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ABSTRACT:

Origin-Destination (OD) datasets provide vital information on how people travel between areas in many cities, regions and countries
worldwide. OD datasets are usually represented geographically with straight lines or routes between zone centroids. For active
travel, this geographic representation has substantial limitations, especially when zone origins and centroids are large: only using
a single centroid origin/destination for each large zone results in sparse route networks covering only a small fraction of likely
walking and cycling routes. This paper implements and explores the use of jittering and different routing options to overcome
this limitation, thereby adding value to aggregate OD data to support investment in sustainable transport infrastructure. The route
network results — generated from on an open dataset representing cycling trips in Lisbon, Portugal — were compared with a
ground-truth dataset from 67 count locations distributed throughout the city. This approach enabled exploration of which jittering
parameters and routing options lead to the most accurate route network results approximating the real geographic distribution of
cycling trips in the study area. We found that jittering and disaggregating OD data, combined with routing using low level of
traffic stress (quieter) preferences resulted in the most accurate route networks. We conclude that a combined approach involving 1)
jittering with intermediate levels of disaggregation and 2) careful selection of routing options can lead to much more realistic route
networks than using established OD processing techniques. The methods can be deployed to support evidence-based investment in
strategic cycling and other sustainable transport networks in cities worldwide.

Note: this has been submitted to the academic track of
FOSS4G. See https://osf.io/4yxj7/ for the preprint.

1. INTRODUCTION

Origin-destination (OD) datasets provide information on aggre-
gate travel patterns between zones and geographic entities, and
can be obtained from a wide range of sources making them one
of the most commonly used geographic inputs in applied trans-
port planning (Alexander et al., 2015). OD datasets are often
‘implicitly geographic’, containing identification codes of the
geographic objects from which trips start and end. Exact coor-
dinates of origins and destinations are provided in this way for
good reasons: historically computational resources constrained
analysis options, meaning that data reduction (by converting
thousands of travel survey responses into a more compact ag-
gregate OD dataset) was important; and privacy considerations
prevent the disclosure of exact trip start and end points (Boyce
and Williams, 2015).

A common approach to converting OD datasets to geographic
entities, for example represented using the simple features stan-
dard (Open Geospatial Consortium Inc, 2011) and saved in file
formats such as GeoPackage and GeoJSON, is to represent each
OD record as a straight line between zone centroids. This ap-
proach to representing OD datasets on the map has been since at
least the 1950s (Boyce and Williams, 2015) and — despite the
development of various methods to add value to OD datasets by
∗ Corresponding author

sampling start and end points and ‘connectors’ withing each
zone (Lovelace et al., 2022b), discussed below — centroid-
based geographic representations of OD data are still dominant
(Rae, 2009; Tennekes and Chen, 2021). Before explaining the
methods, it is worth defining terms:

• Origins: locations of trip departure, typically stored as ID
codes linking to zones

• Destinations: trip destinations, also stored as ID codes
linking to zones

• Attributes: the number of trips made between each ‘OD
pair’ and additional attributes such as route distance be-
tween each OD pair

• Jittering: The combined process of ‘splitting’ OD pairs
representing many trips into multiple ‘sub OD’ pairs (dis-
aggregation) and assigning origins and destinations to
multiple unique points within each zone

Beyond simply visualising aggregate travel patterns, centroid-
based geographic desire lines are also used as the basis of many
transport modelling processes. The following steps can be used
to convert OD datasets into route networks, in a process that
can generate nationally scalable results (Morgan and Lovelace,
2020):

• OD data converted into centroid-based geographic desire
lines
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• Calculation of routes for each desire line, with start and
end points at zone centroids

• Aggregation of routes into route networks, with values
on each segment representing the total amount of travel
(‘flow’) on that part of the network, using functions such
as overline() in the open source R package stplanr

(Lovelace and Ellison, 2018)

This approach is tried and tested: the OD → desire line →
route → route network processing pipeline forms the basis of
the route network results in the Propensity to Cycle Tool, an
open source and publicly available map-based web application
for informing strategic cycle network investment, ‘visioning’
and prioritisation (Goodman et al., 2019; Lovelace et al., 2017).
However, the approach has some key limitations:

• Flows are concentrated on transport network segments
leading to zone centroids, creating distortions in the re-
sults and preventing the simulation of the diffuse networks
that are particularly important for walking and cycling

• The results are highly dependent on the size and shape of
geographic zones used to define OD data

• The approach is inflexible, providing few options to people
who want to use valuable OD datasets in different ways

To overcome these limitations, methods of ‘jittering’ OD data
have been developed (Lovelace et al., 2022b). While the re-
sults from analysis of route networks generated from jittered
OD data in that paper were promising, the input datasets were
small and technique was not evaluated with reference to ground
truth data. This raised the question “Are the jittered results mea-
surably better when compared with counter datasets on the net-
work?” (Lovelace et al., 2022b).

This question was partially addressed during a presentation and
subsequent proceedings published as part of the GISRUK con-
ference (Lovelace et al., 2022a). However, the input dataset
used for that conference paper was small and overly focussed
on Edinburgh. Furthermore, only a single routing option was
used, raising the question: what is the relative importance of
geographic OD data pre-processing (jittering) and routing op-
tions when preparing route networks to support strategic sus-
tainable transport plans? We set out to address this question in
this paper.

1.1 Software and reproducibility

In this paper present results generated using the odjitter Rust
crate. We developed an interface to R in the odjitter R
package (not on CRAN at the time of writing) that can form
the basis of a implementations in other languages that inter-
face with the highly efficient Rust implementation. The results
presented in this paper are fully reproducible. See the paper’s
GitHub repository at https://github.com/Robinlovelace/
foss4g22/ for implementation details and to reproduce the re-
sults.

2. APPROACH

2.1 Jittering

Jittering represents a comparatively simple — compared with
‘connector’ based methods (Jafari et al., 2015) — approach is

Figure 1. Cycling infrastructure in Lisbon as October 2021 and
location of cyclists’ counters.

to OD data preprocessing. For each OD pair, the jittering ap-
proach consists of the following steps for each OD pair (pro-
vided it has required inputs of a disaggregation threshold, a sin-
gle number greater than one, and sub-points from which origin
and destination points are located):

1. Checks if the number of trips (for a given ‘disaggrega-
tion key’, e.g. ‘walking’) is greater than the disaggregation
threshold.

2. If so, the OD pair is disaggregated. This means being di-
vided into as many pieces (‘sub-OD pairs’) as is needed,
with trip counts divided by the number of sub-OD pairs,
for the total to be below the disaggregation threshold.

3. For each sub-OD pair (or each original OD pair if no disag-
gregation took place) origin and destination locations are
randomly sampled from sub-points which optionally have
weights representing relative probability of trips starting
and ending there.

This approach has been implemented efficiently in the Rust
crate odjitter, the source code of which can be found at
https://github.com/dabreegster/odjitter.

2.2 Case study

Lisbon, Portugal, is a city with about half million residents. By
2018, when a mobility survey was carried on, and only about
0.5% of trips were made by bicycle. However, the investments
in cycling infrastructure, reaching 150 km of cycling network
in 2021, and the implementation of a dock-based bike-sharing
system had a major impact on cycling levels (Félix et al., 2020).

Cyclists’ counts are performed yearly from 2017 to 2021 at
more than 65 locations in Lisbon during morning and afternoon
peak hours (8-10 am and 5-7 pm). In 2021, these were car-
ried out in October. The 67 locations, shown in Figure 1, were
chosen considering to the existent and planned cycling infras-
tructure, and places where there was no cycling infrastructure,
but had already some presence of cyclists.
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2.3 Methods

We use data from a mobility survey (Instituto National de Es-
tatı́stica, 2018) at district level (Lisbon has 24 districts), includ-
ing 4955 daily bicycle trips, represented by 122 desire lines.
Cycling count data includes 26464 passings in the total of the
67 locations (one trip may pass at more than one location).

Routes were computed using CycleStreets, which relies on
2022 road network from OpenStreetMap, using the r5 engine
(Pereira et al., 2021), and using Google Maps service, for rout-
ing comparison. Routes were calculated using reproducible
code available in the GitHub repo associated with this paper
thanks to the stplanr, r5r and cyclestreets R packages that
provide interfaces to these routing engines.

Regarding the routing options, CycleStreets provides 3 options
of cycling routes: “fastest”, “balanced” and “quietest”, while
r5r uses the Level of Traffic Stress (LTS), ranging from 1 —
less bicycle friendly, to 4 — more bicycle friendly (Mekuria et
al., 2012). Google Maps does not provide such profile options
for bicycle routing. In this research we compared CycleStreets’
“quietest” and “fastest” modes, and LTS 2 and 4 (Desjardins et
al., 2022; Mekuria et al., 2012).

This was an iterative process, an not all options were tested due
to the computational requirements. We started by generating
routes with CycleStreets for the 3 routing profiles and for unjit-
tered, jittered with no disagregation, and jittered with disagre-
gation level of 500 trips. Then we compared the results with
routes generated by r5r, for 2 levels of traffic stress (2 and 4),
and with routes generated by Google. Other jittering disagre-
gation level of 200 trips was also compared with the previous
results, for routes generated with CycleStreets (“quietest” pro-
file) and for routes generated with r5r (LTS 2).

Results were then assessed. Count data was compared with
the resulting route networks (with information on bike trips at
each segment level, from the mobility survey data) by taking
the value of the nearest segment, and using a R2 correlation fit.

3. RESULTS

We generated route networks based on a range of different jit-
tering parameters and routing options. The results presented
in this section not only report estimates of model-counter fit
but also provide indication of the type of networks generated,
though route network maps. Figures 2, 3 and 4 show the dif-
ference between desire lines with centroids approach and the
jittering approach, for bike trips in Lisbon.

Figures 5, 6, 7 and 8 show examples of route networks from un-
jittered OD pairs, and jittered OD pairs with disagregation level
of 500 trips, for differen routing providers, and the counters lo-
cation.

When comparing the route network with unjittered desire lines
(Figure 5) with the jittered ones (Figures 6, 7 and 8), we may
find that the route networks from jittered desire lines are more
diffuse, and not concentrated in a few routes. For cycling
and walking, this bring more realistic routes for this transport
modes. Nevertheless, we are aware that routing options “quiet”,
and LTS 2 (quieter than LTS4), have a higher weight in using
the existing cycling network infrastructure, and then the result-
ing route network can be similar to the cycling network silhou-
ette (see Figure 1). In fact, cyclists tend to opt for a cycling

Figure 2. Trips represented with desire lines from centroids of
24 areas. The red circles represent the counters locations.

Figure 3. Trips represented with jittered desire lines, with no
disagregation.
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Figure 4. Trips represented with jittered desire lines, with
disagregation of 500 trips.

Bike
0 to 500
500 to 1,000
1,000 to 1,500
1,500 to 2,000

Bike

200 400 600 800 1,200 1,600

SumCiclistas

500 1,000 1,500 2,000

Figure 5. Route network from unjittered desire lines, with routes
from CycleStreets, in quietest routing option.
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Figure 6. Route network from jittered desire lines with
disagregation of 500 trips, with routes from CycleStreets, in

quietest routing option.
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Figure 7. Route network from jittered desire lines with
disagregation of 500 trips, with routes from r5r, level of traffic

stress 2 (quiet) routing option.
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Figure 8. Route network from jittered desire lines with
disagregation of 500 trips, with routes from Google.
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Figure 9. Route network from jittered desire lines with
disagregation of 200 trips, with routes from r5r, level of traffic

stress 2 (quiet) routing option.

Table 1. Results showing counter/model fit for route networks
generated from different routing and jittering parameters

Jittering Routing Nrow R-Squared
Unjittered quietest 122 0.23
Unjittered balanced 122 0.22
Unjittered fastest 122 0.10
Unjittered LTS2 122 0.35
Unjittered LTS4 122 0.04
Jittered, no disaggregation quietest 122 0.26
Jittered, no disaggregation balanced 122 0.11
Jittered, no disaggregation fastest 122 0.00
Jittered, 500 disaggregation quietest 799 0.50
Jittered, 500 disaggregation balanced 799 0.42
Jittered, 500 disaggregation fastest 799 0.08
Jittered, 500 disaggregation LTS2 799 0.54
Jittered, 500 disaggregation LTS4 799 0.14
Jittered, 500 disaggregation Google 799 0.25
Jittered, 200 disaggregation quietest 1895 0.54
Jittered, 200 disaggregation LTS2 1895 0.54

infrastructure when it is available, even if it compromises the
directness of their trips (Broach et al., 2012). It is also noticed
that “Fastest” and LTS4 routing option does not have a good fit
with the counting data, when compared with the “Quietest” and
LTS2.

Regarding the different disagregation levels, a route network
build from a jittering disagregation of 200 trips is shown in Fig-
ure 9, with a more diffuse network.

Although useful for visualizing the complex and spatially dif-
fuse reality of travel patterns, we found that the most valuable
use of jittering is as a pre-processing stage before routing and
route network generation. Route networks generated from jit-
tered desire lines are more diffuse, and potentially more realis-
tic, than centroid-based desire lines.

We also found that the approach, implemented in Rust and with
bindings to R and Python (in progress), is fast. Benchmarks
show that the approach can ‘jitter’ desire lines representing mil-
lions of trips in a major city in less than a minute on consumer
hardware.

We also found that the results of jittering depend on the geo-
graphic input datasets representing start points and trip attrac-
tors, and the use of weights.

Table 1 shows the counter data vs modeled route network fit,
with different routing and jittering parameters. We can observe
that jittered OD pairs provide a better fit result, with disagrega-
tion.

A higher jittered disagregation level (200 trips) does not bring
a better fit against a lower disagregation level of 500 trips. This
might be explained but the routing profile used in the routing en-
gines, and the location of the cycling counters — most of them
at the existing cycling infrastructure. Although a more diffuse
route network is expected in active transportation modes, the
available data and computed routes are usually closer to where
cycling infrastructure exists. Other data should be used to val-
idate this hypothesis, such as a more diffuse cyclists’ counters
location, or/and the actual cyclist’s routes — for example, bike
sharing trips routes, despite their access is not usually guaran-
teed for research purposed.

The results from our analysis suggest that investment in cycle
infrastructure is particularly important in a few key locations
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Figure 10. Segments on the transport network of Lisbon where
investment in new cycling infrastructure should be prioritised

according to the route networks generated using methods
presented in this paper, alongside local knowledge.

where cycling potential is high yet provision is poor. These lo-
cations are highlighted in Figure 10, which was generated using
information from three key sources:

• Estimates of cycling potential, generated using the jitter-
ing → routing → route network methods presented in this
paper.

• Estimates of quietness of links on the network, computed
with the open source cyclestreets R package (Desjardins et
al., 2022).

• Local knowledge, which was used to visually inspect the
resulting networks and identify key ‘severance’ points in
the network (Mindell and Anciaes, 2020).

Figure 10 highlights the policy relevant nature of this research.
A key finding is that, combined with local knowledge and de-
tailed data on existing transport infrastructure, which can be
used to generate metrics such as Level of Traffic Stress (LTS)
(Wang et al., 2016) and Cycling Level of Service (CLoS) (Dee-
gan, 2015), route networks generated from jittered, disaggre-
gated, and appropriated routed OD data can help prioritise in-
vestment where it is most needed. Results were presented to
stakeholders working in the local area who said that these new
results would support their investment plans.

The overall result was the finding that OD jittering methods
first developed by Lovelace et al. (2022b) are not enough on
their own to generate accurate route networks. Jittering leads to
more spatially diffuse route networks than networks generated
from the common approach of routing from and to zone cen-
troids. However, the results presented in this section show that
careful consideration of routing options is needed in addition to
evidence-based selection of jittering parameters.

4. CONCLUSION

Building on previous work (Lovelace et al., 2022b), we have
explored the relative importance of jittering and routing options
for generating accurate route network level estimates of move-
ment, down to the street level. In corroboration with previous

research, we found that jittering leads to more spatially diverse
geographic representations of travel between zones and esti-
mates of flow down to the link level (Lovelace et al., 2022a).
A new finding was that jittering alone cannot be guaranteed to
generate accurate route network levels results: appropriate rout-
ing options should be tested and identified.

The results were generated only for a single city and we did not
explore the full parameter space (alternative subpoint weight-
ing parameters in the jittering process are discussed below). For
these reasons, we cannot draw specific and universally applica-
ble conclusions about the optimal settings for accurate route
network generation in other cities: t should be remembered
that route networks and cycling preferences vary from city to
city (Buehler and Dill, 2016). However, although our findings
were based on a single case study, Lisbon, Portugal, the find-
ings have implications for future work using OD data to sup-
port evidence-based investment in sustainable transport infras-
tructure (e.g. Vybornova et al., 2022). The main conclusion
is that both careful translation of OD data to geographic start
and end locations and disaggregation and careful selection of
routing options are needed in combination to ensure that route
networks derived from OD data are diffuse and accurate.

Accurate route network representations of transport systems are
needed to support investment in a variety of transport interven-
tions (Morgan and Lovelace, 2020). We have focused in this
study on cycleway network because a complete cycle network
represents one of the most cost-effective ways to reduce car de-
pendence and associated environmental, economic, social and
health costs (Wałdykowski et al., 2022). Cycleway networks,
rather than simply isolated routes or other geographically sparse
interventions, are vital for successful active travel investment
(Buehler and Dill, 2016). Our results are therefore highly policy
relevant, adding value to established methods of adding value to
OD data to support sustainable transport planning (Larsen et al.,
2013; Lovelace et al., 2017; Mohammed and Oke, 2022).

The research presented in this paper is not without limitations.
We did not explore the full range of jittering and routing options
available due to time and computational resource constraints.
Specifically, varying the type and weights of origin and desti-
nation subpoints, as advocated in Lovelace et al. (2022b), could
lead to improved fit. This would require filtering the subpoints
used to include only certain types of nodes on the road network
(all vertices on the road network were used as the basis for both
origin subpoints and destination subpoints in this study, see
documentation in the odjitter Rust crate for details). Future
work could explore the use of including only residential roads,
or increasing the weight associated with residential roads, in
the origin subpoints, for example. Likewise, destination sub-
points and associated weights could be altered to prioritise key
trip attractors such as schools and commercial centres. Another
limitation is the simplistic measure of accuracy used in this
study. Accuracy was inferred from goodness-of-fit between ag-
gregated flow values at 67 counter locations and modeled flow
on nearest segment on the network. Future work could use alter-
native measures of fit such as root-mean-square error (RMSE)
and more sophisticated ways of comparing observed counter
values to modeled networked values, e.g. using inverse distance
weighted measures associated with links in close proximity to
each counter, with empirically derived bandwidths.

More broadly, the quality of the underlying route network data
is imperfect. Efforts to improve the underlying OpenStreetMap
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data will continue to overcome this limitation, not just in Lis-
bon but worldwide (Barrington-Leigh and Millard-Ball, 2017).
This will improve the results over time because all routing en-
gines used in this study, except for Google’s routing service,
use OSM data. Furthermore, alternative data sources and meth-
ods could be used to generate more accurate road networks (e.g.
Leninisha and Vani, 2015). Future work should seek to test a
wider range of jittering parameters in multiple case study ar-
eas with larger ground truth datasets. Other fit measures, such
as GEH or SQV statistics, may also be used to compare count
data with simulated traffic volumes.

Despite these limitations, and the need for future academic
work, the results are already useful. Imperfect data-driven ev-
idence is better than no systematic evidence, especially when
practitioners are aware of the mechanisms underlying route net-
work level estimates of travel behavior such as those presented
in this paper. A benefit of the approach is that it based on open
source software and reproducible code, allowing others to build
on the methods (Lovelace et al., 2020). Indeed, a next step
building on directly on the research presented in this paper is
to use the results to support strategic cycle network planning
in Lisbon and the wider area. In parallel to efforts to improve
route network representations of transport systems we therefore
advocate for the use of the approach presented in this paper, and
related methods (e.g. Cooper, 2018; Vybornova et al., 2022), to
be implemented in support of more evidence-based investment
in sustainable transport infrastructure at city, regional and na-
tional scales worldwide.
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