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ABSTRACT: 

 

In the recent years, point cloud technologies, such as Unmanned Aerial Vehicles (UAV), Terrestrial Laser Scanners (TLS), Aerial 

Laser Scanners (ALS), let alone Mobile Mapping Systems (MMS), have come into the focus of attention and have been a subject of 

considerable public concern in mapping. Thanks to these new techniques, experts can survey large areas with sufficient and 

homogenous accuracy with high resolution. It comes from this that there are several areas where the point clouds can be used. One of 

the possible applications of point clouds is updating land registry maps. Many countries worldwide face the issue that a significant 

part of their large-scale land registry maps are outdated and inaccurate. One of these countries is Hungary, where more than eighty 

percent of digital cadastre maps were digitised using analogous maps in a scale range of 1:1000 – 1:4000. In this paper, a novel 

processing queue is presented to find the footprints of the building. Our solution is based on primarily well-known algorithms 

(RANSAC, DBSCAN) implemented in open-source Python packages. An automated flow was developed, composed of simple 

processing steps, to cut the point cloud into wall and roof segments and vectorise the wall points under roofs into building footprints. 

The algorithms and Python programs were tested in villages where detached houses are typical. Tests were made on three study areas 

in Hungary and we achieved well-promising results. 
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1. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have become popular 

instruments during the last two decades. UAVs have a wide 

range of applications from geoscience to remote sensing and 

engineering. Thanks to this flexibility and relatively low costs, 

fast and detailed mapping of the significant areas are available 

for anyone. The application can only be limited by imagination. 

(Nex et al., 2022) 

One of the applications is updating land registry maps. Many 

countries worldwide face the issue that a significant part of their 

large-scale land registry maps is based on old analogue maps 

from the late 19th or the early 20th century. One of these 

countries is Hungary, where more than eighty percent of digital 

cadastre maps were digitised using analogous maps in a scale 

range of 1:1000 – 1:4000, not to mention the maps with fathom 

as base unit and with the scale of 1:1440 and 1:2880. 

Unmanned Aerial Vehicles can provide users with a fast and 

affordable solution to update land registry maps. There are 

several examples where point clouds derived from digital 

images taken by UAV were used to update maps. For instance, 

in the Netherlands point cloud and true-orthophoto derived 

from images taken by UAV to identify property boundaries. 

(Rijsdijk et al., 2013). The result was that the necessary 

accuracy to do land registry mapping is achievable. The 

accuracy of the final product was checked by GNSS 

measurements, and it provide to be below 10 cm. Similar result 

were get in Albania (Barnes et al., 2014) and Poland 

(Kedzierski et al., 2016; Kurczynski et al., 2016) too.  

Not only the UAV photogrammetry can provide the required 

accuracy. In China to increase efficiency and accuracy UAV 

was deployed with LiDAR sensor and was used for land registry 

mapping (He and Li, 2020). In the Czech Republic, an 

experiment was taken to compare the result of the 

photogrammetry and LiDAR based UAV measurements (Šafář 

et al., 2021).  

Nowadays automation is one of the main questions. Most of the 

presented solutions to update land registry maps from a point 

cloud are based on manually processing. The question is how 

and how much the processing can be automated to get 2D maps 

from 3D point clouds? 

There are several studies about the usage of UAV orthophotos 

for cadastral mapping. In most of these Deep Learning 

techniques, like Fully Convolutional Networks (FCNs) were 

used to classify roofs and boundaries on images in urban and 

semi-urban areas (Xia et al., 2019). FNCs were also used to 

detect changes, like new buildings, the creation of open spaces, 

and incremental roof upgrading (Gevaert et al., 2020). The 

photo-based segmentation methods are widespread, thanks to its 

cost efficiency it can provide a good foundation in places where 

cadastre maps are not available. 

On the other hand, there are areas where processing of high-

resolution photos is not enough. This is where different point 

cloud techniques come in. There are several studies where 

Aerial Laser Scanning-based measurements result was used to 

detect building roofs on large areas with combination of 

different segmentation and classification methods (Grilli et al., 

2017), like Cloth Simulation Filtering (CSF), region growing 

(Shao et al., 2021). There is an approach where region growing 

was combined with Z coordinate histogram is analyzation to 

separate roof point from point clouds (Kurdi et al., 2022). There 

is a solution that combines region growing method over the 

Triangulated Irregular Network (TIN) model to refine the roof 
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regions and their boundaries. From the separated roof points 

Level of Detail 2 (LOD2) 3D model of buildings was generated 

(Li et al., 2019).  

Point clouds generated with UAV photogrammetry are also 

used to create 3D urban models. To detect building classes the 

combination of image and point cloud segmentation can be 

used. The boundaries of roofs can be determined from the 

semantic segmentation of the orthophoto. Using this result as a 

mask on the segmented point cloud 3D model of urban areas 

can be generated (Özdemir and Remondino, 2018).  

With the help of the presented methods study data can be 

generated for Machine Learning and Deep Learning algorithms. 

There are several prepared datasets which can be used to train, 

and with the help of it, classify ALS (Özdemir et al., 2019) and 

MMS (Zou et al., 2021) point clouds. 

There have been several efforts so far to detect objects in 

images or point clouds. Our approach concentrates on a very 

specific area to find building footprints on a fully automated 

way for cadastre mapping with enhanced accuracy (below 0.1 

m). Majority of the previous works stopped to find the roofs 

either in orthophotos or in the point clouds. 

To support automatic data processing of point clouds, a wide 

range of open-source software available, such as 

OpenDroneMap (ODM)/WebODM (OpenDronMap 

Development Team, 2020), CloudCompare (CloudCompare 

Development Team, 2022), QGIS (Cutts and Graser, 2018), not 

to mention many open-source libraries, like Open3D (Zhou et 

al., 2018), SciPy (Virtanen et al., 2020) and Scikit-learn 

(Pedregosa et al., 2011). Python programs were created for each 

processing step, sometimes alternative solutions to a specific 

problem, and we make it available for the community under an 

open-source license (GPL). 

We took our measurements in villages where one or two-story 

detached buildings are typical. For those small settlements, 

small or medium Unmanned Aerial Vehicles (UAVs) can be 

satisfactory considering the limited flight time with a few 

batteries. 

 

 

2. MATERIALS AND METHODS 

2.1 Fieldworks 

There are some essential aspects need to be taken into 

consideration when planning and executing flights. Making 

oblique images is vital to have enough points on the walls of the 

buildings. The best result could be achieved with double grid 

mission and oblique camera at 25-30 degrees. Another key 

point worth mentioning is to fly in seasons when the vegetation 

is leafless not to hide buildings. 

During our tests, three campaigns were carried out with 

different flight parameters (Figure 1), just to name but a few, 

different oblique angles, single and double grid missions, with 

or without nadir images. To reach the required ten centimetres 

or even better accuracy, not more than two centimetres of 

Ground Sample Distance (GSD) is required.  

 

 

Figure 1. Grid flight mission for one of the test areas. 

 

To improve the accuracy of the three-dimensional 

reconstruction from the UAV images Ground Control Points 

(GCPs) were used. The residuals at the GCPs are below one 

centimetre processing the images by OpenDroneMap. 

The input data of our investigations is the point cloud of the 

study area. It might as well come from LiDAR observations if 

there are enough points on the walls of the buildings. However, 

in this study only photogrammetric point clouds have been 

tested. 

  

2.2 Pre-processing of point clouds  

Pre-classification of large-scaled point cloud is necessary to 

prepare raw point cloud data. After some noise removal, e.g., 

statistical outlier one, a subsampling could be the next step. For 

our specific investigation, the points on the roof and on the 

walls are of great importance. Usually, you get a way more 

points on the roofs than on the walls. A voxel-based down 

sampling can be used to significantly reduce the number of 

points on the roofs. 

Separation of the roof and wall points from other points can be 

done using relative heights. Thus, we created a normalised point 

cloud by subtracting the ground height from the elevation of the 

points. This is done in three steps. The first one uses the Cloth 

Simulation Filter (CSF) algorithm (Zhang et al., 2016) to 

separate ground and non-ground points with high efficiency. In 

the second step a Digital Terrain Model (DTM) is generated 

from the ground points with the help of GDAL (Rouault et al., 

2022). Finally, by computing vertical differences of the point 

cloud from the DTM a Normalised Digital Surface Model 

Figure 2. Vertical section of the original and normalised point cloud. 
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(nDSM) is generated (Figure 2). Filtering points by normalised 

elevations (e.g. Z > 0.3 m) in the nDSM, ground and low 

vegetation can also be masked. With this simplification, the size 

of the original point cloud can be reduced by nearly 70-80% 

without losing relevant data of buildings. 

 

 

Figure 3. Normalised Surface Model, ground and low 

vegetation points removed. 

 

2.3 Point cloud segmentation 

In the point clouds generated from images taken by UAVs, the 

majority of the points are on the roofs. This can be attributed to 

the specialties of the data collection method. Therefore, roofs 

and walls should be treated separately. Thanks to the 

normalization, a rough filtering can be performed using the 

relative elevations of the non-ground points (Figure 4). It can be 

stated with full confidence that those points which are below a 

specific relative height (2.5 m, for instance) cannot be 

considered as roof points. On the other hand, points above the 

same limit can be either roof points or points on other features, 

as well. This way, cars, roofs, and other non-relevant features 

can be eliminated efficiently. 

 

  

Figure 4. Normalised point cloud filtered by elevation, left 

above 2.5m, right below 2.5m. 

 

Assumed that the building roofs consist of planar surfaces, the 

processing can be simplified to find those points that are fitting 

a plane in a certain threshold. Sequential RANSAC (Fisher and 

Bolles, 1982) offers an efficient solution to this problem. 

Instead of applying RANSAC for the whole area, the point 

cloud was subdivided into voxels (Figure 5) to increase the 

efficiency of the algorithm. Voxel size can be set to between 

0.5-3 meters. The sequential RANSAC is applied to these 

smaller blocks finding planar surfaces. Not only one but even 

more significant planes can be detected in one voxel. Another 

advantage of voxelization is that the processes can be 

parallelized, which makes the processing more efficient on large 

point clouds. Thanks to RANSAC the noise and vegetation are 

filtered out.  

 

 

Figure 5. Planarity check in a voxel with RANSAC, left red 

points in the voxel, found plane in the middle, inliers, and 

outliers on the right. 

 

  

Figure 6. nDSM (left) before and after RANSAC filtering 

(right). 

 

Not all planes found by sequential RANSAC are part of the 

roofs. The normal vectors of the planes are used to cancel non-

roof parts (the angle of the normal from the horizontal direction 

between 0-60 degrees). The filtered voxels are combined into 

one point cloud yielding the roof points (Figure 6). 

In the next step of the algorithm, the roofs are clustered by 

applying the Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) (Ester et al., 1996.). DBSCAN searches 

for core samples with high density which are expanded by 

selecting the neighbouring patches. The primary advantage of 

DBSCAN is that it is not needed to predefine the number of 

clusters.  

Using the lower part of the normalised point cloud (below a 

given relative height) the wall points can be separated. First, we 

tried to separate wall points like roof points applying sequential 

RANSAC planes, but the varying density of the point cloud 

made it difficult to find acceptable RANSAC parameters for all 

the situations. Then, the normal vectors are calculated at each 

point taking into account using the surrounding points in a 

certain radius and/or using a k-Nearest Neighbour (KNN) 

method. If the direction of the normal vector is close to 

horizontal, the point can be considered as a wall point in a 

vertical part of the point cloud. Segmenting the points by the 

estimated normal directions gives many false wall points, too, 

on the vegetation, on cars, etc. These false points could be 

dropped away by considering the roof polygons. 

A further process of wall suspicious points is made using the 

convex hull of each clustered roof. The wall points can be 

filtered by bounding polygons. Before cropping wall points it is 

worthwhile to scale up the size of the roof polygons (Figure 7). 

This way point cloud of the walls can be separated by roof 

clusters.  

At the end of the segmentation, we have several small point 

clouds for each building, that contains wall and roof points 

separately (Figure 8). 
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Figure 7. Roof and wall points (left), roof clusters (middle) and bounding polygon of the roof clusters (right). 

 

 

Figure 8. Clustered roof points, different clusters are marked by 

assorted colors. 

 

2.4 Object detection 

At this point the clustered building points could be a good 

starting point for the 3D reconstruction of buildings (Figure 9). 

Since our aim is to find 2D footprints of buildings, only the wall 

segment of each building is used individually in the following. 

As walls are supposed to be vertical, so our solution is reduced 

to 2D horizontal plane. 

First the line equations of wall segments are searched using 

sequential RANSAC lines. The position of the possible corners 

of the building footprint are calculated by the intersection of 

two found lines in every combination. To find the real edges of 

the building footprint between the possible corner points, each 

pair of corner points is checked using a rectangular buffer 

around the edge. The buffer does not contain the close 

environment of the corner points.  A decision is made on the  

 

density of the points (points/m2) whether it is a real edge 

(Figure 10). 

 

 

 

Figure 9. Clustered building points, different colours mark the 

corresponding wall and roof sub-point clouds. 

 

.  

Figure 11. Detected walls at Barang test area. 

Figure 10. Intersection of the lines in every combination (red points) and the finding real edges by checking the density of the 

points in a buffer rectangle. 
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3. MEASUREMENTS AND PROCESSING 

Three areas in Hungary were tested during the development of 

our algorithm. Photos were taken by a DJI Phantom 4 Pro UAV 

(Figure 12) and Ground Control Points (GCPs) were measured 

by RTK GNSS technique. 

 

 

Figure 12. DJI Phantom 4 Pro before taking off at Üllő. 

 

The results of our two campaigns (Barnag and Üllő) were used 

presented in our previous research (Hrutka et al., 2021) too. On 

these test areas both nadir and oblique photos were taken at 55-

meter altitude AGL (Above Ground Level), having a 20 MPixel 

camera with 1.5 cm GSD (Ground Sample Distance). Image 

overlaps were set to 80% in both directions. During the grid 

missions the oblique angle was set to 25 degrees from the 

vertical. 

The third test area was at Sződ which is a village north to 

Budapest. During the flight only oblique photos were taken in a 

double grid mission at 70-meter AGL with 1.9 cm GSD. The 

overlap was 80% and the oblique angle was set to 20 degrees.  

The photogrammetric processing was carried out in ODM 

(OpenDroneMap), but we also used 3DSurvey. In the first test 

area Barnag 1400 nadir and 890 oblique photos were combined 

to generate point cloud. In the Üllő test area 805 images were 

used and in the Sződ test area 799 photos were used. 

 

 

4. RESULTS AND DISCUSSION 

Using the methods presented in the study, Python scripts were 

created and added into our public GitHub repository 

(https://github.com/zsiki/pc_utils). To run these scripts 

automatically a bash script was also created. Thus, the 

processing was done effectively on each test area. Table 1. 

shows the size of the point clouds at different processing steps.  

 

Test 

areas 

Number of points 

Original nDSM Roof Wall 

Barnag 451 686 787 81 310 287 40 095 996 2 057 479 

Üllő 115 526 471 47 113 079 25 429 088 1 825 643 

Sződ 221 225 187 67 547 734 38 776 948 2 226 676 

Table 1. Size of the point clouds at the different steps, nDSM 

without ground points. 

 

When generating nDSM, the original point cloud’s size can be 

reduced by nearly 70-80%. This significant reduction in size 

without losing relevant data can make the processing more 

effective with the voxelization. It can also be seen, that nearly 

the half of the nDSM points can be considered as roof points. 

The number of usable wall points is 1% of the total point 

clouds. During the processing voxelization plays an important 

role. In large-scale point clouds multi-threading made possible 

by voxelization and it can reduce the processing time 

significantly. 

As a result, the processing clusters of the building were also 

generated. The number of these buildings was compared to the 

available maps. At Barnag, where updated land registry map 

was available the number of 163 buildings were found out of 

the 224 in total. At Sződ 172 building cluster were identified 

out of 178. At Üllő 120 building cluster were found.  

Using the segmented wall points in each test area the mapping 

of walls was performed with the sequential RANSAC based 

algorithm. Since it can be stated with full confidence that the 

buildings are typically rectangular one, just right-angle building 

corners were mapped. In some more complex scenes, not every 

wall is found, and this situation might cause some misdraws. 

This error is caused by the inflexibility of the sequential 

RANSAC parameters. It can be fixed by applying adaptive 

parameters. 

 

 
 

Figure 13. Some examples from the manually (red) and 

automatically (green) detected buildings. 

 

Despite the abovementioned issue, quite a lot of corner points 

are mapped. The coordinates of these points were collected and 

compared to a manually created and updated land registry map. 

The main statistical parameters of the comparison are shown in 

the Table 2. 

 

Statistical measure of the 

results [cm] 

 Mean 22 
 

Minimum 4 
 

Maximum 48 
 

Median 21 
 

Std. dev. 11 
 

Table 2. Statistical result of automatically founded corners 

compare to a manually created map of Barnag test area. 

 

 

5. CONCLUSION 

The main purpose of our study was to find building footprints 

from point clouds in order to update old and inaccurate large-

scale maps with the help of open-source solutions. The 
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processing of point clouds was moved to mainly 3D. After noise 

filtering, as a pre-processing step, the original point cloud was 

separated into two parts: ground and non-ground points with the 

help of a CSF algorithm. Using these results nDSM was 

generated and filtered by height. During the main process we 

have developed solutions where parallel processing can be used 

to speed up the processing of huge point clouds. In addition to 

the combination of voxelization and sequential RANSAC, a 

DBSCAN algorithm was also applied to separate the roof 

points. To get the wall points of these roof clusters a crop was 

performed by the bounding polygon of roofs. Thus, the wall 

points were generated from the rest of the non-ground points 

which were filtered by height and normal direction. Finally, to 

find building footprint in each wall cluster sequential RANSAC 

lines was used.  

Small Python codes were created for each step of the 

processing. Some cases we have alternative solutions for the 

same processing step, for example segmenting the wall points 

from the normalised point clouds. The Python codes published 

on GitHub are experimental, several parameters of the 

processing can be changed by the user from the command line 

or JSON configuration file to make the process more flexible 

and of course more difficult to use. 
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