDNCNN 19.79 99.93 98.20
AEDNET 30.65 93.51 7.518

ASTEDNet(ours) 31.49 96.82 6.43
Lowlight-5ux

Denoising Algorithms SNR RSR RNR
Raw 9.70
TS 15.30 82.79 35.61

DWF 14.97 25.22 11.68
EDNCNN 13.99 95.12 55.22
AEDNET 22.00 80.02 7.341

ASTEDNet(ours) 23.94 80.00 4.699

Table 2. Performance comparison on ED-KoGTL

outdoor scenes. Both AEDNet and our method demonstrate
strong performance in both indoor and outdoor scenes, with our
method outperforming AEDNet in filtering out isolated noise.

4.3 Results On ED-KoGTL

The ED-KoGTL(Alkendi et al., 2022) dataset is recorded using
a DAVIS346C camera mounted on a 6-DOF robotic arm, with
ground truth labels obtained from known object ground truth
data (KoGTL). These labels utilize the Canny edge detector to
extract edge information from APS and designate detected edge
events as true events. We conducted algorithm testing under
two common lighting conditions: good lighting (750 lux) and
low lighting (5 lux). In comparison to the Goodlight 750 lux
scene, the low light 5 lux scene exhibits more noise due to the
tendency of event-based cameras to produce increased noise in
dim lighting. Denoising results are depicted in Figure 7 and
Table 2. Our method achieves a highest SNR value and the
lowest RNR value. While EDNCNN attains the maximum RSR
value, its RNR value is excessively high, rendering it insensit-
ive to noise near real edges and thereby retaining more noise.
Notably, from the visualization diagrams under low light con-
ditions, our method’s superiority over other methods is evident.
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Figure 4. 2D visualization of denoising results of five algorithms on simulated data of DVSCLEAN.

Figure 5. 3D visualization of denoising results of three learning-based methods on simulated data of DVSCLEAN.

Figure 6. 2D visualization of denoising results of five algorithms on real world data of DVSCLEAN dataset.

Figure 7. 2D visualization of denoising results of five algorithms on ED-KoGTL.

5. Conclusion

In this study, we introduce an innovative event-driven deep
learning approach for event denoising. Our method effectively
preserves the spatiotemporal and asynchronous characteristics
inherent in original event stream. Notably, we handle events
in the form of event sequences and devise spatiotemporal fea-
ture embedding units specifically tailored to the distinct data
format and attributes of events. Through dynamic learning at
the neural network level, we discern the spatiotemporal features
of events, accurately distinguishing noise from genuine activ-

ity within the original event stream. Comparative analysis with
state-of-the-art solutions across diverse datasets demonstrates
the superior denoising capability of our ASTEDNet, adept at re-
taining meaningful events while suppressing noise effectively.
We anticipate that this research will unlock the latent potential
of event cameras in pivotal visual tasks such as navigation and
localization.
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