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Abstract

Digital Twins as virtual representations of industrial assets are being used to assimilate varied sources of data for improved aware-
ness and decision making in operations and process optimisation. This paper explores the integration of IoT sensors into a spatial
digital twin called Fuse that Woodside Energy has been building for the assets it operates. We describe the Fuse platform and its
knowledge graph data core that is used to organise and inter-relate data for presentation within 3D visualisations, domain-specific
contexts and immersive augmented reality presentations. The key contribution here is the use of a knowledge graph to link diverse
data sources so as to contextualise sensor data for actionable insights. One area of significant innovation has been the development
and use of new Internet of Things (IoT) devices which have been enabled by advances in sensor technology, connectivity, and
cloud computing. These new tailored data sources are complimenting existing plant and resource planning data for improved asset
monitoring, predictive maintenance and process automation.

1. Introduction

Woodside Energy, an international energy company established
in Australia, produces oil and liquefied natural gas (LNG) and
plays a significant role in the global energy industry. It owns
and operates assets internationally in many locations around
the world that are often remote and with harsh environmental
factors compounding already hazardous work environments. A
key feature of Woodside Energy’s vision for future asset optim-
isation is the Intelligent Asset equipped with abundant sensors,
sophisticated digital integration patterns and advanced analyt-
ics capabilities, made accessible to users through a digital twin
that seeks to reduce distraction by repetitive tasks, reduce travel
time through improved accessibility to asset data, enable re-use
of data for accelerating digital transformation and enriching de-
cision making through better awareness of asset health.

Woodside Energy’s approach to devising a digital twin called
Fuse is documented in (Burgin and Wallace, 2023) and can
be summarised by having developed competencies in indus-
trial sensing, in determining and conferring insights, and in
enabling systems for action, a so-called sense-insight-action
strategy. Fuse was first deployed for the Woodside Energy op-
erated Pluto facility in north-western Australia where natural
gas is extracted, liquefied, stored and transported to custom-
ers. Here Fuse combines data from over 200,000 Industrial
IoT (IIoT) sensors embedded within the plant (Chanthadavong,
A., 2016), data from custom built wireless battery-operated IoT
sensors described in greater detail here, and data from a variety
of enterprise systems. This data is presented in a variety of con-
texts from rich three dimensional (3D) visualisations derived
from CAD models, LiDAR scans and photogrammetry to con-
ventional map orientations, mobile device and augmented real-
ity experiences. Far more than just a data exploration tool, the
Fuse digital twin platform is today involved with the execution
and therefore optimisation of actionable work such as sched-
uled inspections, active condition monitoring, maintenance task
and procedures and proactive surveillance.

This paper describes the authors’ experience of building a large
scale industrial spatial digital twin over a period of five years
for an operations workforce. The contribution of this work is
to provide insights gained from the adoption of a large scale
spatial digital twin in the real world with a focus on the incor-
poration of wireless IoT sensors using a knowledge graph.

Continued advances in sensor miniaturisation, low-volume part
availability, electronics cost reduction, ubiquitous connectivity
and cloud computing have formed the right conditions to enable
in-house development of IoT devices for equipment condition
monitoring and visual surveillance. These multi-sensor devices
allow us to fill gaps in physical world plant data so that we may
pursue more ambitious opportunities in visualisation and ana-
lysis that may not have been possible with existing plant data
only. We have found that integrating IoT data into spatial di-
gital twins increases situational awareness, aids in predictive
analytics and enhances decision support. This paper describes
the challenges inherent in integrating IoT data into a spatial di-
gital twin and provides a semantic framework for organizing
and interconnecting data related to the physical system being
mirrored by the digital twin.

At the core of Fuse is a digital representation of the plant en-
vironment called the Reality Engine. Its purpose is to maintain
knowledge about how existing data is inter-related and therefore
how to combine and contextualise it. This virtual representa-
tion needs to be able to model a complex physical industrial
environment from multiple perspectives and possess efficient
storage and retrieval for structured processing of information.
In addition, the virtual model needs to be flexible enough to
represent different types of relationships, dependencies and in-
teractions found in the physical environment including between
equipment, data sources, and metadata. The model has to ac-
commodate updates and changes in the physical reality it rep-
resents in order to continue to provide an accurate reflection of
its current state.
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2. Modern Industrial IoT

The continuing decrease in the cost of sensor hardware (Mi-
crosoft, 2019) (average sensor cost falling from $1.30 in 2004
to $0.38 in 2020) has led to measurements that were cost pro-
hibitive only a decade ago now becoming commoditised. On-
going innovation in sensor technologies, fabrication techniques,
and algorithms has led to new classes of sensors that can detect
and quantify a broad range of physical and chemical phenom-
ena reliably and with efficient use of energy.

When combining modern connectivity pathways into existing
plants, and at-scale computing as offered by the cloud, the data
generated by these sensors is increasingly being used by organ-
isations like Woodside Energy to increase the efficiency, flexib-
ility, and dynamism of their operations.

2.1 Fixed sensors

Industrial plants, such as the Woodside Energy operated Pluto
LNG plant in north-western Australia are routinely equipped
with hundreds of thousands of fixed physical industrial IoT
sensors that measure all aspects of the industrial process, and
are integrated into the plants Operational Technology (OT) Dis-
tributed Control System (DCS) (Chanthadavong, A., 2016).
The data from these sensors is made available within the In-
formation Technology (IT) network as a timeseries or histor-
ised database with each sensor reading made up of a control
system tag identifier, a timestamp, and a value. The equipment
under measurement by IoT sensors is represented in many other
enterprise information systems (e.g. maintenance, engineering
and permit systems), but often the same piece of equipment is
identified differently in each system and it can be difficult and
time consuming to link data from different systems together for
analysis.

2.2 Wireless sensors

Wireless sensors are physical sensors that are not built into the
plant infrastructure and can be moved around to gather focused
measurements of different equipment at different points in time.
Wireless sensors are battery powered and use wireless commu-
nication protocols such as Wi-Fi and LoRa, making them easily
portable. Due to the portability of this type of sensor and the
fact that they may be measuring different entities at different
points of time, the resulting data stream requires additional con-
textualisation before it can be consumed, which is in contrast to
fixed sensors that constantly measure the same entity at a fixed
position.

2.2.1 Wireless IoT sensors within Fuse Within the Fuse
platform, Woodside Energy has developed a custom in-house
IoT hardware platform (known as Intellisense Pulse) that lever-
ages ultra low power and Long Range (LoRa) wireless com-
munication technology, enabling sensor measurements to be
transmitted over a range of several kilometers, with battery life
measured in years. Given the possibility of free hydrocarbons
in and around the process chains where these are deployed,
the sensors are designed for safe use in explosive atmospheres,
whereby they are Intrinsically Safe and certified to offer insuf-
ficient energy as a source of ignition, even at elevated temper-
atures.

The IoT hardware devices form an extensible platform that can
carry different external sensor implements - an example device

Figure 1. An IoT device with four accelerometer probes attached

with magnetic accelerometer sensor probes attached (to meas-
ure vibration for purposes of condition monitoring) is shown in
Figure 1.

The device’s compact form factor, combined with its low power
consumption and long range wireless communication capabil-
ities allows for easy deployment to hard to reach sensing points
in the plant, and can also easily be moved to measure different
equipment as needed. An example device is shown deployed
in the field in Figure 2 (base transmitter and probes are easily
mounted to metallic surfaces thanks to built-in strong rare earth
magnets). The attachment of the accelerometer to plant equip-
ment is shown in greater detail in Figure 3.

Figure 2. An IoT device and sensor probes deployed in the field

Woodside Energy also leverages mobile sensors including mo-
bile phone cameras and sensors deployed via platforms includ-
ing ground and aerial robotics to capture image, acoustic, and
thermal data, with new sensor technologies currently being tri-
alled.

2.3 Virtual sensors

A virtual sensor, also known as a soft sensor, is a function
or prediction model (machine learning model, thermodynamic
model, mathematical equation, etc.) that derives a measurement
from other available measurements and sensor data. The output
of the soft sensor is assigned an identifier and timestamp and
recorded in the timeseries database in much the same way as
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Figure 3. An accelerometer sensor attached to equipment

other sensor measurements are. Virtual sensors are often adop-
ted when measuring a property with a physical sensor is diffi-
cult, costly, or impractical. Woodside Energy applies a number
of data science models to physical sensor data and records out-
put as virtual sensors (Coyne, A., 2016).

3. Contextualisation of IoT data in a spatial digital twin

There are several challenges inherent in integrating data from
IoT sensors into an industrial spatial digital twin such as that
developed by Woodside Energy through the Fuse platform.

Challenges exist in effectively managing a multitude of dispar-
ate sensor data streams arriving at high volumes and velocities,
in diverse formats, and using different communication proto-
cols, however the greatest challenge lies in contextualising the
plethora of data available, or in other words relating sensor data
with the entities that it measures.

3.1 Data contextualisation

Data contextualisation refers to the process of enhancing raw
data with additional information to make it more meaningful
and relevant to consumers of the data. In many modern enter-
prises data contextualisation remains a costly manual process,
often depending on individual domain knowledge.

A common example of manual data contextualisation within
Woodside Energy is the need for users to query multiple dif-
ferent applications to gather information about a single piece
of plant equipment. These include querying the maintenance
system to understand what work may have recently occurred on
the equipment, the engineering system to understand the char-
acteristics of the equipment, and the historian to review recent
sensor data related to the equipment. Data for the same equip-
ment may be identified differently in each system, and the user
is required to understand not only which applications to query
to find the data, but also how the data is identified in each of
these applications.

With the ongoing increase in both the quantity and diversity of
data sources (as a result of the proliferation of IoT devices),
manual or even point-to-point data contextualisation becomes
increasingly complex and consequently expensive. Fuse’s ap-
proach to this has been the invention of the Reality Engine that
consists of a data assembly layer and a knowledge graph, sub-
ject to further discussion in the following sections.

3.2 Knowledge graphs for contextualisation

Within Fuse we have built a knowledge graph implemented us-
ing a labelled property graph running within the Amazon Nep-
tune managed graph database service (Amazon Web Services
(AWS), 2024a) to model Woodside Energy’s complex industrial
plant assets and the relationship between physical equipment,
logical identifiers, spatial locations, and data sources including
images and documents.

A graph is a simple data structure composed of nodes (vertices)
connected by relationships (edges), to create high fidelity mod-
els of a domain. Formally, a Directed Acyclical Graph (DAG)
is an ordered pair G = (V,E), comprised of a set of vertices,
V , and a set of directed edges, E, each of which is an ordered
pair (vi, vj) where vi, vj ∈ V , representing a connection from
vi to vj as shown in Figure 4.

Figure 4. A directed acyclical graph (DAG)

A knowledge graph enriches the simple graph, extending it with
semantic metadata to add explicit representation of knowledge
within the model (Barrasa and Webber, 2023). Knowledge
graphs are critical to many enterprises today and are employed
by many of the largest global technology companies in their
digital products (Noy et al., 2019). The Fuse knowledge graph
provides an ontology by defining categories of objects with sim-
ilar behaviour and attributes (e.g. types of equipment), the types
of relationships between these objects (e.g. a vertex represent-
ing piece of equipment can be related to a vertex representing a
geographical location), and finally a set of constraints over ob-
jects and relationships (e.g. a vertex representing a sensor may
only be related to a vertex representing an IoT device).

An example of the ontology provided by the semantic graph
model in Fuse is shown in Figure 5. If we know that ver-
tex V1 represents a sensor, and vertex V2 represents a piece of
equipment (as defined by the labels on the vertices), and that
the edge E1 represents a measurement that the sensor makes
of the equipment, a software program will be able to answer a
question such as ’what equipment does this sensor measure?’,
as well as the inverse question of ’which sensor measures this
equipment?’. In addition, the set of properties (mandatory and
optional) that are defined on both sensor and equipment ver-
tices in the graph is defined within the model.

Figure 5. A simple knowledge graph where V1 represents a
sensor, V2 represents equipment, and E1 represents a

measurement the sensor makes of the equipment

3.3 The Fuse knowledge graph

The Fuse knowledge graph models the physical engineering
structure of the industrial plant (as a hierarchy of plant equip-
ment), as well as the representation of the plant found in the
maintenance and historian systems in the form of a canonical
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data model. The canonical data model provides a standard-
ised representation of the plant equipment that is independent
of other specific systems where the data is represented. The ca-
nonical data model links specific identifiers from other systems
together to the canonical representation of an entity, allowing
data that exists, for example, in a maintenance system, to be
linked with that in an engineering system.

The Fuse knowledge graph enables the contextualisation of data
within the digital twin, crucially allowing data streams arriving
from static, mobile, and soft sensors at high volumes and velo-
cities to be related to the entities and equipment being measured
at a specific point in time.

This is illustrated in Figure 6 showing a fragment of the Fuse
knowledge graph. Each vertex in the graph has a label, rep-
resented by colours in the figure, with vertices being related to
each other by labelled, directed edges. The edge representing
the relationship between the mobile IoT temperature sensor and
the equipment it measures has an additional temporal compon-
ent, represented by the properties on the measures edge named
from and to. This is due to the IoT sensor being a mobile device
that can be moved to measure different equipment at different
points in time. In Figure 6 we can see that between January 1st

and March 25th 2024 (t1), the IoT sensor measured the temper-
ature of the Fan, but from March 26th onwards (t2), the sensor
has been moved and is now measuring the temperature of the
Pump.

Figure 6. Sample knowledge graph fragment

Table 1 illustrates the data stream from the mobile IoT tem-
perature sensor between March 1st and March 26th, 2024. As
shown in the table, without any additional semantic metadata
to add context to the data stream, there is no way to determine
what the measurements relate to at t1 versus t2, and therefore
the data has limited value in decision making. As we see in
Figure 6, the equipment being measured by the sensor changed
on March 25th, meaning that the last three readings in Table
1 relate to a completely different entity being measured by the
sensor than the first three readings in the table.

By representing the relationship between the mobile IoT sensor
and the physical entity it is measuring at a specific point in time

Sensor Id Timestamp Reading
temperature sensor 1 1709254084 34.76
temperature sensor 1 1709254184 35.68
temperature sensor 1 1709254284 36.01
temperature sensor 1 1711414084 31.46
temperature sensor 1 1711414184 31.34
temperature sensor 1 1711414284 31.78

t1

t2

Table 1. IoT Temperature Sensor data stream

as illustrated in the knowledge graph in Figure 6 we can pro-
gramatically determine what a set of sensor measurements re-
late to for a given time period by simply performing a graph
traversal as shown in the Gremlin query in Listing 1 showing
that, between January 1st and February 1st 2024, the temper-
ature being measured was that of the Fan. Changing the dates
within our traversal to cover a time period after March 25th

would yield the Pump.

gremlin> g.V("iot_temperature_sensor")
.outE("measures")
.union(

has(
"from", lte("02/01/2024")

).hasNot("to"),
has(

"from", lte("02/01/2024")
).has("to", gte("01/01/2024"))

)
==>e[1][temperature_sensor-measures->fan]

Listing 1. Graph traversal to determine what the temperature
sensor is measuring between January 1st and February 1st, 2024

The Fuse knowledge graph also represents relationships
between physical equipment and its spatial location, represen-
ted by co-ordinates stored as properties on a vertex with label
GeoLocation. Equipment is related to its location by an edge
with label of locatedAt as shown in Figure 6. Relationships
between static IoT sensors and the equipment they measure are
also represented by vertices with the label ControlSystemTag.
By contextualising the data produced by static and mobile IoT
sensors, with the entities that they measure and their spatial loc-
ation, Fuse is able to combine data with three dimensional visu-
alisations to provide immersive, augmented reality experiences
that bring data closer to users as shown in Figure 8. The life-
like representation of the physical environment allows users to
gain a deeper spatial understanding of the system and related
data which is especially valuable for complex, large-scale sys-
tems where spatial relationships are critical, as they are in an
industrial plant such as that operated by Woodside Energy.

3.4 Graph query and data retrieval

Using a knowledge graph to model the physical world en-
ables the use of mature and well understood graph retrieval al-
gorithms to gather insights from the graph database. The depth
first search algorithm forms the basis of most of the transac-
tional queries within Fuse that follow a path to retrieve inform-
ation. A good example of this is the traversal shown in Listing
1 where an informed depth first search (Robinson et al., 2015)
is used to retrieve the equipment measured by a sensor during a
given time range.

Today both Apache Gremlin (Apache Software Foundation,
2024) and the recently open-sourced openCypher (openCypher,
2024) are used within Fuse. Despite beginning with Gremlin,
over time we expect to see greater use of openCypher due to its
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succinct path matching capabilities and alignment to ISO/EIC
incorporated Graph Query Language (GQL) (ISO, 2024).

Whilst most of the data contextualisation queries within Fuse
are short lived queries within the timeframe of a user interac-
tion, we can also use the knowledge graph for analytical quer-
ies via Neptune Analytics, a memory optimized graph data-
base engine for analytics that provides a range of analytical
algorithms (Amazon Web Services (AWS), 2024b) including
path-finding algorithms that can be applied for route finding in
combination with the spatial location data stored in the graph.

3.5 Spatialisation

Relating streams of sensor data to the physical equipment that
it measures at a point in time contextualises the data and en-
ables it to be used to make data driven decisions. Lifelike 3D
visualisations provide additional visual context that is easier for
humans to understand than tabular dashboards or 2D represent-
ations by providing a realistic and immersive representation of
the physical system being mirrored, with data displayed spa-
tially located alongside the equipment it relates to. They offer a
lifelike representation of the real world, allowing stakeholders
to gain a deeper spatial understanding of the system which is
especially valuable for complex and large scale systems where
spatial relationships are critical, for example in a liquefied nat-
ural gas plant.

In order to overlay data in the correct location in a 3D scene, we
need to know the relationship between the data and the equip-
ment, as well as the relationship between the equipment and its
physical location. As shown in Figure 6 Fuse stores the phys-
ical location of equipment in the real world, as GeoLocation
vertices within the knowledge graph, as well as storing the re-
lationships between equipment, and sensors measuring it.

Figure 7. Spatialisation of equipment enables proximity based
search and contectualisation

3.5.1 Proximity based data retrieval A key feature of the
data contextualisation capabilities of the Fuse platform, is the
ability to perform data contextualisation based on physical
proximity. This feature is leveraged extensively within the 3D
visualisation component of the digital twin, allowing users to be
presented with relevant data as they move through the 3D scene,
but the spatial query capabilities of the platform are exposed via
API to allow other systems to perform data contextualisation
based on location.

An example of proximity based data retrieval is illustrated in
Figure 7 where we see the user performing a query for all equip-
ment within 5 meters of their location. Pump 1 and Tank 1 are

located within 5 meters of the provided user co-ordinates, and
are thus returned by the query, whilst Tank 2 and Pump 2 fall
outside the queried proximity and therefore are not. Once the
equipment of interest has been identified via a proximity search,
the knowledge graph can be traversed to return associated data.

Figure 8. Spatially located IoT data integrated into a 3D model

It is the relationship between equipment, spatial location,
sensors, and control system tags that enables the embedding
of sensor data into 3D visualisations as shown in Figure 8 that
provides users with enhanced perception, aiding in better un-
derstanding of the layout, structure, and inter-connectedness of
equipment and data within Fuse.

3.6 Retrieval Augmented Generation

The recent popularisation of the generative capabilities of Large
Language Models (LLMs) has demonstrated how they can be
used to present data in a way that is even easier for users to un-
derstand and work with. Most LLMs in common use today are
trained on vast amounts of publically available data and are able
to create new content based on patterns they have observed in
this training data. Whilst LLMs can produce extremely realistic
looking outputs, without a grounding in actual facts about a do-
main, these outputs may be inaccurate (a phenomenon known
as a hallucination).

We leverage the data stored in the knowledge graph within Fuse
to provide context, in the form of known facts about entities
modelled by the digital twin, to an LLM in a process known
as Retrieval Augmented Generation (RAG). Following this ap-
proach we can use an LLM to summarise and collate a range
of data to derive higher level insight, in a natural conversational
style.

4. Capabilities

The Fuse platform provides a wide range of capabilities to
Woodside Energy, including the following:

4.1 Equipment 360 Application Programming Interface
(API)

The relationships stored by Fuse in its knowledge graph connect
the many different sources of equipment data available within
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Woodside Energy, including structured, unstructured, and time-
series data. Equipment 360 is an equipment-centric API within
Fuse that uses the context captured in these relationships to
query and collate data from source systems for a given piece
of equipment within a provided time range, in effect returning
a 360◦ view of it. As a GraphQL based API, Equipment 360
allows callers to specify exactly what data they require, and re-
turns only the data fields and thus source systems requested.
This API has found use within the organisation both as an ena-
bler for Fuse and for several other digital products.

4.2 Autonomous robotic data capture

Spector (Woodside Energy, 2023) is a robotic data capture ser-
vice developed by Woodside Energy using Boston Dynamics
quadruped robots to autonomously navigate the Pluto LNG
plant, capturing data to be used in electrical inspections. The ro-
bots carry a variety of sensor payloads including a 360-degree
camera, 30x optical zoom camera, and thermal camera. The
data captured by these robots is sent to Fuse where it is con-
textualised, including through the use of computer vision tech-
niques to extract equipment identifiers from images, allowing
relationships to be created between equipment and images. The
contextualisation of the captured data allows inspectors to ac-
cess it via a web application and perform their inspections
without having to locate and travel to the equipment in the field
as before.

4.3 Condition-Based Monitoring

Woodside Energy has leveraged the Fuse mobile IoT sensors
and data contextualisation capabilities, together with diagnostic
machine learning models running in the cloud, to continuously
monitor rotating mechanical equipment and detect anomalies
before they cause faults that may impact plant operation. Using
Fuse’s knowledge graph to combine sensor data with mainten-
ance history is enabling Woodside Energy to shift from reactive
maintenance to more predictive maintenance of specific classes
of equipment.

4.4 Knowledge graph System Development Kit (SDK)

The Fuse knowledge graph provides a data resource that is valu-
able outside the spatial digital twin itself, but accessing and
querying the graph requires specialist skills and knowledge of a
property graph query language (either Gremlin or openCypher).
To enable data contextualisation without the need to understand
graph primitives, Fuse provides a TypeScript SDK that provides
other applications a higher level interface into the data stored in
the graph.

4.5 Mobility and Site Based Data Collection

With its enabling knowledge graph and API components, it has
been an obvious step for Woodside Energy to project its digital
twin capability out to site based users to gain improved data
quality on entry and efficiency in scheduled task/procedure exe-
cution. Mobile based applications are better able to incorporate
richer contexts than previously for the given task at hand.

5. Conclusions

The approach of integrating data streams from static and wire-
less IoT sensors, as well as virtual sensors into a spatial digital
twin as adopted by the Fuse platform has been proven in the

real world deployment of the platform to multiple Woodside
Energy assets (Woodside Energy, 2021). The contextualised
data provided by Fuse continues to find new uses within Wood-
side Energy as the company strives to improve asset awareness
and digitise repetitive and unsafe work. Outside conventional
digital techniques in software delivery, specific focus has been
placed on improving our ability to sense new information and
in recognising the importance of using a knowledge graph to
store information that permits the combination of the many in-
tegrated data sources of Fuse.
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