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Abstract 

The integration of low-cost thermal sensors with Apple Smart Devices supports the generation of 3D point clouds that include 

temperature indicators. This generates a new perspective for the study of buildings, allowing for fast and reliable examination of 

physical building structures. To the best of our knowledge, this study is the first to demonstrate the use of affordable sensors for 3D 

thermal point cloud generation. The study involved capturing data from the LiDAR and thermal sensors, followed by an extrinsic 

calibration process to align the datasets. Subsequently, the point cloud was segmented based on different acquisition poses of the device 

and finally, the thermal data was projected onto the 3D model, integrating temperature information with spatial coordinates. Our results 

demonstrate the effectiveness of the approach for three-dimensional point cloud generation in indoor environments, highlighting 

significant thermal variations and enabling thermal mapping of building structures. Furthermore, our findings underscore the feasibility 

of employing low-cost sensors for generating detailed thermal models, opening possibilities for widespread adoption in various 

building analysis applications. This approach provides a comprehensive and cost-effective solution for building monitoring, 

democratizing access to advanced evaluation tools. 

1. Introduction

The evolution of scanning technology has undergone significant 

transformation in recent decades, characterized by a notable 

reduction in costs and an expansion of devices options. In 

particular, the emergence of LiDAR-equipped smartphones has 

ushered in a new era of accessibility, versatility, and connectivity 

in scanning technology. These advancements have paved the way 

for innovative applications in 3D mapping and augmented 

reality, both indoors and outdoors.  

While considerable research has been conducted on the mapping 

and augmented reality potential of LiDAR-equipped 

smartphones (Luetzenburg, Kroon, and Bjørk 2021; Spreafico et 

al. 2021), there remains a notable gap in the literature regarding 

their integration with other sensors to enhance non-destructive 

building surveys.  

Although various studies have demonstrated the efficacy of 

Apple LiDAR in structure evaluation (Błaszczak-Bąk et al. 2023; 

Díaz-Vilariño et al. 2022; Teo and Yang 2023), there is a scarcity 

of research explicitly addressing how LiDAR integration with 

other sensors can enrich the data collected in these surveys. This 

research gap suggests an opportunity to further explore and 

develop the application of this combined technology in building 

analysis, providing valuable insights into structural integrity, 

energy efficiency, and environmental conditions.  

Infrared thermography is a widely adopted non-invasive 

technique for diagnosing building pathologies and assessing their 

energy behaviour. It enables the detection of problems that 

include air infiltration, moisture, thermal bridges, and failures in 

insulation systems (Almeida, Ornelas, and Cordeiro 2020; 

Olbrycht 2020). Apart from its usefulness, traditional infrared 

devices have been limited to just two-dimensional thermal 

images with low resolution, thus limiting professionals in terms 

of obtaining a detailed, comprehensive view of the structures 

under inspection. 

During the last few years, the transition of thermography from 

2D to 3D has captured the interest of researchers, enabling an 

opportunity to deepen building assessment by allowing the 

creation of three-dimensional thermal models. These models give 

a richer, more detailed view of the thermal and structural 

conditions, promoting a fuller interpretation of the data collected 

(Angelosanti, Kulkarni, and Sabato 2022; Hou et al. 2022; Pérez-

Andreu et al. 2023). 

Diverse studies have explored the potential of 3D thermography 

by devising methods for the automatic mapping of thermal data 

onto 3D point clouds (Adán, López-Rey, and Ramón 2023; 

Borrmann et al. 2014; Lagüela et al. 2012). However, none of 

these studies addressed the need to investigate the integration of 

low-cost systems. By making 3D thermography more affordable 

and accessible, this research can democratize access to advanced 

building evaluation techniques, benefiting a wide range of 

stakeholders. 

The extrinsic calibration between low-cost sensors is crucial to 

ensuring accuracy and consistency in integrating thermographic 

data into 3D models. While conventional systems may offer 

higher volume and quality data, low-cost devices can achieve 

comparable precision in their measurements (Dong, Sloan, and 

Chappuies 2024; Hakim et al. 2023). This disparity in data 

quantity and quality underscores the importance of precise 

calibration, as it helps correct potential discrepancies between 

data captured by different sensors.  

In this regard, precise calibration is essential to achieving the 

correct alignment of data captured by different sensors, ensuring 

reliable and consistent results in building evaluation. Various 

methods of extrinsic calibration between LiDAR and thermal 

cameras have been presented in the literature (Dalirani et al. 

2023; Dalirani and El-Sakka 2024; Zhang et al. 2018). 

Calibrations like these are based on modality correspondences for 

the calibration process. The research specifically relied on 

correspondence methods for feature matching between 

modalities to conduct calibration. 

This paper presents a novel approach by advocating for the 

integration of Apple Smart Devices with low-cost thermal 

sensors in order to create 3D thermal point clouds. This approach 

takes advantage of the computing power of smart phones and 

their ubiquitous presence in modern times to democratize the 

access of leading-edge building monitoring capabilities. 
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The rest of the paper is organized as follows. Section 2 presents 

the proposed approach, while Section 3 shows the experiments 

and results obtained from applying the method to real case 

studies. Lastly, Section 4 is devoted to conclude this work. 

 

2. Method 

 

This research focuses on the fusion of LiDAR and thermal 

imaging technologies to create a thermal point cloud. By 

leveraging both LiDAR and thermal cameras, this study aims to 

harness their complementary functionalities, providing essential 

data for diverse applications such as building inspection, 

environmental monitoring, and infrastructure management.  

 

The methodological approach in this study covers the following 

main steps: data capture and pre-processing, calibration and 

processing, and projection of thermal data onto the point clouds. 

 

2.1 Data capture and pre-processing 

 

Regarding data capture, the following sensors were used: 

 

- LiDAR iPhone 12 Pro: The LiDAR system employed in 

this study is an integrated version into the iPhone 12 Pro, 

capitalizing on its ability to measure distances using the 

Direct Time-of-Flight (D-ToF) principle. This sensor 

includes an emitter that projects laser pulses and a receiver 

that records the time taken for the pulses to return after 

reflecting off objects. This enables the acquisition of 

precise information regarding the distance between the 

sensor and the surrounding objects, enabling the generation 

of a detailed three-dimensional representation of the 

environment. 

 

- Thermal camera FLIR Lepton 3.1R: This camera boasts a 

resolution of 160 x 120 pixels and a wide field of view of 

95º horizontally and 76º vertically. This camera can detect 

and quantify the thermal radiation emitted by objects, 

making it possible the visualization of temperature 

fluctuations in the surroundings. This is useful for 

applications such as hotspot detection in electrical systems, 

the identification of heat leakage from buildings, and 

temperature monitoring in industrial settings. 

 

To achieve effective integration of these sensors, a 3D-printed 

mount was designed and created to securely align the iPhone with 

the thermal camera ( 

Figure 1). This setup guarantees that both devices are properly 

positioned. By aligning the sensors accurately, this custom mount 

simplifies the subsequent extrinsic calibration process.  

 

 
 

Figure 1: 3D-printed mount. 

 

The data capture was conducted separately. We used 3D Scanner 

App to obtain the LiDAR point cloud. Within the app, the point 

cloud capture function is utilized to extract a whole folder of all 

the data information about the scan and a point cloud in PLY 

format. In this folder, there are diverse JSON format files from 

which the poses of each frame taken are extracted. Each pose is 

given by a transformation matrix M as shown below: 

 

 

The term pose refers to the relative position and orientation of an 

object in a three-dimensional space. In this context, the pose is 

used to describe the relative position and orientation of the data 

capture device (in this case, the iPhone with the LiDAR) with 

respect to the reference coordinate system of the point cloud. This 

reference coordinate system is defined by the LiDAR data, 

providing the spatial context for the captured frames. 

 

Thermal images were captured by connecting the camera to a 

Raspberry Pi 3B+, where software was developed to capture the 

temperature matrix and the time at which frame was done (the 

acquisition time is 9 frame per second). This data is presented in 

an orderly manner inside a CSV file. 

 

The infrared Lepton 3.1R features a 95º wide field of view 

(WFOV) lens, which can introduce barrel distortion. To correct 

this deformation, a rectification process is employed, ensuring a 

more accurate representation of the scene.  

 

Once corrected, these images are presented in grayscale, which 

may hinder the interpretation of thermal data. To enhance 

visualization and facilitate the data analysis, a colour assignment 

process is performed for each normalized temperature value 

using the ‘jet’ colormap. This approach provides a more intuitive 

visual representation of the thermal distribution in the image, 

making it easier to identify areas of interest and interpret thermal 

data.  

 

2.2 Calibration and processing 

 

After data capture, the extrinsic calibration process plays a 

crucial role in our study. It aims to establish an alignment and 

spatial correlation between the data obtained from the thermal 

camera and the LiDAR sensor of the iPhone 12 Pro. This 

calibration procedure is essential for ensuring an accurate 

relationship between the datasets captured by these different 

sensors. 

 

For the extrinsic calibration we used the feature matching 

method. This method involves the identification and use of 

common reference points in the data from both sensors. For this 

purpose, the corners of a wooden board were used as 

correspondence points.   

 

To recognize them in the thermal image, four thermal resistors 

were place at each of the corners of a wooden board ( 

Figure 2). These resistors were heated to reach a temperature of 

approximately 50ºC, creating significant contrast with the 

ambient temperature and being easily detectable in the thermal 

camera.  

 

 

𝑴 =  (

𝒓𝟏𝟏 𝒓𝟏𝟐 𝒓𝟏𝟑 𝒑𝒙

𝒓𝟐𝟏 𝒓𝟐𝟐 𝒓𝟐𝟑 𝒑𝒚

𝒓𝟑𝟏 𝒓𝟑𝟐 𝒓𝟑𝟑 𝒑𝒛

𝟎 𝟎 𝟎 𝟏

) 
(1) 
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Figure 2: Thermal resistor and wooden board with resistors at 

each of its corners. 

 

The thermal image processing for calibration is performed using 

the OpenCV library (Bradski 2000). Thermal points, appearing 

as blobs in the thermal image, were detected, and their contours 

were extracted. From these contours, the coordinates of the 

corners of the calibration board were calculated by creating a 

polygon between them. 

 

Simultaneously, the point cloud obtained from LiDAR was 

processed to identify the corners of the same calibration board in 

three-dimensional space. This process involves several key steps. 

Using the Open3D library (Zhou, Park, and Koltun 2018), normal 

estimation in the point cloud is performed using a nearest 

neighbour-based search parameter. This helps to determine the 

orientation of surfaces in the point cloud. 

 

Next, the point cloud is subdivided using the flat patch detection 

algorithm. This algorithm uses a statistically robust approach for 

flat patch detection. The process involves subdividing the point 

cloud into smaller blocks using an octree and then attempting to 

fit a plane to each block. 

 

After identifying an initial set of planes, the plane of interest is 

selected based on an area range. Subsequently, the corners of the 

oriented bounding box are determined by identifying the extreme 

coordinates on the X and Y axes. This involves performing a 

Singular Value Decomposition (SVD) to find the normal of the 

plane, aiding in defining the orientation and spatial arrangement 

of the corners (Figure 3). 

 

 
 

Figure 3: The corners of the bounding box, indicated in blue, 

are used for feature correspondence. Points are scaled for better 

visualization. 

 

Before applying the Perspective-n-Point (PnP) method to 

calculate the transformation matrix that aligns the coordinate 

systems of the thermal camera and the point cloud, it's crucial to 

organize the obtained corners from the thermal image and the 

three-dimensional space. This ensures that both representations 

share the same order of corners for proper correspondence. 

 

Once the corners are properly organized, the transformation 

matrix is calculated using the PnP method. The PnP method 

involves solving an equation that minimizes the reprojection 

error between the 3D and 2D point correspondences. The 

resulting transformation matrix T can be represented as: 

 

 

where R is the rotation matrix and t is the translation vector.  

 

This transformation matrix can be used to convert a point 𝑃𝑐 from 

the coordinate system of the thermal camera to the point 𝑃𝑃𝐶 in 

the point cloud coordinate system: 

 

 

The transformation matrix T can be computed using the PnP 

method in OpenCV (Bradski 2000). This process establishes a 

precise relationship between the data captured by different 

sensors, ensuring consistency and accuracy in integrating thermal 

data into the three-dimensional space of the point cloud. 

 

To apply the parameters of the transformation to the point cloud 

after calibration, a method was implemented to segment the point 

cloud into sub-clouds based on various camera acquisition poses. 

Each pose provides a transformation matrix used to transform the 

global point cloud 𝑃𝐶𝑃𝐶 into the LiDAR device coordinate 

system: 

 

 

The 𝑃𝐶𝐿𝑖𝐷𝐴𝑅 is segmented based on the Y coordinate of each 

point, keeping only those within a predefined range. Then, points 

in front of the camera are filtered using a dot product with a 

reference vector on the negative Z-axis. Finally, the filtered 

points are transformed back to the global coordinate system. 

 

2.3 Projection of thermal data onto the point cloud 

 

After segmentation, thermal image projection must be 

performed. For this, the segments must be translated and rotated 

to the initial calibration position. If 𝑃𝐶2 is the point cloud to be 

transformed to the reference system of the initial segment, the 

rotation matrices are 𝑅1 and 𝑅2 and translation vectors are 𝑡1 and 

𝑡2, corresponding to the initial and final smartphone poses 

respectively, perform the necessary transformations: 

 

 

𝑻 =  [𝑹|𝒕]  =  (

𝒓𝟏𝟏 𝒓𝟏𝟐 𝒓𝟏𝟑 𝒕𝒙

𝒓𝟐𝟏 𝒓𝟐𝟐 𝒓𝟐𝟑 𝒕𝒚

𝒓𝟑𝟏 𝒓𝟑𝟐 𝒓𝟑𝟑 𝒕𝒛

𝟎 𝟎 𝟎 𝟏

) 
(2) 

 
𝑷𝒄 =  𝑹 ∙  𝑷𝑷𝑪  +  𝒕 

(3) 

 
𝑷𝑪𝑳𝒊𝑫𝑨𝑹 = 𝑹𝒑

𝑻(𝑷𝑪𝑷𝑪 − 𝒕𝒑) 
(4) 

 𝑷𝑪𝒕𝒓𝒂𝒔𝒇  =  𝑹𝟏 ∙ (𝑹𝟐
−𝟏 ∙ (𝑷𝑪𝟐  −  𝒕𝟐)) + 𝒕𝟏 

(5) 
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These transformations ensure that the point cloud sub-clouds are 

correctly aligned with the initial system calibration, allowing for 

precise thermal image projection onto the scene captured by the 

LiDAR. 

 

To project the thermal image onto the point cloud, the 

cv2.projectPoints function is first used to project the point cloud 

onto the image, obtaining the 2D coordinates of the projected 

points in the image. 

 

Next, it iterates over the projected points and checks if they fall 

within the image boundaries. For points falling within the image, 

it extracts the corresponding colour and temperature from the 

image pixels. These values are stored in matrices for further 

processing. 

 

After obtaining the colours and temperatures of the projected 

points, the colour values are converted from RGB to BGR and 

normalized to ensure they are in the range [0, 1]. An Open3D 

tensor is created containing information about the three-

dimensional positions of the points, their temperatures, the 

projected colours, and the original colours. This tensor provides 

a structured representation of the data associated with the point 

cloud, facilitating its manipulation and analysis. 

 

Each segment point cloud is relocated to its initial position and 

integrated into the resulting thermal point cloud. Additionally, 

the colours of the final point cloud are normalized to ensure that 

all segment point clouds use the same temperature range, 

homogenizing the temperature representation across the entire 

point cloud. 

 

3. Results 

 

Experimental tests were conducted to validate the effectiveness 

of the proposed methodology in integrating LiDAR and thermal 

data from low-cost sensors. In Figure 4, a representation of the 

thermal image with the corresponding polygon from the thermal 

blobs of the corners is observed. The corners of this polygon are 

used for extrinsic calibration. 

 

 
 

Figure 4: Thermal image with the corresponding blob detection 

polygon. 

 

Figure 5 presents the same thermal image as Figure 4 but 

coloured with its respective normalized scale. This image 

provides a clear and detailed view of the temperature distribution 

in the captured environment, allowing for the identification of 

areas of significant thermal variations. 

 

Figure 6 shows the complete point cloud generated only by 

rotating the support on the same axis. This visual representation 

provides insights into point density and distribution, showcasing 

the LiDAR’s ability to accurately map the three-dimensional 

environment. 

 

 
 

Figure 5: Thermal image coloured with its respective normal-

ized temperature scale in ºC. 

 

 
 

Figure 6: Complete point cloud from a capture on the same axis. 

 

In Figure 8, the point cloud is segmented based on the pose of the 

smartphone. Six different segments have been created, allowing 

each thermal image to be projected in its corresponding location, 

as they are specified by the different LiDAR acquisition poses. 

 

The transformation matrix provided in the Figure 7 represents the 

conversion between the coordinate systems of the first thermal 

image and the 3D point cloud. The first three columns correspond 

to the rotation and scaling components of the transformation, 

while the last column represents the translation component. 

 

 
 

Figure 7: Transformation matrix obtained from extrinsic cali-

bration 

 

Considering the known orientation of the image (with x to the 

right and y downwards), and the coordinate system of the point 

cloud (with x downwards, y to the right, and z axes following the 

right-hand rule), the rotation matrix appears to correctly align the 

axes of the two systems.  
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Figure 8: Point cloud segments. 

 

Furthermore, the translation component of the matrix suggests a 

minimal displacement, which aligns with the physical setup 

where the LiDAR and thermal camera are closely mounted 

together.  

 

In conclusion, the provided transformation matrix from the 

automatic extrinsic calibration accurately reflects the relationship 

between the coordinate systems of the thermal image and the 

point cloud, considering their respective orientations and 

physical setup. 

 

In Figure 9 shows the thermal point cloud with projected Lepton 

images, evidencing the successful integration of thermal data into 

the three-dimensional point cloud. This combined visualization 

provides a complete and detailed representation of temperature 

distribution in the captured environment. 

 

 
 

Figure 9: Thermal point cloud with projected RGB images. 

 

Additionally, Figure 10 presents a histogram of temperatures 

from the point cloud, offering a graphical representation of the 

temperature distribution across the entire dataset. This 

visualization helps identify patterns and trends in the thermal 

distribution of the environment. It can be observed that most 

points are between 10°C and 25°C, and that points at 50°C are 

barely visible due to their insufficiency. 

 

 
 

Figure 10: Temperature histogram of the point cloud. 

 

Moreover, Figure 11 shows the point cloud with normalized RGB 

colours depending on the temperature, allowing a more intuitive 

visualization of temperature variations in the captured 

environment. 

 

 
 

Figure 11: Point cloud with normalized RGB dependent on its 

temperature. 
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Figure 12 shows the point cloud with indicated temperatures and 

their corresponding scale in Cloud Compare. This detailed 

representation of the temperatures associated with each point in 

the point cloud facilitates a precise interpretation of the thermal 

data. 

 

 
 

Figure 12: Point cloud with indicated temperatures and their 

scale in Cloud Compare. 

 

Finally, Figure 13 and Figure 14 show the thermal point cloud 

captured by translating the device, as well as that same point 

cloud indicating its temperatures with a scale. These results 

complement the understanding of the thermal behaviour of the 

environment under different conditions and capture positions. 

 

 
 

Figure 13: Thermal point cloud captured by translating the de-

vice. 

 

 
 

Figure 14: Thermal point cloud captured by translating the de-

vice indicating its temperatures with scale. 

 

These findings represent significant advances in the integration 

of LiDAR and thermal camera data, with potential applications 

in a wide range of fields, including infrastructure inspections, 

environmental monitoring, and energy efficiency analysis in 

buildings. 

 

4. Conclusions and future work 

 

The research has successfully demonstrated the possibility of 

using LiDAR and low-cost thermal camera sensors for the 

generation of three-dimensional thermal point clouds. This 

approach democratizes access to advanced building monitoring 

technologies with the use of accessible devices like the iPhone 12 

Pro and FLIR Lepton 3.1R thermal camera. The methodology 

developed in respect to data capture, processing, calibration, and 

integration of thermal data into the point cloud is efficient and 

provides accurate representation in three dimensions of the 

thermal distribution. 

 

Furthermore, the provided transformation matrix from the 

automatic extrinsic calibration accurately reflects the relationship 

between the coordinate systems of the thermal image and the 

point cloud. The rotation matrix aligns the axes of the two 

systems appropriately, while the translation component indicates 

minimal displacement, in line with the physical arrangement of 

the LiDAR and thermal camera. 

 

Results show projections of thermal images onto point clouds 

which demonstrate the potential of such integration to enhance 

infrastructure inspections, environment monitoring, and building 

energy efficiency analysis. The incorporation of the 

transformation matrix ensures consistency and accuracy in 

integrating thermal data into the three-dimensional space of the 

point cloud. 

 

The potential of providing detailed three-dimensional thermal 

modelling opens new horizons in the comprehensive building 

evaluation and monitoring context, given structural integrity, 

energy efficiency, and environmental conditions. 

 

Future work will focus on integrating these devices into a robotic 

platform for autonomous building thermal monitoring, in which 

additional thermal sensors will be employed, and efforts will be 

made to automate data capture. 
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