
REMOTE MAPPING OF SOIL EROSION RISK IN ICELAND

Daniel Fernández1∗, Eromanga Adermann2, Marco Pizzolato3, Roman Pechenkin4, Christina G. Rodríguez5

1Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík, Iceland - licadnium@gmail.com
2 Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW 2006, Australia - erospace14@gmail.com

3 School of Humanities, University of Iceland, Sæmundargata 1, 102 Reykjavík, Iceland - marco.pizzolato@outlook.com
4 rspechenkin@gmail.com

5 School of Engineering and Natural Sciences, Sæmundargötu 2, 102 Reykjavík, Iceland - cgr3@hi.is

Commission IV, WG IV/4

KEY WORDS: Soil Erosion, Iceland, Sentinel 2, Remote Sensing, Machine Learning, Support Vector Machine

ABSTRACT:

The use of remote-sensing based methods for soil erosion assessment has been increasing in recent years thanks to the availability of
free access satellite data, and it has repeatedly proven to be successful. Its application to the Arctic presents a number of challenges,
due to its peculiar soils with short growing periods, winter storms, wind, and frequent cloud and snow cover. However, the benefits
of applying these techniques would be especially valuable in arctic areas, where ground local information can be hard to obtain due
to hardly accessible roads and lands. Here we propose a solution which uses a Support Vector machine classification model and
ground truth samples to calibrate the processed remote images over a specific area, in order to then automate the analysis for larger,
less accessible areas. This solution is being developed for soil erosion studies of Iceland specifically, using Sentinel 2 satellite data
combined with local assessment data from Iceland’s Soil Conservation Services department.

1. INTRODUCTION

Soil erosion is a major global land degradation threat. Improv-
ing knowledge of the probable future rates of soil erosion, ac-
celerated by human activity and climate change, is one of the
most decisive factors when it comes to making decisions about
conservation policies and for earth-system modelers seeking to
reduce uncertainty on global predictions (FAO, 2015). Accur-
ate information about it is, however, usually known only at the
local scale and based on limited field campaigns (Verheijen et
al., 2009).

Such is the case of Iceland, where most of the available inform-
ation about its soil degradation comes solely from such cam-
paigns, carried out by Landgræðslan, the national Soil Conser-
vation Service1. The degradation of Iceland’s ecosystem can
be described as desertification. Due to the lack of vegetation,
its wastelands have striking similarities to barren areas in arid
countries. Soil erosion prediction plays a key role in mitigating
the process (Arnalds et al., 2001).

Historically, pioneers include Björn Johannesson (Johannesson,
1961), who early on introduced a soil map and a book on the
soils of Iceland. An attempt was made decades later to ad-
opt the present-day FAO classification for Icelandic soils (Gud-
mundsson, 1994). The main work on soil science in Iceland
has been undertaken by the Agricultural Research Institute of
Iceland (Rala), which in 2005 became a part of the Agricultural
University of Iceland (AUI). Much information about the phys-
ical and chemical properties of soils in Iceland can be drawn
from the joint European COST-622 Action (Bartoli et al., 2003,
Arnalds and Stahr, 2004). Research contributions in relation to
the impact of man and degradation are numerous and include
both Icelandic and foreign research efforts.
∗ Corresponding author
1 https://land.is/

Nowadays the Icelandic government aims at bringing soil
erosion under control and achieving sustainable land use as
soon as possible. Desertification is mainly caused by the in-
teraction of grazing effects, both past and present, with sens-
itive soils and vegetation. The soil conservation authorities,
mainly the soil conservation service, were given stronger ca-
pacities to manage and monitor grazing practices in protected
areas threatened by erosion and to restore denuded land (UNEP,
2002).

The methods used to assess the evolution of soil erosion involve
measurements in the field and use of aerial photographs from
different time intervals. There are two techniques used with
aerial photographs. One way is scanning and image analysis,
the other is digitizing. The use of aerial photographs involves
a certain margin of error. These are expensive tasks, especially
in certain areas of the country which are very hard to access,
making on-site measurement a challenge. Consequently, at the
moment not all areas of interest can be explored.

In addition to the impact that climate change can have on the
ecosystem of Arctic regions like Iceland, one can also wonder
about the impact that soil erosion in these areas can have on
the global climate. Soil in northern latitudes stores up to half
of the Earth’s soil carbon; about twice the amount of carbon
stored in the atmosphere. The importance of this carbon sink is
immeasurable. Permanently frozen ground keeps this organic
carbon locked in the soil and, together with extensive peatlands,
ensures that northern circumpolar soils are a significant carbon
sink (Jones et al., 2009). Current estimates from the Northern
Circumpolar Soil Carbon Database indicate that the northern
permafrost region contains approximately 1672 Pg of organic
carbon, of which approximately 1466 Pg, or 88%, occurs in
perennially frozen soils and deposits (Tarnocai et al., 2009).

To improve on the above limitations, one extremely useful tool
has been made available through the advancement in satellite
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remote sensing technology (Phiri et al., 2020). Its applica-
tion to assess soil erosion, even when based on freely access-
ible satellite data, has given many successful results in recent
years (Žížala et al., 2019, Huffman et al., 2000). Previous stud-
ies employ certain multi-resolution approaches to soil erosion
risk mapping, but focus on using rainfall and vegetation cover
as indicators, which need to be generalized for the application
of similar methods to Iceland.

Here we propose a solution which uses ground truth samples to
calibrate the processed remote images over a specific area, to
then automate the analysis for larger, less accessible areas. This
solution is being developed for soil erosion studies of Iceland
specifically, using Sentinel 2 satellite data combined with local
assessment data from Landgræðslan. Their historical data is
more extensive than usual, since they are the oldest soil erosion
department in the world.

This is made possible by using a set of geo-environmental para-
meters to train a Machine Learning (ML) algorithm able to pro-
duce appropriate weights that can represent areas susceptible to
erosion. ML models have become important components of op-
eration research on designing mathematical and computational
tools for supporting the intellectual evaluation of criteria and
alternatives by decision makers (Arabameri et al., 2018).

Available data includes parameters of bare ground cover, which
can be calculated from satellite images alone, after using in-
formation from observationally correct areas without vegeta-
tion for calibration; Icelandic soil profiles, to be analyzed to
find how the profile relates to soil erosion intensity; as well as
the parameters of agriculture use and arable land data including
plant species in cultivated lands.

Classification is one of the domains of ML that help to assign
a class label to an input. Among the available ML algorithms,
Random Forest (RF) and Support Vector Machine (SVM) have
drawn attention to image classification in several remote sens-
ing applications. The choice of the most appropriate image clas-
sification algorithm is one of the hot topics in many research
fields that deploy images of diverse resolutions taken by differ-
ent platforms, while including many limitations and priorities.
Medium and high spatial resolution images are the most used
imageries for SVM and RF, respectively. In the case of low spa-
tial resolution images, the RF method offers consistently better
results than SVM, although the number of papers using SVM
for low spatial resolution image classification exceeded the RF
method. (Sheykhmousa et al., 2020).

2. STUDY AREA

Iceland, a region with a size of 103 000 km2, presents unique
erosion factors, such as glaciers (covering 11% of its area and
melting), volcanic and seismic activity, carbon rich volcanic
soils, freeze-thaw cycles, intense sheep grazing and extreme
winds. Access to historical data about its soils is provided by
Landgræðslan, detailing their original thickness and properties.

The data we need includes, the parameters of bare ground cover,
which can be calculated from satellite images alone, after using
information from observationally correct areas without veget-
ation for calibration; Icelandic soil profiles, which need to be
analyzed to find how the profile relates to soil erosion intensity;
as well as the parameters of agriculture use and arable land data
including plant species in cultivated lands.

Due to the arctic atmospheric conditions, cloud coverage is an
exceptionally significant problem. Most images are covered by
clouds or by snow being carried over by wind into cloudless
areas.

Elements to be taken into account during classification of
erosion:

• Advancing Sand Fronts (Encroaching Sand): The advan-
cing sand front into a vegetated area because of wind blow-
ing the sand over the plants

• Soil Escarpments (Rofabards): Small patch of vegetation
on top of an eroded cliff, abrupt changes between vegeta-
tion and soil, visual spectrum differences

• Erosion Spots: Small patches of barren soils in otherwise
vegetated areas

• Solifluction: A hillslope process, slow downhill move-
ment of the soil leading to wave-like steps and eventually
erosion spots

• Water channels: A hillslope process, occurring on veget-
ated hill slopes and eventually become rofabards

• Landslides: A hillslope process, common in Iceland due
to non-cohesive andosols and overwatering

• Mudslides: A hillslope process, common due to saturation
of soil during snow melt

3. METHODOLOGY

For this project, we chose to train a Support Vector Machine
classifier to predict the level of soil erosion using Sentinel 2
image data, height data and slope data as inputs.

3.1 Data preprocessing

Sentinel 2 data

The satellite data we used to train our classifier was imported
from WEkEO, and comes in the form of georeferenced and at-
mospherically corrected Sentinel 2 images of Iceland between
23 June 2015 and present day. It contains scene classification
layers for each image, which can be projected into the original
image to see which pixels represent snow, clouds or non-data
pixels. An automated process is then used to build a combined
image devoid of these non-desirable effects. For the results
presented here, this was done using images taken over a Sum-
mer period of 30 days. The data is available every 5-10 days
depending on satellite pass (Main-Knorn et al., 2017).

For Sentinel 2 data Level-1C and Level-2A, images come
in granules, also called tiles, of 10980 × 10980 pixels (≈
600 MB) and cover an area of approximately 100 × 100km2

UTM/WGS84 projection. Each UTM zone has a vertical width
of 6° of longitude and horizontal width of 8° of latitude. Spe-
cifically for Iceland this means data comes in EPSG:32626-
32628 (WGS84 projected), so radiometric calibration was re-
quired.

This data also provides a multi-spectral instrument with 12
bands of varying wavelengths2, and with a resolution from 10

2 https://www.indexdatabase.de/db/is.php?sensor_id=96
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to 60 m. We focused on bands with resolution between 10 and
20m. Data from different spectral bands were combined to cre-
ate indices which represent or highlight certain features, such as
vegetation, soil crusting, bare soil, and red edge indices.

The development of new masks for the arctic constitutes a cent-
ral part of this project. These include litter, lupines, lichen, per-
mafrost, and bodies of water that are not as big as ones that
can already be masked. For litter, the task is to create a mask
that is sensitive to the specific gases that come off it. For cloud
masking, the most common method is Fmasking (Frantz et al.,
2018). For arable land masking, there exist machine learning
methods developed to distinguish crop type and agricultural
systems (Vogels et al., 2018).

To improve the accuracy of our eventual model, we addressed
the low separability of erosion classes, which usually limits
the applicability of classification methods, especially in spec-
trally complex areas. We chose an unsupervised classifica-
tion approach using ISODATA and minimum distance meth-
ods. Principal Component Analysis (PCA) is used for the in-
tegration of Sentinel-2 data with other remotely sensed data in
a pan-sharpening approach (Wang et al., 2016). A first lin-
ear approach was used to determine the weight of each in-
dex and then used standard deviation to classify into categor-
ies (Gadal et al., 2021) in a Stepwise Multiple Linear Regres-
sion (SMLR) (Nzuza et al., 2021).

The tools for geometric and topographic correction include
SNAP (Sentinel application platform), Sen2Core, FLAASH
(Fast line-of-sight atmospheric analysis of hypercubes), DOS
(Dark Object Subtraction) and ATCOR software. This software
handles the part of the geometric and topographic correction,
which focuses on reducing effects due to shadows and surface
irregularities (Pahlevan et al., 2017). The collective correc-
tion reduces effects due to shadows and surface irregularities
and corrects the single-date Sentinel-2 Level-1C Top Of At-
mosphere (TOA) products from atmospheric effects in order to
deliver a Level-2A Bottom-Of-Atmosphere (BOA) reflectance
product.

Arctic Digital Elevation Models

Height data and slope data was based on Arctic Digital Elev-
ation Models (DEMs). Elevation data from the Arctic (north
of 60°N, including Iceland) started to be openly available since
2015 through the ArcticDEM project3, led by the Polar Geo-
spatial Center, University of Minnesota. The Digital Elevation
Models are derived from satellite sub-meter stereo imagery, par-
ticularly from WorldView 1-3 and GeoEye-1. This information
can be used to detect to what extent plant growth is reduced
at greater heights because of longer snow cover, shorter grow-
ing period and stronger winds on one side. By using the vari-
ation of DEM and building a slope map, we can see that soil
erodes more on steep slopes which leads to a higher likelihood
of erosion the steeper they are.

This data consists of a large amount of DEMs repeatedly ac-
quired (multitemporal), typically from 2012-present, and the
oldest data reaching back to 2008. The DEMs are derived from
satellite sub-meter stereo imagery, particularly from WorldView
1-3 and GeoEye-1. The processing of the DEMs was done us-
ing SETSM, an open-source digital photogrammetric software,
in the Bluewaters supercomputer (University of Illinois). Each

3 https://www.pgc.umn.edu/data/arcticdem

DEM has 2×2m resolution and a footprint of ∼ 18×100 km.
In a collaborative effort between the National Land Survey of
Iceland, the Icelandic Meteorological Office and the Polar Geo-
spatial Center, methods were developed to handle and process
a large amount of data available for Iceland.

The methods developed consisted of:

1. Spatial adjustment of all the available DEMs, for homo-
geneity and consistency in the location of each individual
DEM.

2. Robust mosaicking into one single DEM of Iceland, by
taking advantage of the multi-temporal coverage of DEMs.
Each pixel of the mosaic corresponds to a median eleva-
tion value from the possible elevations available from the
ArcticDEM.

Drone-based lidar data from Svarmi at 5 locations was used to
validate spatial accuracy. Results indicate that IslandsDEMv1
has a positional accuracy better than 2m (XY) and better than
0.5m (Z).

The output from image preprocessing consists of N = 553 la-
belled samples (of 747 total) in the form of an XY = 11 × 11
pixel raster (110 × 110m = 1.2 hectares) with a depth (D) of
approx. 10 (color bands, NIR and SWIR, DEM) so an array of
N × 11 × 11 ×D and an output of the processing is expected
as 1× 11× 11× 1 in the first iteration. An idea to increase data
compactness would be to do a synthetic image of D and reduce
it to 1 by normalizing and summing the parameters altogether.

The tiles are in the EPSG:3057 (ISN93) coordinate system (pro-
jected system of Iceland) but can easily be converted into a
more convenient frame.

The prepared set consisted of 747 tiles of DEM height in
meters, 747 tiles of DEM slope in degrees, and 8978 tiles of
sentinel 2A data for bands 2, 3, 4, 8 in 10m resolution and
bands 5, 6, 7, 8a, 11, 12 in 20m resolution (around 900 tiles
per band, more than 747 because of multiple images being ne-
cessary to cover Iceland).

A code is created to check if a tile has no value or is not the right
size. Each preprocessed tile has been checked for an 11 × 11
size and to ensure that maximum and minimum pixel values
do not correspond to useless tiles. It also allows for a quick
gdal reprojection (warp) to fit into the desired output coordinate
system of the tile.

Training and validation data set

For the training phase, we employed a data set composed of
cropped georeferenced and atmospherically corrected Sentinel
2A images (specifically, we used normalised satellite image ar-
rays in bands 2, 3, 4, 8 and 8a), DEM-derived height and slope
data, and a calculated quantity known as the Normalized Dif-
ference Vegetation Index (NDVI), which is defined by the fol-
lowing equation:

NDVI =
NIR− R

NIR + R
,

where NIR and R represent the Near-Infrared (Band 8) and Red
(Band 4) wavelengths respectively. The NDVI quantifies the
amount of vegetation present in a specific location, as vegeta-
tion strongly reflects near-infrared wavelengths and absorbs red
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light. It is also known to be correlated with the level of land
degradation.

A normalisation approach was used to scale down the elements
in the image arrays by 10,000 and apply a ceiling of 1, in or-
der to reduce the impact of any over-saturated pixels in the
images. The height of the soil would be expected to correlate
with temperature and humidity, with higher altitude soils more
likely to be poorer in quality than lower altitude soils, while the
slope is associated with the likelihood of landslides and there-
fore chance of soil erosion.

The dataset is also labelled by six degrees of erosion severity
from 0 to 5, with 0 indicating no erosion and 5 indicating ex-
treme erosion. These erosion values were provided by Land-
græðslan, based on manual measurements they performed to
assess soil quality.

We removed the duplicate observations from the full data set
to avoid introducing bias into the model, leaving us with 487
unique objects. However, given the noisy data we had, this was
not enough to produce a robust, accurate model. We divided the
images up into single pixels and treated the pixels as tiny images
for the classifier to learn to classify. Each pixel represents a
10m length square. This resulted in a training set of 47141
samples.

The validation sets we used to assess the SVM classifier per-
formance were randomly sampled from this training set, with
an 80:20 split for training and validation.

3.2 SVM classifier

We trained a SVM classifier to predict the soil erosion severity
of specific regions of Iceland based on Sentinel 2 satellite im-
ages of the regions in multiple wavebands, height, slope and the
calculated NDVI. The classifier was built in Python 3, using
the SVM algorithm available within the SCIKIT-LEARN Ver-
sion 1.1.1 library (Pedregosa et al., 2011). The Support Vec-
tor Machine classification algorithm is a supervised machine
learning algorithm that works by identifying the hyperplanes
(or decision boundaries) that best separate the categories in the
data. The best-fitting hyperplanes are the ones that maxim-
ise the distances between the hyperplane and the nearest data
points within each category it separates. For a training set with
n features, the hyperplanes found by the SVM algorithm will
be n-dimensional. The motivation for starting with the SVM
algorithm for our classification problem is both its higher speed
and better performance on problems with smaller training sets
than neural networks.

The SVM was trained using a radial basis function kernel. We
trialed a large range of values for the parametersC and γ, which
control the margin of error for the decision boundaries and the
similarity radius for data points in the same category, respect-
ively. For C, we tested values between 0.101 and 99.999, and
for γ, we tested values between 0.001 and 9.999. The val-
ues that produced the highest accuracy without being either too
small or too large (to avoid overfitting while also maximising
performance) were C = 5.00 and γ = 0.50.

4. RESULTS

The overall accuracy achieved with the SVM model with C =
5.00 and γ = 0.50 was 0.91. To assess the model for over-
fitting, we performed k-fold cross-validation with 5 folds, and

Figure 1. Georeferenced location of selected patch.

found very little variation in overall model performance across
all our cross-validation runs. The average accuracy achieved
across the runs was 0.907 with a standard deviation of 0.001.

The F1 scores for each soil erosion class ranged from 0.88 to
0.93, recall ranged from 0.86 to 0.95 and precision ranged from
0.89 to 0.92, indicating a very accurate model.

Figure 2. Soil erosion prediction with SVM EPSG:3057
projection over true color map.

For illustrative purposes, we have selected a small window in
the map (see Figures 1-2) for which we can visualise these res-
ults.

The erosion level is color coded, represented from 0 (green) to 5
(red). When comparing our results to the underlying true color
map from the sample data, we see an overall correct high to low
erosion classification but with a certain tendency to average the
risk downward. Slopes seem to enhance the risk as can be seen
in areas with a rapidly changing slope.

We found that a pixel-based approach, dividing the images up
into single pixels, allowed for a better variability within the
images compared to the 11 × 11 or 3 × 3 pixel training ap-
proaches. While the 11 × 11 approach is more accurate, it av-
erages out over a bigger area, missing out specific details with
high erosion.

Features such as rivers are recognized as higher erosion, as can
be seen in the selected patch. Figure 2 shows an overlapping
composite, while Figure 3 shows the true color map next to the
soil erosion prediction results. This riverbed is shown as high
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Figure 3. True color map of the selected area and soil erosion
prediction result from SVM.

erosion while the field nearby with vegetation is shown as not
eroding. The tops of the hills are also predicted as high erosion,
probably due to wind exposure.

These results should be understood as preliminary, since at
this stage accuracy is being improved frequently by tuning the
parameters in the classification model in order to minimise the
amount of mislabeling in the images.

5. DISCUSSION

There is multiple evidence for dramatic ecosystem degradation
after the arrival of man in Iceland about 870 AD. The wood-
lands and shrublands were nearly destroyed with massive soil
erosion and degradation of the surviving vegetated systems. An
attempt is made to introduce the various research efforts and
methods from many scientific disciplines on the anthropogenic
impacts on Icelandic ecosystems (Karlsson, 2000).

There is a large difference in the resilience and stability of dif-
ferent areas, with thinner (less aeolian deposition) and finer-
textured soils far from aeolian sources and volcanoes being
more resistant to the degradation processes than thick coarse
soils (Gudmundsson, 1997). These areas also have a large ex-
tent of relatively resilient wetlands and are presently with more
vegetation cover than the active volcanic zone. Thick coarse-
textured soils with coarse tephra layers near active aeolian
sources and volcanoes have been subjected to massive erosion,
leaving barren deserts behind in many areas (Arnalds, 2013).
Land use reduced the stability and resilience of these systems
to disturbances such as the cold spells of the Middle Ages and
intermittent volcanic eruptions. Elevation is also an important
factor that reduces the resilience of ecosystems to land use.

Soil erosion has been mapped for all of Iceland, showing both
the continuous severity of the problem, but also vast differ-
ences between the different regions, soil types and ecosystems
in terms of erosion problems. Land literacy is important in re-
cognizing land degradation problems. Revegetation and eco-
system restoration activities are an important part of environ-
mental conservation efforts in Iceland, with many examples of
successful projects. Iceland boasts one of the oldest Soil Con-
servation Agencies in the world (established 1907). Much of
the destroyed systems can be restored back to full potential with
time, but protection from grazing and facilitation by nitrogen
inputs through direct applications and biological activity (in-
cluding biological soil crusts) are important (Mattsson, 2016).

Sentinel-2 data is widely used by the scientific community, gov-
ernment agencies and private sectors for a great variety of ap-
plications, most of them carried out in Europe (Phiri et al.,

2020). It covers land surfaces from 56º S to 84º N (Iceland
is located between 64º and 66º N). It can be more accurate
when analyzing large areas, since the Sentinel-2 mission has
a wide swath of 290 km field view and is sun-synchronous. Its
12 bands have spatial resolutions ranging from 10 to 60m, of
which we are most interested in the 10m resolution ones since
we need this accuracy to explore agricultural lands and urban
areas. The temporal resolution is 5 days, which is a very short
period between the acquisition of images. An interesting prop-
erty of these images is that they have a low radiometric cal-
ibration uncertainty, which is very important to produce reli-
able results through our methodology. They also use a red-edge
band, which is reliable in retrieving biophysical parameters.

On the downside, Sentinel-2 data has been observed to mis-
match with Landsat OLI-8 data, it lacks thermal bonds and
has differences in spatial resolution among its bands. NASA
developed the Harmonized Landsat and Sentinel-2 datasets to
reduce the geolocation error and the 38m sensor-to-sensor mis-
alignment between the Sentinel-2 and Landsat-8 that Sentinel-2
data has.

Two factors that affect the accuracy of the delineation of eroded
soils using spectral images are the intensity of the soil erosion
processes and changes in the spectral characteristics of dis-
turbed soils, so these are limitations to keep track of. Other
common limitations include the lack of cloud masks, lack of
information on where soil types change, and lack of historical
data. Fortunately, this is not be the case for our project, thanks
to the mentioned availability of historical data for Iceland.

Mention forestry projects in Iceland which need soil (Mattsson,
2016). Vegetation is important, with the objective of creating
a regular cover that preserves the soil, stabilizes the land and
makes it resilient, thus avoiding the liberation of CO2 into the
atmosphere.

Our project will provide more advanced and objective inform-
ation than any ground fieldwork could. There has been no pro-
gress in accuracy or methodology in this field since the 1990’s,
when ESVs started to be used for aerial imaging. Satellite re-
mote sensing will allow to see change year to year of any region
in Iceland, with virtually no impediments of accessibility.

6. CONCLUSIONS

The present study tested the potential of building a classification
algorithm to assess the erosion stages of Icelandic soils. The
training process has been performed in a study area comprising
100 × 100 km2, which will be followed by an application to
the entire country. The impact of erosion was obtained through
an SVM classification model employing satellite Sentinel-2 im-
ages combined with the visual interpretation of ground truth
data provided by the Icelandic Soil Conservation Services de-
partment.

This methodology has been proven to provide good results,
achieving an overall land cover classification accuracy of
94% (Gadal et al., 2021), a performance that can be attributed to
the spectral complexity of Sentinel-2 data, particularly the red-
edge bands which give room for separability of erosion classes.
Low separability is a common limitation to the applicability of
classification methods. We address this by using ISODATA and
minimum distance methods. Two factors that could affect the
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accuracy of the delineation of eroded soils using spectral im-
ages are the intensity of the soil erosion processes and changes
in the spectral characteristics of disturbed soils.

The research described in this work aims at producing a reli-
able, widely applicable and cost-effective method to classify
Icelandic soils into different categories of erosion risk, a proof
of concept which, once engineered, could be straightforwardly
expanded and applied to other Arctic areas, such as Greenland
and Canada.
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Žížala, D., Juřicová, A., Zádorová, T., Zelenková, K., Min-
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