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Abstract 
 
This paper discusses the application of perspective transform-based monocular camera depth estimation method in monitoring the 
safety distance between construction machinery and power lines. The traditional distance measurement relies on manual operation, 
which is inefficient and not precise enough, while the monocular depth estimation method based on deep learning can improve the 
accuracy, but faces high equipment cost and relies on a large amount of training data. In contrast, the depth estimation method based 
on perspective transformation proposed in this paper utilizes mathematical and physical principles to establish a mathematical model 
between the pixel distances of an image and the actual scene distances through perspective projection theory, which simplifies the 
hardware requirements and reduces the data dependence and improves the computational efficiency and applicability. Through 
experimental validation under different construction scenes and exposure conditions, the method demonstrates high accuracy and 
robustness, proving its practicality in construction safety management. This research provides a new technical direction and practical 
application possibility in the field of intelligent monitoring and 3D reconstruction. 
 
 

1. Introduction 

As China stands as the globe's preeminent electricity consumer, 
it boasts an expansive lattice of transmission lines, underscoring 
the paramount importance of their secure operation to protect 
urban functionalities (Shu, Y., and Chen, W., 2018). The 
relentless urbanization push renders engineering and 
construction endeavors in the proximity of these lines 
increasingly common, heightening the necessity to meticulously 
regulate the safe separation between construction machinery and 
power lines. Operating equipment too near these lines can 
precipitate safety mishaps, endangering construction workers' 
welfare and potentially inflicting substantial harm on the adjacent 
ecosystems and electrical infrastructures (Kiessling, F., Nefzger, 
P., Nolasco, J. F., 2014). Consequently, developing technology 
to monitor the distance between construction machinery and 
transmission lines in real-time with accuracy (Rao, A. S., 
Radanovic, M., Liu, Y., 2022) is of great practical significance 
and holds substantial application value. 
 
Traditional methodologies for measuring distance are 
predominantly manual, marked by inefficiency and a lack of 
precision, rendering them unfit for the instantaneous monitoring 
demands of construction sites (Mu, W., Tong, D., 2020). While 
three-dimensional (3D) reconstruction technologies through 
binocular vision present a prospect for accurate distance gauging, 
practical implementations confront obstacles like elevated 
equipment expenditures and intricate calibration requisites 
(Kazerouni, I. A., Fitzgerald, L., Dooly, G., 2022). In contrast, 
monocular cameras, employing a singular imaging sensor to 
procure visuals akin to the unaided human perspective, mitigate 
hardware intricacy and financial outlay. Nevertheless, this modus 
operandi struggles with directly acquiring a scene's depth data 
(Macario Barros, A., Michel, M., Moline, Y., 2022). 
 
Scholars have crafted a myriad of sophisticated techniques to 
deduce depth from single-lens imagery via deep learning, each 
distinguished by its architectural framework and foundational 
tenets. Certain approaches harness a comprehensive 

Convolutional Neural Network (LeCun, Y., Bottou, L., Bengio, 
Y., 1998), which, through rigorously intensive deep learning 
regimens, educates these models to interpret the intricate 
correlations between imagery and its associated depth. The study 
(Fang, Z., Chen, X., Chen, Y., 2020) probes into the pivotal 
elements that influence monocular depth perception, scrutinizing 
a spectrum of encoder-decoder schemes, as well as fully 
supervised and autonomous supervisory losses. The 
methodology they introduced is lauded for its exceptional 
performance against the KITTI benchmark and its pioneering 
results in the NYU Depth v2 compendium. Nevertheless, it is 
prone to inaccuracies caused by fluctuations in luminosity and 
variable environments, yielding unreliable depth readings, 
notably in external landscapes or scenes under substantial light 
alterations. Complementary research directs its endeavors 
towards weaving additional contextual intelligence into the fabric 
of the depth approximation process, frequently leveraging multi-
faceted learning paradigms to refine the model's interpretive 
acumen regarding depth data. The manuscript (Chen, Y., Zhao, 
H., Hu, Z., 2021) introduces a pioneering approach: a supervised, 
self-attention-oriented context aggregation network (ACAN) 
dedicated to monocular depth estimation. This innovative 
network is designed to dynamically assimilate task-oriented 
resemblances among disparate pixels, thereby sculpting a 
seamless tapestry of contextual data. Trials conducted on a 
recognized public benchmark for monocular depth estimation 
reveal that ACAN outstrips its predecessors in efficacy. 
Notwithstanding, its performance is overly tethered to the 
idiosyncrasies of the training corpus, which results in suboptimal 
applicability to novel or diverse data compilations. 
 
To encapsulate, the endeavor to gauge depth through a monocular 
lens with deep learning techniques remains fraught with 
complexities. The article (Lahiri, S., Ren, J., Lin, X., 2024) 
articulate that, foremost, these deep learning constructs demand 
extensive volumes of annotated data for efficacious training, a 
pursuit that is inherently laborious and protracted. The research 
(Talaei Khoei, T., Ould Slimane, H., Kaabouch, N. 2023) also 
necessitates formidable computational power and considerable 
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durations for processing, which erects significant barriers to their 
deployment in real-time scenarios or on devices beset by resource 
constraints (Cremer, C. Z., 2021). 
 
Addressing the challenges, the present study endeavors to 
investigate the application of mathematical and physical 
postulates (Tobler, W. R., 1963) to facilitate depth perception via 
a monocular camera, translating two-dimensional visual data into 
a 3D spatial understanding. This methodology aspires to enable 
real-time, precise assessments of the proximity between 
construction equipment and power lines, thereby elevating safety 
standards on construction sites. In contrast with deep learning 
paradigms, the technique proposed herein necessitates a leaner 
array of parameters and is anchored in straightforward 
geometrical and optical doctrines, proffering a distinct edge 
within engineering realms where computational capabilities are 
scarce. Furthermore, this approach exhibits a reduced 
dependency on voluminous training datasets and obviates the 
need for intricate, extensively trained neural networks, thus 
proving advantageous in scenarios where accumulating a copious 
amount of labeled data presents a formidable hurdle. 
 

2. Methodology 

In this research, the internal parameters of the camera apparatus is 
calibrated initially, proceeding to ascertain the extrinsic 
parameters through the deployment of the EPnP algorithm (Lepetit, 
V., Moreno-Noguer, F., Fua, P. 2009). After this calibration, 
compute the horizontal separation which is denoted as the depth 
value from the construction equipment to the camera, employing 
the mathematical framework devised. Utilizing these depth values, 
the pixel coordinates of the construction apparatus are reverse 
maped onto the coordinates of the point cloud (Chen, K., Lai, Y. 
K., Hu, S. M., 2015). In advancing the analysis, to ascertain the 
distance between the construction equipment and the power lines, 
segment the power line point cloud from the scene point cloud 
applying the Principal Component Analysis algorithm to 
formulate the Oriented Bounding Box (O'Rourke, J., 1985). In 
computing process, derive the Euclidean distance between the 
construction equipment and the OBB of electrical power lines. 
 

 
Figure 1.  A block diagram illustrating the full pipeline of 

the proposed algorithm. 
 
The depth calculation method this manuscript proposed 
establishes a mathematical model for the mathematical 
relationship between the pixel distances of two target points on 
the image and the distances in the real scene according to the 

perspective projection theory, and the modeling process is as 
follows: The process of mapping points in 3D space into a camera 
image can be viewed as the projection of a 3D Euclidean space 
ℝ3  onto a flat canvas 𝑆𝑆 . First denote the mapping of the 
projection of the three-dimensional Euclidean space ℝ3 onto the 
two-dimensional sphere 𝑆𝑆2  as 𝑓𝑓 ∶  ℝ3 ⟼  𝑆𝑆2 , which is also 
known as the Apparent Spherical Projection (Flores, M., Valiente, 
D., Peidró, A., 2024)。Then map the image on the optic sphere 
onto a planar canvas, denoted as a continuous injective：𝑔𝑔 ∶
 𝑆𝑆 ⟼  𝑈𝑈，where 𝑆𝑆  and 𝑈𝑈  are the open sets in 𝑆𝑆2  and ℝ2 , 
respectively. Eq. (1) is the more common canvas projection, 
called the Spherical-Axis Plane Projection (Araújo, A. B., 2021)： 
 

𝜆𝜆𝜋𝜋𝜇𝜇 ∶ {𝑆𝑆2 | 𝜃𝜃 < 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇 } ⟼  ℝ2 ⇒ 

(𝜃𝜃,𝜑𝜑) ⟼  𝜆𝜆 (1−𝜇𝜇)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠−𝜇𝜇

(𝑎𝑎𝑎𝑎𝑎𝑎𝜑𝜑, 𝑎𝑎𝑠𝑠𝑠𝑠𝜑𝜑),                 (1) 

 

where                  𝜇𝜇 = axis parameter, −1 ≤ 𝜇𝜇 < 1 
𝜆𝜆 = scaling factor, 𝜆𝜆 > 0 

 
when 𝜇𝜇 = 0, it is the Spherical Center Projection:  

𝜆𝜆𝜋𝜋0 ∶ {𝑆𝑆2 | 𝜃𝜃 <
𝜋𝜋
2 } ⟼  ℝ2  ⇒ 

(𝜃𝜃,𝜑𝜑) ⟼  𝜆𝜆 𝑡𝑡𝑎𝑎𝑠𝑠𝜃𝜃 (𝑎𝑎𝑎𝑎𝑎𝑎𝜑𝜑, 𝑎𝑎𝑠𝑠𝑠𝑠𝜑𝜑),                     (2) 
 
Compounding the Apparent Spherical Projection with the 
Spherical Center Projection introduces:  
 

𝜆𝜆𝜋𝜋0 ∘ 𝑓𝑓 ∶  �
𝑥𝑥 = 𝑎𝑎 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃 𝑎𝑎𝑎𝑎𝑎𝑎𝜑𝜑
𝑦𝑦 = 𝑎𝑎 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃 𝑎𝑎𝑠𝑠𝑠𝑠𝜑𝜑
𝑧𝑧 = 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃

�  ⇒ 

�𝑥𝑥
′ = 𝜆𝜆 𝑡𝑡𝑎𝑎𝑠𝑠𝜃𝜃 𝑎𝑎𝑎𝑎𝑎𝑎𝜑𝜑
𝑦𝑦′ = 𝜆𝜆 𝑡𝑡𝑎𝑎𝑠𝑠𝜃𝜃 𝑎𝑎𝑠𝑠𝑠𝑠𝜑𝜑� ⟼   �

𝑥𝑥′ = 𝜆𝜆 𝑥𝑥
𝑧𝑧

𝑦𝑦′ = 𝜆𝜆 𝑦𝑦
𝑧𝑧

�,               (3) 

 
Assume that the linear equations of the two markers determined 
in space are： 

�
𝑥𝑥 = 𝑥𝑥0 + 𝑡𝑡 𝑎𝑎𝑠𝑠𝑠𝑠 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽
𝑦𝑦 = 𝑦𝑦0 + 𝑡𝑡 𝑎𝑎𝑠𝑠𝑠𝑠 𝛼𝛼 𝑎𝑎𝑠𝑠𝑠𝑠 𝜑𝜑
𝑧𝑧 = 𝑧𝑧0 + 𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼           

,                                (4) 

 
where      𝑥𝑥0 ,𝑦𝑦0 ,𝑧𝑧0 = the coordinates of the first target 

𝛼𝛼,𝛽𝛽 = spherical coordinates in the linear direction 
𝑡𝑡 = parameter, indicating the distance from the point on 
the line to (𝑥𝑥0 ,𝑦𝑦0 ,𝑧𝑧0) 

 
Projecting this line onto the canvas, one can introduce： 

�
𝑥𝑥′ = 𝜆𝜆 𝑡𝑡𝑎𝑎𝑠𝑠𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 + 𝜆𝜆  𝑥𝑥0−𝑧𝑧0 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 𝑡𝑡𝑡𝑡𝑠𝑠𝛼𝛼 

𝑧𝑧0+𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼

𝑦𝑦′ = 𝜆𝜆 𝑡𝑡𝑎𝑎𝑠𝑠𝛼𝛼 𝑎𝑎𝑠𝑠𝑠𝑠 𝛽𝛽 + 𝜆𝜆  𝑦𝑦0−𝑧𝑧0 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 𝑡𝑡𝑡𝑡𝑠𝑠 𝛼𝛼 
𝑧𝑧0+𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼

,           (5) 

 
As 𝑡𝑡 → +∞ , it follows that:  

�𝑥𝑥
′ → 𝜆𝜆 𝑡𝑡𝑎𝑎𝑠𝑠𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽
𝑦𝑦′ → 𝜆𝜆 𝑡𝑡𝑎𝑎𝑠𝑠𝛼𝛼 𝑎𝑎𝑠𝑠𝑠𝑠 𝛽𝛽 ⇒ 

      (𝑥𝑥′,𝑦𝑦′)  →  𝜆𝜆𝜋𝜋0[(𝜃𝜃 = 𝛼𝛼,𝜑𝜑 = 𝛽𝛽)],                   (6) 
 
When α = 𝜋𝜋

2
, (𝑥𝑥′,𝑦𝑦′)  can be considered to tend to an infinity 

point. Let the distance the point on this line passes on the canvas 
after a distance 𝜉𝜉  from (𝑥𝑥0 ,𝑦𝑦0 ,𝑧𝑧0)  be 𝐿𝐿(𝜉𝜉) . Then it can be 
deduced that:  
 

𝐿𝐿(𝜉𝜉)2  =  [𝑥𝑥′(𝜉𝜉) − 𝑥𝑥′(0)]2 + [𝑦𝑦′(𝜉𝜉)− 𝑦𝑦′(0)]2    
=  𝜎𝜎𝜆𝜆2( 1

𝑧𝑧0+𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼
− 1

𝑧𝑧0
)2,                            (7) 
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where 
𝜎𝜎 = 𝑥𝑥02 + 𝑦𝑦02 + 𝑧𝑧02𝑡𝑡𝑎𝑎𝑠𝑠 2𝛼𝛼 − 2𝑧𝑧0 𝑡𝑡𝑎𝑎𝑠𝑠 𝛼𝛼 (𝑥𝑥0 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 + 𝑦𝑦0 𝑎𝑎𝑠𝑠𝑠𝑠𝛽𝛽) 

 
 Then there is:  

𝐿𝐿(𝜉𝜉) = 𝜎𝜎𝜎𝜎
|𝑧𝑧0|

𝜉𝜉
𝑧𝑧0 𝑠𝑠𝑠𝑠𝑐𝑐𝛼𝛼+𝜉𝜉

,                               (8) 
 
Let the proportion of 𝐿𝐿(𝜉𝜉) to the full length of the image in the 
canvas be 𝑆𝑆(𝜉𝜉). Since 𝐿𝐿(∞) = 𝜎𝜎𝜎𝜎

𝑧𝑧0
 , then there is:  

𝑆𝑆(𝜉𝜉) = 𝐿𝐿(𝜉𝜉)
𝐿𝐿(∞)

= 𝜉𝜉
𝑧𝑧0 𝑠𝑠𝑠𝑠𝑐𝑐 𝛼𝛼+𝜉𝜉

,                            (9) 
 
Assume that the pixel coordinate of any point of the image is 
(𝑢𝑢,𝑣𝑣) , the difference between its vertical coordinate and the 
coordinate of the first target pixel, (𝑢𝑢1,𝑣𝑣1), is Δ𝑣𝑣 =  𝑣𝑣1 − 𝑣𝑣.The 
vanishing point (𝑢𝑢0,𝑣𝑣0) of the line where the target is located in 
the image can be calculated from Eq. (6), and the difference 
between the vertical coordinates of this point and the coordinates 
of the first target pixel is Δ𝑣𝑣′  =  𝑣𝑣1 − 𝑣𝑣0. From Eq. (9), 𝑆𝑆(𝜉𝜉)  =
 𝛥𝛥𝑣𝑣
𝛥𝛥𝑣𝑣′

, where ξ, which is the horizontal distance between the 3D 
coordinates of the image point (𝑢𝑢,𝑣𝑣) in the actual scene and the 
first marker along the camera line-of-sight direction, can be 
found. 
 

 
Figure 2. Layout diagram of experimental scene 𝐿𝐿(𝜉𝜉𝑠𝑠). 

 
3. Experiments and Analysis 

To validate the effectiveness of the proposed method, this study 
uses a single image captured by a monocular camera as input and 
evaluates its performance by calculating the distance between the 
construction machinery and the power line. To ensure the wide 
applicability of the experimental results, the researchers 
conducted experiments under several different construction 
scenarios. By analyzing the data obtained under these scenarios, 
the stability and accuracy of the proposed method can be verified 
under different environmental conditions. The experimental 
results show that the method has high accuracy and robustness on 

the monocular camera depth estimation task. This research not 
only provides an important safety reference for construction 
machinery operators, but also provides new ideas and methods 
for researchers in related fields. 
 
3.1 Experimental Scenario 

A configuration was orchestrated at the construction site, as 
depicted in Figure 3. Firstly, the camera was fixed on the pole 
and its angle was adjusted so that the field of view of the camera 
could cover the measurement area. Then a number of targets are 
placed along the direction of the camera's line of sight, and the 
arrangement of the targets should follow the following conditions: 
1) the targets should be placed along the direction of the camera's 
main optical axis, i.e., to ensure that the targets are in the same 
straight line with the camera's line of sight; 2) the bottom 
boundary of the first target is connected to the bottom edge of the 
image. After the camera is set up, a laser scanner is used to scan 
the scene in order to obtain the positional coordinates of the 
camera and the target, as well as the horizontal distance from the 
first target to the camera 𝐷𝐷0 . According to the mathematical 
model established in this paper, the horizontal distance from the 
bottom point of the construction machinery along the direction of 
the camera realization to the first target can be estimated to get 
the depth of the point 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ = 𝜉𝜉 +𝐷𝐷0. 
 

 
Figure 3. Layout diagram of experimental scene. 

 
In order to evaluate the effect of exposure level on the image 
recognition algorithm, and to verify the adaptability and 
robustness of this paper's algorithm in practical applications, 
researchers select three different scenes of construction 
machinery from near and far, and consider the image Normal 
Exposure (NE), Overexposure (OE), and Underexposure (UE), 
as shown in Table 1, in order to simulate the lighting problems 
that may be encountered in the actual shooting. 

 

Scene Normal Exposure Overexposure Underexposure 

Scene 1 
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Scene 2 

   

Scene 3 

   
Table 1. Scene images under different exposures. 

 
3.2 Depth Values Calculation and Error Analysis 

The purpose of this experiment is to verify the effectiveness and 
accuracy of the proposed new monocular camera depth 
estimation algorithm. To evaluate the algorithm’s wide-ranging 
applicability, it underwent rigorous testing across a spectrum of 
environments varying in scale and intricacy. By estimating the 
relative percentage error between the depth values and the true 
depth values, the accuracy of the depth estimation was able to be 
quantified and an objective evaluation of the performance of this 
method was provided accordingly. 
 
In Table 2, the depth values of construction machinery to the 
camera as gauged, are systematically presented in ascending 
order from small to large. Utilizing the open-source point cloud 
processing software CloudCompare (Daniel Girardeau-Montaut, 
2024), meticulously measured and documented these depth 
values to serve as the ground truth. Subsequently, our proposed 
depth estimation algorithm was implemented to calculate the 
depth values between the construction machinery and the camera 
across these three scenarios. This approach enabled a 
comparative analysis of the algorithmically determined depth 
values against the actual depth measurements, thereby 
facilitating the evaluation of our algorithm's performance and 
accuracy. 
 

Scene Point cloud of scene True depth(m) 

Scene 1 

 

27.310 

Scene 2 

 

59.164 

Scene 3 

 

142.947 

Table 2. The true depth from mechanical to camera in three 
scenarios. 

 
Experimental outcomes are meticulously delineated in Table 3, 
illustrating the performance of the depth estimation between the 
construction machinery and the camera across various distance 
conditions. The depth estimation technique proposed herein 
demonstrates exceptional accuracy within all experimental 
frameworks, maintaining relative errors below 5%. As the 
magnitude of the experimental environments escalates, there is a 
discernible augmentation in the absolute error, escalating from 
approximately 1.218 meters in Scene 1 to roughly 6.771 meters 
in Scene 3. Concurrently, a marginal increase in relative error is 
observed, moving from approximately 4.5% in Scene 1 to about 
4.7% in Scene 3. 
 

Scene Our Method(m) Error(m) Relative error(%) 
Scene 1 28.528 1.218 4.456 
Scene 2 56.447 2.717 4.592 
Scene 3 136.176 6.771 4.737 

Table 3. The absolute errors and relative errors of depth 
estimation algorithm proposed. 

 
The insights conveyed through the data visualization in Figure 4 
offer an intuitive perspective, revealing that notwithstanding the 
significant escalation in scene scale from Scene 2 to Scene 3, 
which culminates in an absolute error increment of 
approximately 5.553 meters, the fluctuation in relative error 
remains minimal. This outcome underscores the commendable 
stability of our proposed depth estimation approach across 
varying scene magnitudes, illustrating the algorithm's resilience 
against scale modifications and its capability to sustain elevated 
depth estimation precision across an extensive range. 
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Figure 4. The bar and line chart statistics of the error in our 

proposed depth estimation algorithm. 
 
3.3 Distance Calculation and Error Analysis 

In this experiment, our initial task entailed segmenting the power 
lines in proximity to the construction machinery from the scene's 
point cloud. Following this, the Oriented Bounding Box around 
the power lines was constructed. The computation of the 
coordinates of the eight vertices of this enclosing box was 
achieved through the application of 3D geometric principles, 
with these coordinates serving as the foundational data for 
subsequent distance computations. Thereupon, the depth value 
from the construction machinery to the power line was harnessed, 
as assessed in Section 3.1, to establish the distance separating the 
construction machinery from the power line. For the purposes of 
accuracy verification, the software, CloudCompare, was 
employed to gauge the shortest distance between the machinery 
and the power line, subsequently adopting this measurement as 
the baseline truth, which is represented in Table 4. By 
juxtaposing the computed distance against the true shortest 
distance, the researchers are furnished with the means to assess 
the efficacy of our depth estimation algorithm within real-world 
applications, evaluating its performance. 
 

Scene Point cloud of scene True 
distance(m) 

Scene 1 

 

25.815 

Scene 2 

 

25.201 

Scene 3 

 

24.881 

Table 4. The real distance between construction machinery and 
power lines. 

 

The information, set forth in Table 5, provides the outcomes 
derived from computing the distance between the construction 
machinery and the power line, along with an appraisal of the 
errors encountered in three distinct scenarios subjected to varying 
exposure conditions. The depth estimation algorithm that has 
been formulated in this research shows impressive accuracy and 
robustness across all scenarios. Furthermore, the absolute error 
of our algorithm is maintained within a 3-meter threshold, and 
the relative error is consistently confined under 10%, even amidst 
the demanding challenges posed by normal exposure, 
overexposure, and underexposure conditions. The precision 
achieved here fulfills the safety criteria concerning the distance 
that ought to be upheld between construction machinery and 
power lines, hence demonstrating the practical applicability and 
the reliability of the proposed depth estimation algorithm. 
 

Scene Our Method(m) Error(m) Relative 
Error(%) 

Scene 1 
NE 23.935 1.88 7.283 
OE 23.708 2.107 8.162 
UE 23.895 1.92 7.436 

Scene 2 
NE 23.144 2.057 8.162 
OE 23.130 2.071 8.22 
UE 23.133 2.068 8.210 

Scene 3 
NE 22.521 2.360 9.485 
OE 22.495 2.386 9.560 
UE 22.507 2.374 9.541 

Table 5. The real distance between construction machinery and 
power lines. 

 
The visual analysis presented in Figure 5 delineates the 
distribution of distance computation errors across three distinct 
scenes, each under varying exposure conditions including normal 
exposure, overexposure, and underexposure. The figure 
incorporates a line graph to represent absolute error and a bar 
graph for displaying relative error. A notable observation from 
this graphical representation is the relatively stable level of error 
across each scene, irrespective of the exposure conditions. This 
highlights the consistent accuracy of our proposed algorithm, 
even amidst challenging lighting scenarios. Furthermore, the 
minimal variance in the error of our algorithm as the scene scale 
expands underscores the algorithm's commendable applicability 
and stability across different magnitudes. Such stability assumes 
critical importance in real-world applications, primarily because 
it ensures that the algorithm can furnish reliable depth 
estimations across a diverse array of environments and conditions. 
This reliability is paramount for bolstering construction safety, 
enhancing operational efficiency, and mitigating the likelihood 
of potential accidents. 
 

 
Figure 5. The bar chart and current situation diagram of the 

calculation error of the distance from machinery to power lines. 
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4. Conclusion 

In this paper, a novel monocular camera depth estimation method 
pivoted on the concept of perspective transformation is proposed, 
which caters to the exigencies of safety surveillance in the 
proximity of construction machinery and power lines. This 
method meticulously constructs mathematical models pertaining 
to optic sphere projection and the spherical axis plane projection, 
thereby enabling a more precise evaluation of the depth between 
construction machinery and cameras, and subsequently, 
calculating the safety distance to power lines. The empirical 
evidence from our experiments attests to the efficacy of our 
algorithm—it excels not only under single exposure conditions, 
but it also retains exceptional accuracy and robustness across 
multiple exposure settings, as well as various scene scales. When 
compared to conventional measurement methods, our strategy 
boasts significant benefits, such as lower costs, heightened 
efficiency and simplicity, which collectively serve to amplify the 
safety management standards at construction environments. 
Looking ahead, the researchers aim to further refine our 
algorithm. Prospective research endeavours might involve 
adopting optimization strategies informed by gradient descent or 
genetic algorithms to meticulously fine-tune the parameters 
within the perspective transformation procedure. The objective 
of such enhancements would be to curb errors during the 
coordinate transformation phase and to amplify the precision and 
timeliness of depth estimation. The end goal is to facilitate even 
more accurate monitoring of construction site safety. 
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