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ABSTRACT:

As geospatial data continuously grows in complexity and size, the application of Machine Learning and Data Mining techniques to
geospatial analysis is increasingly essential to solve real-world problems. Although in the last two decades, the research in this field
produced innovative methodologies, they are usually applied to specific situations and not automatized for general use. Therefore,
both generalization and integration of these methods with Geographic Information Systems (GIS) are necessary to support researchers
and organizations in data exploration, pattern recognition, and prediction in the various applications of geospatial data. In this work,
we present Cluster Analysis, a Python plugin that we developed for the open-source software QGIS and offers functionalities for the
entire clustering process. Or tool provides different improvements from the current solutions available in QGIS, but also in other
widespread GIS software. The expanded features provided by the plugin allow the users to deal with some of the most challenging
problems of geospatial data, such as high dimensional space, poor quality of data, and large size of data. To highlight both the
potential of the plugin and its limitations in real-world scenarios, the development is integrated with a considerable experimental
phase with data of different natures and granularities. Overall, the experimental phase shows good and adequate flexibility of the
plugin, and outlines the possibilities for future developments that can be provided also by the QGIS community, given the open-source
nature of the project.

1. INTRODUCTION

With the exponential growth of the use of computer science in the
last decades, the analysis of data and information is playing an
increasingly critical role in every aspect of society. A particular
type of data that is of great interest to a wide range of stake-
holders, such as businesses or public organizations, is geospatial
data, which combines location information (usually coordinates
on earth), attribute information, and often temporal information.
Geospatial data can be used to solve a large variety of real-world
problems, from studies on customers to epidemiology, natural
disasters, and urban planning. The software systems to perform
spatial analysis on this kind of data are called Geographic In-
formation Systems (GIS). GIS tools are essential to uncover
meaning and insight in geospatial data with the creation and
visualization of maps, graphs, and statistics. As geospatial data
complexity, variety and volume increased over the years, the ana-
lysis required more and more advanced methods. To overcome
these challenges, researchers started to apply the concepts of
Machine Learning to spatial analysis and GIS to filter, interpret
and predict information (Kanevski et al., 2009).

An example of this application is SIMBA (Lenzi, 2020), a
clustering-based methodology developed to support and sys-
tematize the analysis of the built environment in the Integrated
Modification Methodology (IMM) (Tadi et al., 2020) . Although
SIMBA provides a useful methodology to select a representative
and a reasonable number of features and to measure the distance
between elements in the built environment analysis, it still lacks
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a certain degree of automation. The automation and complete
integration of this methodology within GIS tools are the mo-
tivations from which this work starts. The approach that we
took to solve this problem consisted in the development of a plu-
gin for QGIS (QGIS Development Team, 2022), a widespread
open-source GIS software.

During the development phase, we noticed the possibility to
create a more general tool for cluster analysis that is suited for a
wider range of use-cases than SIMBA. By doing this, we also
extended the QGIS functionalities, as solutions of this kind are
still underdeveloped in the most popular open-source GIS. In
particular, the goals of the work are:

1. develop a plugin for QGIS that is capable to support the
whole process of cluster analysis, from the pre-processing
of data and feature selection to the evaluation of the results;

2. provide flexibility to allow the use on data of different
nature and size;

3. guarantee accessibility and ease of use, as GIS users of-
ten lack advanced machine learning and computer science
knowledge.

The final version of the tool we developed is composed of three
main parts: (i) feature cleaning for dimensionality reduction,
(ii) feature selection and clustering, and (iii) evaluation of the
obtained clustering. Along with the implementation, the research
is integrated with a considerable experimental phase, both during
and after the development phase. This phase was essential to
highlight both the potential of the plugin and its limitations
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in real-world scenarios. A great volume of experiments was
conducted on data about the city of Milan, describing social-
demographics, urban, and climatic characteristics with widely
different granularities.

In order to cover all the topics related to the plugin development,
the rest of the paper is structured as follows. At first, we present
an explanation of the machine learning concepts useful to under-
stand the plugin functionalities, followed by a brief description
of the solutions currently available for clustering in GIS. The
following sections provide the details about the implementation
of all the functionalities of the plugin, and an overview of the
experiments performed to assess its quality. The paper closes
by summarizing the results obtained by the final version of the
plugin and outlining the possibilities for future developments.

2. STATE OF THE ART AND MACHINE LEARNING
BACKGROUND

2.1 Clustering algorithms

Clustering is an unsupervised machine learning task, where the
main goal is to partition objects into groups of similar objects
(clusters) and to discover hidden structures or patterns in the data.
The objects are typically described as vectors of features (also
called attributes) and can be numerical (scalar) or categorical.
The term clustering does not correspond to a specific procedure,
but to a general problem that can be solved by using various
algorithms. In this work, we use two of the most widespread clus-
tering algorithms: Agglomerative Hierarchical (Nielsen, 2016)
and K-Means (MacQueen, 1967).

Agglomerative hierarchical clustering starts by separating every
data point in its cluster. Then the two closest clusters get merged
and this step is repeated until only one cluster is left. The result
of this procedure is a hierarchy of the clusters showing at which
distance they are merged; this graph can be displayed graphically
using a dendrogram.

K-Means is an iterative clustering algorithm that aims to find a
local maximum in each iteration. First, we need to specify the
parameter k, representing the number of clusters required, and as-
sign every data point randomly to a cluster. Then, the algorithm
computes the center (centroid) for every cluster. The next step is
to calculate the distance of data points to the centroids and reas-
sign every object to the closest cluster. Finally, it recomputes the
cluster centroids and repeats the last two steps until convergence,
meaning that the data points assignments no longer change. The
standard version of K-Means uses random initialization for the
first partition of the objects, but there are also other methods to
choose the initialization that will yield different results.

Obviously, there is not a definite answer on which of the two
presented algorithms is the best, as they have different advant-
ages and disadvantages, and the decision of the preferred al-
gorithm is based on the specific application that we are consid-
ering. K-Means performs considerably better in terms of space
and time complexity; therefore it is the best solution to handle
big datasets. However, the clear disadvantages of K-Means are
the necessity to select the number of clusters a-priori and the
random nature of the algorithm, which may produce different
solutions in different runs. The hierarchical algorithm is not
affected by these problems, since it provides the hierarchy of all
the clusters and is deterministic, meaning it always provides the
same solution.

2.2 Feature selection

One of the most important steps of machine learning, especially
with high-dimensional problems, is feature selection, which
consists in the selection of the optimal subset of features that
will be used in the model. This process will determine the quality
and the performance of the produced system. Indeed, having
fewer features than required will produce a model that is too
simple and not capable to predict the right output or to find
the best patterns in the data; on the other hand, selecting too
many features may lead to overfitting and excessive increase
of the model complexity. Feature selection is closely related
to a common problem in machine learning first introduced by
Bellman (Bellman, 1966) as the “curse of dimensionality”. This
concept refers to the explosive nature of spatial dimensions
and their resulting effects, such as an exponential increase in
computational effort, large waste of space, and poor visualization
capabilities. A higher number of dimensions theoretically allows
more information to be stored, but practically rarely helps due
to the higher possibility of noise and redundancy in real-world
data (Venkat, 2018).

Feature selection for unsupervised learning is usually more chal-
lenging than when dealing with supervised learning, since it
is difficult to evaluate the performances of the model without
a proper label on data; this causes classic algorithms to not
work on clustering. Moreover, in the literature, there are few
attempts to overcome these problems. Some examples are the
wrapper framework for unsupervised learning proposed in (Dy
and Brodley, 2004) or the ranking algorithm from (Dash and
Liu, 2000) that we implemented in our work. A way to reduce
the dimensionality of data before clustering, or before using a
feature selection algorithm, is to drop the features that we know
are most likely irrelevant or redundant, such as features with a
really small variability or that are highly correlated with other
ones.

For clustering purposes, the most relevant aspect of the curse of
dimensionality concerns the effect of increasing dimensionality
on distance and similarity. As we saw before, most clustering
techniques depend critically on these two measures and require
that the objects within clusters are, in general, closer to each
other than to objects in other clusters (Steinbach et al., 2004).
Unfortunately, when dealing with spaces in a lot of dimensions,
the data points and their distance measure does not behave as
intuitively expected. In (Beyer et al., 1999) is shown that, under
certain reasonable assumptions on the data distribution, the ratio
of the distances of the nearest and farthest neighbors to a given
target in high dimensional space is almost 1 for a wide variety
of data distributions and distance functions. This means that all
the data points are almost equidistant from each other, which is
a situation we want to avoid in clustering, since the definition
of close points becomes useless. The best distance metric to
use when dealing with a high dimensional space is Manhattan,
followed by Euclidean, as proven in the work (Aggarwal et al.,
2001).

2.3 Evaluation for clustering

Validating the performance of cluster analysis is not as trivial
as counting the number of errors or the precision and recall
as in the case of supervised learning algorithms. To evaluate
a clustering experiment, we usually try to compute a metric
describing how well similar points are grouped or, when possible,
compare its performance to a gold standard. The first approach is
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called an internal evaluation, while the second one is an external
evaluation (Liu et al., 2010).

For internal evaluation, there are different metrics to measure
intra-cluster similarity (samples within a cluster are similar)
and inter-cluster similarity (samples from different clusters are
dissimilar). Two of the most common metrics are: Silhouette
coefficient and Davies-Bouldin index (Liu et al., 2010). This
type of evaluation is easy to compute and to interpret, but it is
not always meaningful, like in the case of datasets with few data
points.

In external evaluation, the clustering results are compared to
a benchmark or gold standard, which is a labeling of the data
points produced by an expert in the field. The external met-
rics evaluate how well the clustering matches the gold standard
classes (Liu et al., 2010). While these metrics provide a good
assessment of the quality of clusters, they are rarely applicable
since external information about data is difficult to obtain.

2.4 Optimal number of clusters

Another challenging task in clustering, related to the evaluation,
is the decision on the optimal number of clusters. A simple
approach could use an evaluation metric on different cluster
numbers and select the one with the best result. In our work, we
focus on two graphical methods that can provide useful insights
to the users: the dendrogram of hierarchical clustering and the
knee-elbow method, based on the trends of Within clusters Sum
of Squares (WSS) and Between clusters Sum of Squares (BSS).

Using the dendrogram, the best choice for the number of clusters
is the number of vertical lines cut by a horizontal line that can
transverse the maximum distance vertically without intersecting
a cluster (Kaushik, 2016). In figure 1 the maximum distance is
represented by segment AB, and the choice would be 4 clusters.

The second technique, instead, consists in looking for a knee
or an elbow in the WSS and BSS trends, showing a significant
modification in the metrics (Thorndike, 1953). In the example
in figure 2, a good choice would be 5 clusters, as shown by the
sudden flattening of the two trends.

Figure 1. Dendrogram example

Figure 2. WSS and BSS trends example

2.5 Clustering tools in GIS

Both QGIS and ESRI ArcGIS (Environmental Systems Research
Institute, 2021), the most popular open-source and proprietary
GIS, provide various alternatives for attribute-based cluster ana-
lysis. Despite the good number of available tools, all of them
lack functionalities that are essential to face the challenges of
clustering geospatial data, such as their high dimensionality,
poor quality, and large dataset size.

In ArcGIS Pro, the main choice is the processing tool Mul-
tivariate Clustering, which provides clustering on one or more
selected attributes with the algorithms K-Means and K-Medoids.
It also includes a support functionality to give information on
the best number of clusters and multiple graphs that can be used
to better understand the formed clusters and the performances
of each attribute used.

In QGIS, clustering is provided by plugins developed by the com-
munity, and the most complete solution for non-spatial clustering
is Attribute Based Clustering (Kazakov and QGIS Development
Team, 2021). Attribute-Based Clustering offers a good amount
of settings for clustering with both algorithms Agglomerative
Hierarchical and K-Means, but has few other functions for im-
portant steps of cluster analysis.

3. CLUSTER ANALYSIS PLUGIN

Cluster Analysis allows to perform attribute-based clustering
on numerical fields of vector files with any geometry type and
is compatible with the most common vector formats, such as
Shapefile, CSV, GeoPackage, and GeoJSON.

The plugin is developed in Python (version 3.7), and all the
necessary files and base code are created using Plugin Builder
(GeoApt LLC and QGIS Development Team, 2018). The GUI
is designed with QT Designer (Qt Project, 2018) and additional
QGIS custom widgets, in order to have automatic updates of the
interface after the user adds or removes layers to the project.

The latest version of the plugin is available on the official QGIS
Plugin Repository (https://plugins.qgis.org/plugins/Cluster-
Analysis-plugin-main/), while the entire source code,
along with a User Guide, is available on Github
(https://github.com/folini96/Cluster-Analysis-plugin).
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3.1 Implementation overview

The plugin is composed of three main parts that will be discussed
in the following sections:

• feature cleaning

• feature selection and clustering

• evaluation

All of the functionalities in the different sections are implemen-
ted as stand-alone to guarantee that the users can perform only
the actions they need.

One of the major challenges during development has been al-
lowing most of the functionalities on large datasets as well, both
from the point of view of the number of samples and the number
of dimensions. To achieve this, we also implemented algorithm
options with good time complexities, as in the case of entropy
with sampling and K-Means. Moreover, for all the data storage
and manipulation done in the system, we use the data struc-
tures and functions provided by the libraries pandas (The pandas
development team, 2021) and NumPy (Harris et al., 2020) to
guarantee high performance.

Another important focus of the development process is the ex-
tensibility of the project. We designed the application to be easily
expanded in the future with new functionalities or algorithms,
both by the authors and the QGIS developer community

3.2 Feature cleaning

In the first section, we want to give options to reduce the dimen-
sionality of the dataset by dropping the features that are most
likely bad for clustering. This is important to achieve better
results and faster execution time, avoiding the problems of clus-
tering in high dimensionality. To avoid the modification of the
original dataset, once the process is complete, the plugin creates
a new vector layer containing only the selected fields.

Since highly correlated features usually provide redundant in-
formation and can lead to an overweight of some characteristics,
the first filter removes the features that are correlated above a
user-defined threshold. The user can also select the criterion
used to keep a feature among a multicollinear group from the
following options:

• order of the attributes in the dataset;

• lower average correlation with all the other features;

• similarity of the feature distribution to the Normal distri-
bution. To check which feature is preferred we calculate
the Shapiro-Wilk statistics and select the one with a higher
value;

• ratio between the max interval of values and the domain of
the feature, where a higher value indicates better coverage
of the domain is preferred. To use this criterion all the
features must have the same domain specified by the user.

The other two filters identify the attributes with constant values
for all the data points or with only few outliers differentiating
from them. These types of features don’t provide any valuable
information and can worsen the performance of clustering. In
order to select which features fall into this category, we prefer to
avoid using a threshold on variance, which is difficult to define
in the general case. Instead, we use two different parameters,
introduced in the function NearZeroVar() from the Caret package
developed for R (Kuhn, 2008):

• ratio between the two most frequent values

• number of unique values relative to the number of samples

To flag a feature, first the frequency of the most prevalent value
over the second most frequent value must be above the frequency
threshold. Secondly, the number of unique values divided by the
total number of samples must also be below the unique values
threshold. The thresholds are set for default respectively to 19
and 0.05 (5%).

3.3 Feature Selection and Clustering

This section is used to perform clustering on the chosen vector
layer. First of all, the user needs to select the features to use in
the process. It is possible to select the features both manually and
automatically. The automatic feature selection is done using an
entropy-based algorithm presented in two versions with different
computational complexities. All the experiments carried out are
stored as instances of the Experiment() class and can be seen in
the Evaluation section. The cluster labels are added to the vector
layer as a new field with the name selected by the user.

The entropy feature selection, presented in (Dash and Liu, 2000),
provides a complete ranking of the features based on their im-
pact in separating the data into well-formed clusters. From the
ranking, we extract only the features that guarantee a positive
effect on the data separation. The algorithm can be performed
on the entire dataset, with a time complexity quadratic on the
number of data points, or exploiting random sampling. The
sampling version removes the dependency on the number of data
points, providing great scalability for larger datasets. The use
of smaller samples instead of the entire dataset could reduce the
quality of the selection. Moreover, this version of the algorithm
could yield slightly different results on each execution due to its
random component. To mitigate these problems, it is possible
to select a larger number of algorithm iterations and size of the
samples, which are defaulted respectively to 35 and 100.

The two alternative algorithms for clustering are the ones we
presented in Section 2:

• Agglomerative hierarchical

• K-Means

For both algorithms we use the functions implemented in scikit-
learn (Buitinck et al., 2013). The parameters we need to define
for hierarchical are:

• n clusters: represents the number of clusters we want to
obtain and needs to be specified by the user;

• affinity: distance measure between the sample. We use the
Euclidean distance as default;

• linkage: distance measure to use between clusters. The
algorithm merges the pairs of clusters that minimize this
criterion. The parameter is not editable and set to “com-
plete”, which means we use the maximum distance between
clusters.

With K-Means we only need to specify the number of clusters
selected by the users and the other parameters are set to default
values.

The possibility to use different clustering algorithms allows the
users to select the one that best suits their needs. Especially, as

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-151-2022 | © Author(s) 2022. CC BY 4.0 License.

 
154



we said before when talking about the space and time complexity
of both algorithms, the use of only hierarchical clustering would
limit the analysis to small datasets.

Before performing clustering, the plugin offers the possibility to
plot the dendrogram and WSS-BSS trends to facilitate the choice
of the number of clusters, and to scale the datasets with standard-
ization or normalization. The data scaling is used to bring every
dimension to the same equal weight and is particularly important
when the features in the dataset represent measurements with
different units or different scales.

3.4 Evaluation

In this section, we show all the experiments carried out in the
current session, with a recap of the settings and performances
of the experiments and the possibility to save and load them. To
evaluate the quality of the experiments we calculate two indexes
and we allow a comparison among experiments on the same
dataset.

The indexes used are the internal metrics Silhouette coefficient
and Davis-Bouldin index. In addition, to directly compare the
clusters formed by two or more experiments, we compute the
score, introduced in (Lenzi, 2020), which evaluates how many
couples of data points are grouped together in all of the experi-
ments or in none of them.

Every experiment completed in the current session can be stored
in a text file, and the experiments saved in previous sessions can
be loaded in the plugin and are shown in the evaluation section
along with the other ones.

3.5 User Interface

The main objective of the interface is to ensure ease of use for
every user, regardless of their experience level with machine
learning and GIS. For this reason, most of the design choices
have the goal to simplify the interface.

The user interface is enclosed in a single window containing a
QTabWidget split into three tabs, one for each main functionality
of the plugin. The layout of the three tabs is similar and is
composed of the widgets for user inputs, a message section, and
a brief user guide. The message box is used to notify the user
about any error in the inputs or the completion of the selected
operations. To maintain the simplicity of the user interface, the
most technical parameters of the algorithms are moved in an
external configuration file in JSON format.

3.6 Configuration file

The JSON file called ”Configuration” is in the plugin directory
and can be easily modified by any text editor. The settings are
set once when the plugin is loaded, so it should be restarted after
an update. The modifiable parameters are:

• frequency cut: the threshold for the ratio of the most com-
mon value to the second most common value, used in the
quasi-constant feature elimination;

• unique cut: the threshold for the ratio of distinct values
to the number of total samples, used in the quasi-constant
feature elimination;

• entropy iterations: the number of random samples used for
the sampling entropy algorithm;

• sample size: the number of points in every random sample
for the sampling entropy algorithm;

• graph max cluster: the max number of clusters used when
plotting WSS and BSS trends;

• distance: distance measure used in hierarchical clustering,
the accepted values are ‘euclidean’ or ‘manhattan’.

4. EXPERIMENTAL PHASE

During the entire development process, we conducted a large
number of experiments that covered all the features offered by
the plugin. The main objective of the experimental phase was
not to evaluate the performance of a particular methodology
or algorithm, but rather to show the potential of the developed
tool to analyze data of different nature and, most important, of
different sizes, up to several tens of thousands of data points.
Furthermore, the experiments were also essential to identify and
understand the shortcomings of the plugin. For these reasons,
we preferred to perform analysis on real and complete use cases.
The datasets used in the experiments refer to the city of Milan
and can be grouped into four different categories:

• climate data

• urban data

• demographic and social data

• buildings data

For what concerns the size of the datasets, the granularities used
range from less than 100 to almost 70000 data points, and up to
109 numerical attributes.

At the end of the development phase, we were able to apply
almost all the functionalities for pre-processing, feature selection,
clustering, and evaluation to each dataset with few exceptions.
In particular, the most critical functions are:

• the score computation, which requires the storage of a
matrix with dimension NxN where N is the number of
data points and could exceed the memory limits;

• the entropy calculation for datasets with more than a few
hundred of data points, which could require several minutes
for the execution.

The latter has a direct solution with the use of the random
sampling version of the algorithm; while the score would re-
quire some modifications to the plugin, such as splitting the
matrix into smaller blocks and computing the scores separately.

4.1 Experiments examples

In this section, we briefly report three examples of experiments
performed with the plugin, while a more detailed description of
the entire experimental phase can be found in (Folini, 2021).

The first example (figure 3) is a partition of Milan, with a 100m
spatial resolution, in 5 different climate zones using data about
temperature, humidity, and wind speed from Copernicus CDS
(Copernicus Climate Change Service (C3S), 2019). The al-
gorithm used is K-Means, given the size of the dataset, and the
features are selected with an automatic procedure.

The second experiment (figure 4) tries to identify the neighbor-
hoods in Milan with potential social criticalities starting from
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Figure 3. Map of monthly climate data from 2017 with 5 clusters

Figure 4. Hierarchical clustering on young people education and
occupation data with 2 clusters

features about young people’s education and occupation. In this
case, the choice for the algorithm is hierarchical, which is more
suitable to find outliers in a dataset.

The last one (figure 5) is an attempt to automatically categorize
approximately 70 thousand buildings into meaningful typolo-
gical classes starting from a set of formal properties. Both the
features and the number of clusters are selected manually by an
expert and the algorithm used is K-Means.

5. CONCLUSIONS AND FUTURE WORKS

The objective of this research was to expand the possibilities of
using machine-learning techniques – in particular clustering – on
geospatial data within a GIS. To achieve this, we implemented

Figure 5. K-Means clustering on buildings data and manually
selected features with 6 clusters

from scratch a new plugin that introduces functionalities that
were not available in the existing QGIS plugins, nor in other
widespread proprietary software such as ArcGIS.

As highlighted by the experimental phase, the plugin presents
good versatility and can be of great use in various contexts.
However, the experiments also identified some limitations that
can be improved in future works, especially in two categories:

• optimization of the software performances to enable the
use of each functionality on even bigger datasets;

• expansion and improvement of the analysis functionalities.

The first performance improvement should be on the score com-
putation, as it is currently impossible for datasets with tens of
thousands of data points, due to memory constraints. For what
concerns the addition of new functionalities, the main focus
should be on the implementation of a new section dedicated
to data visualization and exploration, which would provide im-
portant information about the data before the execution of the
analysis. Another possibility that would not require much effort
is the extension of existing functionalities such as new clustering
or feature selection algorithms.

Currently, the plugin has been downloaded by more than 1500
users in a few months, which proves the interest in the applica-
tion. In the future, we hope it will be able to support the work of
researchers and professionals in different fields.
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