
GEOSPATIAL DATA EXCHANGE USING BINARY DATA SERIALIZATION
APPROACHES

P. Mooney 1,∗, M. Minghini 2

1 Department of Computer Science, Maynooth University, Co. Kildare, Ireland - peter.mooney@mu.ie
2 European Commission, Joint Research Centre (JRC), Ispra, Italy - marco.minghini@ec.europa.eu

Commission IV, WG IV/4

KEY WORDS: Binary data serialization, interoperability, geospatial, GeoJSON, Protocol Buffers, Apache Avro.

ABSTRACT:

In this paper we investigate the benefits of binary data serialization as a means of storing and sharing large amounts of geospatial
data in an interoperable way. De-facto text-based exchange encodings typically exposed by modern Application Programming
Interfaces (APIs), including eXtensible Markup Language (XML) and JavaScript Object Notation (JSON), are generally inefficient
for an increasingly higher number of applications due to their inflated volumes of data, low speed and the high computational cost
for parsing and processing. In this work we consider comparisons of JSON/Geospatial JSON (GeoJSON) and two popular binary
data encodings (Protocol Buffers and Apache Avro) for storing and sharing geospatial data. Using a number of experiments, we
illustrate the advantages and disadvantages of both approaches for common workflows that make use of geospatial data encodings
such as GeoPackage and GeoJSON. The paper contributes a number of practical recommendations around the potential for binary
data serialization for interoperable (geospatial) data storage and sharing in the future.

1. INTRODUCTION AND MOTIVATION

Data-driven innovation has seen recent advances enabled by
a dynamic technological context characterised by the continu-
ous influx of data, miniaturization and massive deployment of
sensing technology, data-driven algorithms, and the Internet of
Things (IoT) (Granell et al., 2022). Data-driven innovation is
considered a key part of several policy actions worldwide. The
recently published European strategy for data (European Com-
mission, 2020) envisions Europe’s digital future in the data
economy through the establishment of dedicated data spaces.
These would allow the efficient flow of data between actors and
sectors so that data-driven innovation is translated into concrete
benefits for the economy and society. To exploit Europe’s po-
tential in our data-driven society, technologies currently used
for the management, exchange and consumption of data, in-
cluding geospatial data, must be evaluated in terms of their
suitability to efficiently scale and adapt to streams of larger
data and datasets. The increasing number of users accessing
data services through mobile devices is putting pressure on ser-
vice providers to make larger volumes of data available effi-
ciently to these particular users. For many years, encodings
such as JavaScript Object Notation (JSON), Geospatial JSON
(GeoJSON), Comma-Separated Values (CSV) and eXtensible
Markup Language (XML) have been considered as the de facto
interoperable standards for data serialisation. The majority of
Application Programming Interfaces (APIs) available today fa-
cilitate data sharing and exchange using these encodings (Vac-
cari et al., 2020). Whilst such encodings, mainly JSON and
XML, have an almost universal support and many other advant-
ages (e.g. they are human and machine-readable as well as open
and standards-based), they also have many limitations. These
limitations are particularly pronounced when the volume of data
is large, resulting in reduced computational performance when
exchanging or managing large data volumes.
∗ Corresponding author

As an alternative, binary data serialization approaches also al-
low for the interoperable exchange of large volumes of data (Va-
nura and Kriz, 2018). Binary data serialization is a process
to transform data structures of an object into a binary stream
that can be transmitted (and/or stored) and reconstructured later.
Popular distributors of geospatial data have also begun mak-
ing use of binary data encodings, with one of the most prom-
inent examples being OpenStreetMap (OSM) (Mooney and
Minghini, 2017), where extracts of the database are provided
in the Protocol Buffer (PBF) format. While anecdotal evidence
indicates that binary serialization approaches are more efficient
in terms of computational costs, processing times, etc., there are
additional overheads to consider with these approaches includ-
ing special software tools, additional configurations, schema
definitions, etc. (Viotti and Kinderkhedia, 2022). Additionally,
there have been few, if any, investigations of binary data serial-
ization approaches specifically for geospatial data.

The objective of this paper is to investigate the suitability and
benefits of binary data serialization to store and share large
amounts of data in an interoperable way as an alternative to
traditional data exchange using XML or JSON encodings. Ad-
vantages and disadvantages of binary data serialization are eval-
uated for three commonly encountered Geographic Information
Systems (GIS) workflow scenarios: i) geolocated point data re-
trieved from an API; ii) geolocated point data from a very large
static GeoPackage dataset; and iii) a large geographic polygon
dataset. For each of the three scenarios, we describe the meth-
odology, implementation and analysis of an experiment com-
paring JSON and GeoJSON with two very popular binary data
encodings, namely Google Protocol Buffers and Apache Avro.

The remainder of the paper is structured as follows. In Section 2
we outline a summary of the most relevant related work on
binary data serialization for both geospatial and non-geospatial
applications. In Section 3 we provide an overview of the ex-
perimental analysis for our three common GIS workflow scen-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-307-2022 | © Author(s) 2022. CC BY 4.0 License.

 
307

https://orcid.org/0000-0002-2389-3783
https://orcid.org/0000-0001-9993-1072


arios. Results and subsequent discussions are provided in Sub-
sections 3.1, 3.2 and 3.3. The paper closes with Section 4
where we offer some overall conclusions and lessons learned
and propose some next steps for future work. Reproducibility
information for this work is provided in Subsection 3.5.

2. RELATED WORK

Binary data serialization is not a new topic in literature, since
it has been used extensively within scientific communities such
as meteorology and astronomy for decades (Wang, 2014). Bin-
ary data serialization was a popular topic in the early 2000s,
where works such as Carpenter et al. (2000), Chiu et al. (2005)
and Hericko et al. (2003) are strong examples. Serialization ap-
proaches have been popular for as long as software developers,
engineers, scientists and so on have tried to efficiently ex-
change large amounts of data between systems or applications.
Much of the early work concentrated on Java-based serializa-
tion (Philippsen et al., 2000; Maeda, 2012). To narrow down
our review of related work we considered research published
after the initial releases of Protocol Buffers (Protobuf) and
Apache Avro, with Google releasing Protocol Buffers in 2008
while Apache Avro offering its initial release in 2009. More
recent literature considering these and other similar serializa-
tion frameworks is more appropriate to this work. Srivastava et
al. (2020) do not consider binary formats specifically in their
work, but make the very interesting claim that the lack of port-
able scientific dataset formats and universal standards for sci-
entific data exchange force scientists to rely on formats such as
CSV for dataset exchange and archival, despite the risks and
incompatibilities that can occur with such choices.

At the time of writing, we were unable to find any specific liter-
ature source directly related to binary data serialization applied
to geospatial data. Sumaray and Makki (2012b) tested a num-
ber of data serialization formats and considered their advant-
ages and disadvantages. They showed that XML was “largely
inferior to other serialization formats” having a larger size and
a slower processing speed. The authors found the performance
differences between their chosen binary formats to be negli-
gible. However, the adaptability of binary data formats is the
major concern as the client or receiver of the data must have
the corresponding binary schema files in order to successfully
parse the serialized datasets. The work by Maeda (2012) per-
forms a similar set of experiments with the author indicating
that there is “no best solution” in terms of binary serializa-
tion approach, with the conclusion that each binary approach
is “good within the context for which it was developed”. The
author also concludes that the size of binary serialized data is
much smaller than XML or JSON-based serialization and re-
commends Apache Avro and Protocol Buffers for “easy inter-
operability and dynamic languages”. Vanura and Kriz (2018)
reiterate the difficulty in making decisions around which is the
best approach for binary formats in regards to replacing ex-
isting non-binary approaches. The results of their work show
that Apache Avro and Protocol Buffers achieve the best result
but require a schema definition. The worst results are gener-
ally achieved by XML libraries. More specifically, the authors
found that there are significant performance differences among
languages and libraries, and it is not possible to determine the
best format across platforms. Their work showed Java and Pro-
tocol Buffers to be the most efficient overall solution. For other
formats outside of JSON and XML, the results vary greatly de-
pending on the language and particular library. In another re-
search work, Sumaray and Makki (2012a) compare different

data serialization formats (XML, JSON, Apache Thrift and Pro-
tocol Buffers) for differences in speed, data size, and usability.
They conclude that XML should be avoided unless necessary
as JSON provides a superior alternative. Their results also sug-
gest that binary encodings should be preferred when serializ-
ing data for storage purposes due to their superior speed and
size. Only negligible differences were found between Apache
Thrift and Protocol Buffers but the authors favoured Apache
Thrift because (at the time of their writing) it could be com-
piled into more languages. In summary, Protocol Buffers and
Apache Avro are two of the most popular language independent
binary data serialization approaches used today (Vohra, 2016;
Popić et al., 2016; Proos and Carlsson, 2020). Both approaches
offer rich data structures using schemas, are supported by a
large number of the most popular programming languages and
are generally easy to understand for most software developers.
Both Protocol Buffers and Apache Avro support interoperable
approaches to data serialization. Both are evaluated through the
experiments presented in Section 3.

Other binary data serialization formats are also used. In the
work of Krijnen and Beetz (2017) binary serialization using
Hierarchical Data Format (HDF) is applied to point cloud data-
sets, and a compression ratio of up to 67.7% is obtained for
building models with integrated point clouds, compared to the
raw source data. The work is different to our work in that we
are not considering point clouds. HDF, similar to a file sys-
tem in itself, has been used for more than 20 years in differ-
ent engineering and scientific communities to cope with large
amounts of data including e.g. physics, astronomy and medical
datasets. Martı́nez-Prieto et al. (2012), followed by Gimenez
et al. (2017), remark that Semantic Web applications using Re-
source Description Framework (RDF) have their potential “ser-
iously underexploited due to the large space they take up, the
powerful resources required to process them, and the large con-
sumption time”. The binary RDF representation named Header,
Dictionary, Triples (HDT) described in their paper achieves
compression and can, in practical terms, require up to 15 times
less space than traditional RDF formats. The authors argue that
scalability issues underlying to semantic web processes justify
the need for a binary RDF format like HDT.

3. EXPERIMENTAL ANALYSIS

In this section we discuss the experimental work to support our
investigations into the suitability and benefits of binary data
serialization to store and share large amounts of data in an in-
teroperable way as an alternative to traditional data exchange
using XML or JSON encodings. For this, we have designed, de-
veloped and implemented three experiments for the evaluation
of Protocol Buffers and Apache Avro encodings for binary data
serialization approaches for geospatial datasets. The software
code required to reproduce these experimental results is avail-
able and Subsection 3.5 includes further information around
the reproduction or replication of these experiments. Figure 1
shows a flowchart diagram illustrating the processing steps for
all of our three experiments, which are summarised as follows:

• As a necessary pre-processing step, serialize the input
datasets to a GeoJSON file;

• Using the Protocol Buffers schema, serialize the GeoJSON
file to a PBF file, while the Apache Avro schema is used
to serialize the GeoJSON file to an Apache Avro file;

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-307-2022 | © Author(s) 2022. CC BY 4.0 License.

 
308



• Using the same approach as the previous step, deserialize
both the Protocol Buffers file and the Apache Avro file
back to the original GeoJSON;

• Finally, analyse the timing and other results from the bin-
ary data serialization processing.

Each of the three experiments, presented in the following Sub-
sections 3.1, 3.2 and 3.3, contains some small experiment-
specific differences and these are explained below. We executed
each experiment 10 times and the mean and standard deviation
of overall processing times are shown in the tables below. Each
table indicates the processing steps involved in each experi-
ment. The corresponding mean and standard deviation of pro-
cessing time, in seconds, are also shown for each step. The sizes
in kilobytes of the resulting serialized or deserialized files are
shown. Finally, Subsection 3.4 contains a summary discussion
of the important outcomes from all of the three experiments.

Figure 1. The main processing steps for
serialization/deserialization of the input datasets.

Both Protocol Buffers and Apache Avro require the definition
of schemas for structuring data. When structuring data with
Protocol Buffers, one must define the schema (in a file called
the .proto file). This schema file is processed by the Protocol
Buffers compiler (protoc) to generate the classes needed to
read and write the Protocol Buffers data. These classes can be
generated for most popular languages. Messages, essentially
equivalent to objects, in Protocol Buffers, can be composed of
any number of fields. The protoc compiler (Protocol Buffers,
2022) is required to generate source code (classes) in the target
implementation language, such as Python, C++ or Java. If the

original data source changes, e.g. because of the inclusion of an
additional field or property, then the Protocol Buffers schema
must be changed and the target source code classes must be
recompiled. Binary data generated using Protocol Buffers is
stored in a Protocol Buffer binary format (PBF) file with a .pbf
extension. Apache Avro, like Protocol Buffers, is a very popu-
lar schema-based binary data serialization technique. It is also
a language-neutral approach that was originally developed for
serializing data within Apache Hadoop. In Apache Avro the
schema is defined in an .avsc schema file, which uses a JSON
structure for declaring the data structures. Unlike Protocol Buf-
fers, Apache Avro does not require the use of a compiler to gen-
erate target source code classes. The schema file is processed
during runtime through supported libraries in languages such as
Python, C++ and so on. When data is serialized to an Apache
Avro binary data file (with an .avsc extension) its schema is
also stored with it. For both approaches, deserialization cannot
happen independently of serialization. For Apache Avro deseri-
alization, access to the original schema file is required. In the
case of Protocol Buffers the compiled classes are required. In
summary, data providers offering data in these binary encod-
ings would be required to make the schema files available to
consumers.

3.1 Experiment 1: Static point-based data

In Experiment 1 we consider the very common situation of us-
ing a static vector GIS file for analysis. Generally, these static
vector files are available in common geospatial formats such as
ESRI Shapefile or GeoPackage (GPKG). Typically, such files
are manually downloaded from the Internet or copied from their
source location due to their large size. The GPKG point dataset
used in Experiment 1 represented the conflation of the Finnish
address data from the National Land Survey of Finland and
OSM. The GPKG file used was 288,760 Kb (288.8 Mb) in size
and contained 1,926,298 point features. Further details about
the dataset can be found in Sarretta and Minghini (2021) and
in Chapter 6 of Granell et al. (2022). The summarised results
of Experiment 1 using the complete GPKG dataset are presen-
ted in Table 1. Within the GitHub repository complementing
this paper (see Subsection 3.5) there is a smaller GPKG dataset,
containing randomly generated data, available for additional ex-
perimental analysis. Results relating to this specific dataset for
Experiment 1 can be found in Granell et al. (2022). It is worth
noting that the difference in sizes of the input GeoJSON file and
the deserialized GeoJSON files in Table 1 are related to how the
Python GeoJSON library only allows a maximum precision of
10 decimal representation, while the GeoJSON file produced by
GeoPandas contains coordinates with up to 13 decimal places.
Deserialization is performed using the Python GeoJSON library
as this was found to be the most efficient approach.

Processing steps from Figure 1 Time (s) Size (Kb)
Convert (GPKG → GeoJSON) 327, 11.3 614,859
Load (GeoJSON) 81, 3.2 614,859
Serialize (GeoJSON → Avro) 301, 3.4 228,102
Serialize (GeoJSON → PBF) 306, 2.9 235,821
Deserialize (PBF → GeoJSON) 378, 2.8 542,878
Deserialize (Avro → GeoJSON) 389, 3.1 546,616

Table 1. Results of Experiment 1 using the GPKG dataset: mean
and standard deviation of the time required for each processing

step and size of the resulting files.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-307-2022 | © Author(s) 2022. CC BY 4.0 License.

 
309



3.2 Experiment 2: Dynamic point-based data

In Experiment 2 we consider another very common situation
of using an openly available API to obtain geospatial data in a
dynamic situation. Today, it is very common and natural for
GIS systems, application software, smart devices and so on
to download geospatial data directly from an API for imme-
diate processing and analysis. For Experiment 2, we selected
an OGC SensorThings API instance exposing aircraft track-
ing data; more details can be found in Chapter 3 of Granell
et al. (2022). We used this API to download, in real-time, a
JSON file containing 20,000 geographic point features. This
response file in JSON format was usually around 13,120Kb
(13 Mb) in size. The results of Experiment 2 using the OGC
SensorThings API are presented in Table 2. There are a number
of nuances to this experimental setup. In the JSON file pro-
duced by the API, the encodingType and crs properties are set
to application/vnd.geo+json and EPSG:4326 for every fea-
ture. We decided to ignore these two fields when serializing
this JSON file to a GeoJSON file with Python GeoPandas and
both of the binary encodings as we believe two fields can be
automatically calculated. The API response data is JSON and
the point geometry is encoded as a valid geometry object, but
this is part of a JSON array of objects rather than a GeoJSON
feature collection. Thus, we encoded the two coordinates of
the point geometry as separate fields in both the Protocol Buf-
fers and Apache Avro schema. When the Protocol Buffers and
Apache Avro files were deserialized back to GeoJSON, we used
the coordinate fields to create point geometry objects for the
GeoJSON FeatureCollection.

Processing steps from Figure 1 Time (s) Size (Kb)
JSON Response download n/a 12,926
Load (GeoJSON) 1.23, 0.07 11,539
Serialize (GeoJSON → Avro) 0.34, 0.04 7,001
Serialize (GeoJSON → PBF) 0.32, 0.04 7,109
Deserialize (PBF → GeoJSON) 1.14, 0.07 11,515
Deserialize (Avro → GeoJSON) 1.10, 0.03 11,554

Table 2. Results of Experiment 2 using the GeoJSON file: mean
and standard deviation of the time required for each processing

step and size of the resulting files.

3.3 Experiment 3: Static polygon-based data

In Experiment 3 we consider a very similar workflow to Ex-
periment 1 (see Subsection 3.1). Here we use a static GPKG
file containing polygon vector features. This GPKG file repres-
ents land cover in Tuscany, Italy based on Corine Land Cover
(CLC). The dataset was downloaded from the Geoportal of
Tuscany Region (Regione Toscana, 2022), where it is avail-
able under the CC BY license, and subsequently clipped on
the administrative boundary of Florence province, using the
polygon provided by the Italian National Institute of Statistics
(ISTAT) (Istituto Nazionale di Statistica, 2022). The resultant
GPKG file, which is made available together with the source
code (see Subsection 3.5) is 198,340 Kb (198.3 Mb) and con-
tains 161,191 geographic polygon features. The original dataset
contains 31 attributes for each polygon feature.

In Experiment 3 we made a number of decisions to allow for
a more practical exploration of the effects of using a polygon
dataset for discussion in this paper. Upon closer investigation,
many of the 31 attributes of the GPKG file were redundant or
contained the same property value for every feature. We thus

decided to reduce the number of attributes for each polygon
feature. We inspected the attributes in the dataset and found
many of them relating to the land use/cover classification of
each polygon in 2007, 2010, 2013, 2016, and 2019. We de-
cided to only retain the attributes c1, c2 and c3, corresponding
to the three levels of CLC classification for 2019. The main
processing steps from Figure 1 were retained with an additional
pre-processing step, in which we created a second GeoJSON
file containing all of the original geometries from the GPKG
file, but with just 10 attributes per feature. The results of Exper-
iment 3 using this GPKG dataset (containing 161,191 polygon
features and 10 attributes) are shown in Table 3. We also cre-
ated a subset dataset containing 17,000 polygon features (just
over 10% of total features) from the original dataset. The sub-
set dataset is also a GPKG file and has a file size of 20,500 Kb
(20.5 Mb). This smaller subset provides the reader with an op-
portunity to compare the effects of binary data serialization on
the two polygon datasets. We refer to this small subset (which
still includes only the 10 selected attributes) as the reduced data-
set in the experimental results below. The results of Experiment
3 using the reduced GPKG dataset are discussed in Table 4.

Processing steps from Figure 1 Time (s) Size (Kb)
Convert (GPKG → GeoJSON) 128.7, 2.30 528,386
Reduce GeoJSON attributes 148.3, 2.2 320,472
Load (GeoJSON - reduced) 48.7, 0.31 320,472
Serialize (GeoJSON → Avro) 61.3, 0.18 264,555
Serialize (GeoJSON → PBF) 58.0, 0.15 264,937
Deserialize (PBF → GeoJSON) 80.4, 1.53 320,472
Deserialize (Avro → GeoJSON) 82.6, 1.93 320,472

Table 3. Results of Experiment 3 using the original GPKG file:
mean and standard deviation of the time required for each

processing step and size of the resulting files.

Processing steps from Figure 1 Time (s) Size (Kb)
Convert (GPKG → GeoJSON) 24.5, 1.3 46,655
Reduce GeoJSON 17.5, 1.21 24,657
Load (GeoJSON - reduced) 5.4, 0.21 24,657
Serialize (GeoJSON → Avro) 7.2, 0.41 18,795
Serialize (GeoJSON → PBF) 6.3, 0.31 18,844
Deserialize (PBF → GeoJSON) 11.4, 0.41 24,657
Deserialize (Avro → GeoJSON) 11.6, 0.59 24,657

Table 4. Results of Experiment 3 using the reduced GPKG file:
mean and standard deviation of the time required for each

processing step and size of the resulting files.

3.4 Overall discussion

The experimental analyses above confirm, for these particu-
lar datasets, that the serialized binary data files, both PBF and
Avro, were on average at least 20% smaller than the original
non-binary data files for all experiments. The overall processing
times for binary serialization of the datasets were, on average,
at least 10% faster than serialization to JSON or GeoJSON en-
codings. Deserialization was slower than serialization in every
experiment. This ranged from around 1.2 times slower in Ex-
periment 1 to around 3.5 times slower in Experiment 2, while
in both versions of Experiment 3 deserialization was around 1.3
times slower. It would require some further investigation to un-
derstand if the performance of deserialization can be improved
on these results. In our experiments, we deserialized the PBF
and Avro files back to GeoJSON, but this may not be necessary

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-307-2022 | © Author(s) 2022. CC BY 4.0 License.

 
310



for all applications. However, in order for a client device or ap-
plication to use the PBF or Avro file, deserialization cannot be
avoided due to the very limited query and search opportunities
with these encodings. In addition to this, neither of these bin-
ary files could be easily visualised in a map-based application
without, at least, some form of deserialization.

Experiment 3 brought the question of redundant attributes into
focus. In Experiments 1 and 2, the number of attributes for each
geographic feature was relatively small (around 8) whereas the
dataset used in Experiment 3 had 31 attributes. Regardless of
the serialization schemes involved, there are implications for
computational performance and indeed data usability in retain-
ing redundant attributes within the dataset when exchanging
these datasets.

Neither Protocol Buffers nor Apache Avro can encode the geo-
metry of objects in a high level way as it is represented in
GeoJSON. The coordinates of a point object must be either
stored in two separate variables or fields or stored in a string-
or text-based representation such as Well Known Text (WKT).
The situation is similar for Experiment 3, where the polygon
geometries must be serialized in Protocol Buffers and Apache
Avro as strings. Conveniently these strings contain WKT rep-
resentations of the polygons, which support faster deserializa-
tion to GeoJSON.

We also noted an interesting situation around the precision of
geographic coordinates within the source datasets and their
subsequent conversions. In Experiment 3 the original data-
set represents coordinates with 15 decimal places, whereas the
GeoJSON produced by GeoPandas and the GeoJSON library
in Python represents the same coordinates with only 6 decimal
places. This is a difference of 7 characters in an ASCII rep-
resentation and a seemingly small 7 bytes. For point datasets
this may not make a significant difference to overall filesize as
74,898 coordinate pairs would be required to have an overall
difference of 1 Mb between the two representations. However,
this seemingly small difference is almost a 46% reduction and
this scales substantially over any files larger than a few mega-
bytes. This also becomes particularly noticeable in polygon
files (such as the one used in Experiment 3) where each geo-
graphic object could have hundreds of coordinate pairs. Of
course a discussion of precision is outside the scope of this
paper, but we do suggest that data providers consider the pre-
cision at which geographic coordinates are being represented
within the source datasets. As far back as 1989 authors such as
Goodchild (1991) suggested that “precision should match the
accuracy”. Depending on the target application, the precision
could be changed accordingly and this could result in drastic-
ally improved performances in terms of overall file sizes. As an
example, Figure 2 shows a screenshot of an object from Experi-
ment 3 where coordinates are represented to 15 decimal places.

The run times presented from all experiments in Subsec-
tions 3.1, 3.2 and 3.3 should be considered in the context of the
laptop machine used for this research work. These run times
would naturally be faster with a higher specification machine.
Therefore in reproducing this work there will likely be vari-
ation in run times due to differences in machine specification,
operating system, processing load when executing the Python
code, and so on. However, the file sizes for the PBF, Avro and
GeoJSON files should remain constant across all implementa-
tions. This explanation captures the complexity of geospatial
data exchange in practical implementations. We seek to ex-
change files resulting from resource intensive serialization and

Figure 2. An object from Experiment 3’s GeoJSON dataset,
where coordinates are represented to 15 decimal places.

deserialization processes where the files have overall sizes as
small as practically possible. These files may then be delivered
to target client devices and machines, which may not have high
technical specifications.

The results appear to confirm that binary data serialization ap-
proaches are more efficient than JSON or XML. On deeper re-
flection, it is difficult to indicate that binary data formats are
an overwhelmingly better choice for data exchange than XML,
JSON or GeoJSON. While binary data formats enjoy very good
expert developer level support in major programming language
implementations, this is dwarfed by the near universal levels of
support for XML, JSON and GeoJSON in almost all major pro-
gramming languages. Most modern programming languages
can consume these formats automatically and easily provide ac-
cess to the objects contained in the data file. Binary data pro-
tocols such as Protocol Buffers and Apache Avro are not self-
describing protocols and when they are used, their correspond-
ing schemas must be provided. For example, in the case of an
API providing responses in binary data formats, the API pub-
lisher must also publish the schema definition (usually a .proto
file in the case of Protocol Buffers and an .avsc file in the case
of Apache Avro) that can be consumed using the available soft-
ware tools. Without the schema definition file (in the case of
these two formats) the binary encoded data files are rendered
almost unusable. Hence, binary data encodings could be used
where the source datasets do not frequently change their data
models. Then binary data encodings could be made available to
specialist clients who are capable of writing their own deserial-
ization software code or executing pre-compiled software code.
Given this situation, these approaches do not appear to be ready
for widespread usage.

3.5 Reproducibility information

The full source code to support the experimental analyses per-
formed in this paper is provided on GitHub (https://github.
com/petermooney/binaryDataFOSS4G2022). Within this re-
pository there are three folders or directories containing the
source code, configuration and input data for all of the three
experiments described in Subsections 3.1, 3.2 and 3.3. The
implementation language is Python and the experiments were
originally written in Python 3.8.10 on Ubuntu 20.04 (64 bit).
The laptop computer was a DELL Inspiron 5567 with 16 Gb
memory and Intel Core(TM) i7-7500U CPU @ 2.70G pro-
cessor. To reproduce and replicate the experiments using the
content of the GitHub repository, it will be necessary to install

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-307-2022 | © Author(s) 2022. CC BY 4.0 License.

 
311

https://github.com/petermooney/binaryDataFOSS4G2022
https://github.com/petermooney/binaryDataFOSS4G2022


a number of libraries within Python that are outlined in the re-
pository README file.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have described the methodology, implement-
ation and analysis of a set of experiments to evaluate the suit-
ability of binary data serialization as an alternative to data ex-
change in XML or JSON encodings, for three commonly en-
countered GIS workflows. As discussed in Subsection 3.4,
there are some obvious and quantifiable performance advant-
ages with binary data serialization approaches for the work-
flows considered. Both Protocol Buffers and Apache Avro sup-
port interoperable data exchange and enjoy strong program-
ming language support. While the performance results are very
positive, many overheads still remain that could impede wider
adoption of binary data serialization approaches. These over-
heads include the need for manual or semi-automated schema
updating, specialist knowledge about the binary data imple-
mentation and the fact that at the time of writing there is still
a rather small worldwide user community support compared
to the one for approaches such as JSON or GeoJSON. Soft-
ware vendor lock-in is avoided with the binary data serializ-
ation approaches discussed in this paper. But it remains that
case that while there is good overall programming language
support available, specialist software development knowledge
is required at the implementation stage. We believe that bin-
ary data exchange could work very well for specific types of
applications. These include applications where the underlying
data model rarely if ever changes, and where the recipients of
the binary data are capable of developing their own customised
solutions for storing, querying, visualising and managing these
data.

OpenStreetMap (OSM) provides a particularly impactful ex-
ample of where dissemination of geospatial data in binary en-
codings can be very successful. Faced with the severe limita-
tions of XML and ESRI Shapefile formats for distributing very
large amounts of OSM data, some alternative data exchange ar-
rangement was required by the OSM community. Today, one
can download all OSM data extracts (planet, country, region)
in the PBF format (GeoFabrik, 2022). OSM-XML format and
ESRI Shapefiles are still available for most extracts. As the
OSM data model is reasonably static, the OSM community have
developed their own software solutions around this data model.
As a result, many excellent implementations are available in
languages such as Python, Java, C++, R and so on. We be-
lieve that this type of arrangement is viable and scalable. Major
stakeholders and distributors of geospatial data should investig-
ate this approach to data provision. The provision of both bin-
ary and non-binary data encodings for large scale data exchange
has the potential to make these binary formats more visible and
eventually gain popularity and adoption among a wider audi-
ence.

Binary data serialization is not a panacea for all data compres-
sion and exchange problems. Improvements in performance for
a specific aspect of a process may reduce performance in an-
other. For example, Gimenez et al. (2017) show using HDF
that very large RDF datasets can be serialized and also queried
without prior serialization. The binary approach using HDT re-
duces data volume and increases retrieval velocity. However,
this performance achievement comes at the cost of the expens-
ive RDF-to-HDT serialization in terms of both computational

resources and time. Understanding the data structures for seri-
alization is an important consideration before implementing a
binary data-driven solution. Aihkisalo and Paaso (2011) find
in their work on web service object optimisation that binary
formats are better suited to heavy binary and text payloads,
while XML and JSON are more suited to lengthy array-type
structures.

There are a number of potential avenues for future work, in-
cluding: automated semantic interoperability for binary data
serialization using linked geodata, opportunities for more integ-
rated software tool support for binary data processing, and fur-
ther computational experimentation on different types of data-
sets and services that could benefit from binary data serializa-
tion. There is also the considerable challenge of making binary
data approaches as user-friendly as the non-binary data altern-
atives. For binary data serialization, schema definitions will al-
ways be required and at present maintenance of these schemata
is mostly a manual process. Binary data files, such as those
described and generated in Section 3, require additional spe-
cial code generation in order to query or search them in the
same way that almost any JSON/XML-aware tool can offer. To
provide basic query and search functionality, data model spe-
cific code must be developed. Making binary data serialization
approaches more user-friendly could be one of the most impact-
ful but difficult considerations for future work.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the European Com-
mission - Joint Research Centre (JRC) through contract num-
ber CT-EX2014D166355-104 entitled “Evaluation of Novel ap-
proaches for governing (location) data and technology. Com-
bined use of public sector and citizen-generated data”.

DISCLAIMER

The views expressed are purely those of the author and may not
in any circumstances be regarded as stating an official position
of the European Commission.

REFERENCES

Aihkisalo, T., Paaso, T., 2011. A performance comparison of
web service object marshalling and unmarshalling solutions.
2011 IEEE World Congress on Services, 122–129. https:

//doi.org/10.1109/SERVICES.2011.61.

Carpenter, B., Fox, G., Ko, S. H., Lim, S., 2000. Object seri-
alization for marshaling data in a Java interface to MPI. Con-
currency: Practice and Experience, 12(7), 539–553. https:
//doi.org/10.1145/304065.304099.

Chiu, K., Devadithya, T., Lu, W., Slominski, A., 2005. A bin-
ary xml for scientific applications. First International Confer-
ence on e-Science and Grid Computing (e-Science’05), IEEE,
8–343. https://doi.org/10.1109/e-science.2005.1.

European Commission, 2020. Communication from the Com-
mission to the European Parliament, the Council, the European
Economic and Social Committee and the Committee of
the Regions: A European strategy for data. COM(2020)
66 final. https://eur-lex.europa.eu/legal-content/

EN/TXT/?uri=CELEX:52020DC0066 (accessed on 26 June
2022).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-307-2022 | © Author(s) 2022. CC BY 4.0 License.

 
312

https://doi.org/10.1109/SERVICES.2011.61
https://doi.org/10.1109/SERVICES.2011.61
https://doi.org/10.1145/304065.304099
https://doi.org/10.1145/304065.304099
https://doi.org/10.1109/e-science.2005.1
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0066
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0066


GeoFabrik, 2022. OpenStreetMap Data Extracts. https://

download.geofabrik.de (accessed on 26 June 2022).

Gimenez, J. M., Fernandez, J. D., Martinez, M. A., 2017.
A MapReduce-based Approach to Scale Big Semantic Data
Compression with HDT. IEEE Latin America Transactions,
15(7), 1270–1277. https://doi.org/10.1109/tla.2017.

7959346.

Goodchild, M. F., 1991. Geographic information systems. Pro-
gress in Human Geography, 15(2), 194-200. https://doi.
org/10.1177/030913259101500205.

Granell, C., Mooney, P., Jirka, S., Rieke, M., Ostermann, F., van
Den Broecke, J., Sarretta, A., Verhulst, S., Dencik, L., Oost, H.,
Micheli, M., Minghini, M., Kotsev, A., Schade, S., 2022. Emer-
ging approaches for data-driven innovation in Europe: Sand-
box experiments on the governance of data and technology.
EUR30969 EN, Publications Office of the European Union,
Luxembourg. https://dx.doi.org/10.2760/511755.

Hericko, M., Juric, M. B., Rozman, I., Beloglavec, S., Zivkovic,
A., 2003. Object Serialization Analysis and Comparison in Java
and .NET. SIGPLAN Not., 38(8), 44–54. https://doi.org/
10.1145/944579.944589.

Istituto Nazionale di Statistica, 2022. Boundaries of Admin-
istrative Units for Statistical Purposes as of 1st January 2022.
https://www.istat.it/it/archivio/222527 (accessed on
26 June 2022).

Krijnen, T., Beetz, J., 2017. An IFC schema extension and bin-
ary serialization format to efficiently integrate point cloud data
into building models. Advanced Engineering Informatics, 33,
473-490. https://doi.org/10.1016/j.aei.2017.03.008.

Maeda, K., 2012. Performance evaluation of object serialization
libraries in xml, json and binary formats. 2012 Second Interna-
tional Conference on Digital Information and Communication
Technology and it’s Applications (DICTAP), IEEE, 177–182.
https://doi.org/10.1109/dictap.2012.6215346.

Martı́nez-Prieto, M. A., Arias Gallego, M., Fernández, J. D.,
2012. Exchange and consumption of huge RDF data. Extended
Semantic Web Conference, Springer, 437–452. https://doi.
org/10.1007/978-3-642-30284-8_36.

Mooney, P., Minghini, M., 2017. A review of OpenStreetMap
data. G. Foody, L. See, S. Fritz, P. Mooney, A.-M. Olteanu-
Raimond, C. C. Fonte, V. Antoniou (eds), Mapping and the
Citizen Sensor, Ubiquity Press, 37–59. https://doi.org/10.
5334/bbf.c.

Philippsen, M., Haumacher, B., Nester, C., 2000. More efficient
serialization and RMI for Java. Concurrency: Practice and
Experience, 12(7), 495-518. https://doi.org/10.1002/

1096-9128(200005)12:7<495::AID-CPE496>3.0.CO;2-W.

Popić, S., Pezer, D., Mrazovac, B., Teslić, N., 2016. Per-
formance evaluation of using Protocol Buffers in the Inter-
net of Things communication. 2016 International Conference
on Smart Systems and Technologies (SST), IEEE, 261–265.
https://doi.org/10.1109/sst.2016.7765670.

Proos, D. P., Carlsson, N., 2020. Performance comparison of
messaging protocols and serialization formats for digital twins
in IoV. 2020 IFIP networking conference (networking), IEEE,
10–18.

Protocol Buffers, 2022. Protocol Compiler Installation.
https://github.com/protocolbuffers/protobuf#

protocol-compiler-installation (accessed on 26 June
2022).

Regione Toscana, 2022. Land Use and Cover years
2007-2019. http://www502.regione.toscana.

it/geonetwork/srv/api/records/r_toscan:

0d4d6640-9a1c-47a4-9a5d-a85cdb36927c (accessed
on 26 June 2022).

Sarretta, A., Minghini, M., 2021. Towards the integration of
authoritative and OpenStreetMap geospatial datasets in support
of the European strategy for data. The International Archives of
the Photogrammetry, Remote Sensing and Spatial Information
Sciences, XLVI-4/W2-2021, 159–166. https://doi.org/10.
5194/isprs-archives-XLVI-4-W2-2021-159-2021.

Srivastava, D. J., Vosegaard, T., Massiot, D., Grandinetti,
P. J., 2020. Core Scientific Dataset Model: A lightweight
and portable model and file format for multi-dimensional sci-
entific data. Plos one, 15(1), e0225953. https://doi.org/
10.1371/journal.pone.0225953.

Sumaray, A., Makki, S. K., 2012a. A Comparison of Data
Serialization Formats for Optimal Efficiency on a Mobile Plat-
form. ICUIMC ’12, Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/2184751.
2184810.

Sumaray, A., Makki, S. K., 2012b. A comparison of data seri-
alization formats for optimal efficiency on a mobile platform.
Proceedings of the 6th international conference on ubiquit-
ous information management and communication, 1–6. https:
//doi.org/10.1145/2184751.2184810.

Vaccari, L., Posada, M., Boyd, M., Gattwinkel, D., Mavridis,
D., Smith, R., Santoro, M., Nativi, S., Medjaoui, M., Reusa,
I., Switzer, S., Friis-Christensen, A., 2020. Application Pro-
gramming Interfaces in Governments: Why, what and how.
EUR30227 EN, Publications Office of the European Union,
Luxembourg. https://doi.org/10.2760/58129.

Vanura, J., Kriz, P., 2018. Perfomance evaluation of java,
javascript and php serialization libraries for xml, json
and binary formats. International Conference on Services
Computing, Springer, 166–175. https://doi.org/10.1007/
978-3-319-94376-3_11.

Viotti, J. C., Kinderkhedia, M., 2022. A Benchmark of JSON-
compatible Binary Serialization Specifications. arXiv preprint
arXiv:2201.03051.

Vohra, D., 2016. Apache avro. Practical Hadoop Eco-
system, Springer, 303–323. https://doi.org/10.1007/

978-1-4842-2199-0.

Wang, Y. Q., 2014. MeteoInfo: GIS software for meteorological
data visualization and analysis. Meteorological Applications,
21(2), 360–368. https://doi.org/10.1002/met.1345.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-307-2022 | © Author(s) 2022. CC BY 4.0 License.

 
313

https://download.geofabrik.de
https://download.geofabrik.de
https://doi.org/10.1109/tla.2017.7959346
https://doi.org/10.1109/tla.2017.7959346
https://doi.org/10.1177/030913259101500205
https://doi.org/10.1177/030913259101500205
https://dx.doi.org/10.2760/511755
https://doi.org/10.1145/944579.944589
https://doi.org/10.1145/944579.944589
https://www.istat.it/it/archivio/222527
https://doi.org/10.1016/j.aei.2017.03.008
https://doi.org/10.1109/dictap.2012.6215346
https://doi.org/10.1007/978-3-642-30284-8_36
https://doi.org/10.1007/978-3-642-30284-8_36
https://doi.org/10.5334/bbf.c
https://doi.org/10.5334/bbf.c
https://doi.org/10.1002/1096-9128(200005)12:7<495::AID-CPE496>3.0.CO;2-W
https://doi.org/10.1002/1096-9128(200005)12:7<495::AID-CPE496>3.0.CO;2-W
https://doi.org/10.1109/sst.2016.7765670
https://github.com/protocolbuffers/protobuf#protocol-compiler-installation
https://github.com/protocolbuffers/protobuf#protocol-compiler-installation
http://www502.regione.toscana.it/geonetwork/srv/api/records/r_toscan:0d4d6640-9a1c-47a4-9a5d-a85cdb36927c
http://www502.regione.toscana.it/geonetwork/srv/api/records/r_toscan:0d4d6640-9a1c-47a4-9a5d-a85cdb36927c
http://www502.regione.toscana.it/geonetwork/srv/api/records/r_toscan:0d4d6640-9a1c-47a4-9a5d-a85cdb36927c
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-159-2021
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-159-2021
https://doi.org/10.1371/journal.pone.0225953
https://doi.org/10.1371/journal.pone.0225953
https://doi.org/10.1145/2184751.2184810
https://doi.org/10.1145/2184751.2184810
https://doi.org/10.1145/2184751.2184810
https://doi.org/10.1145/2184751.2184810
https://doi.org/10.2760/58129
https://doi.org/10.1007/978-3-319-94376-3_11
https://doi.org/10.1007/978-3-319-94376-3_11
https://doi.org/10.1007/978-1-4842-2199-0
https://doi.org/10.1007/978-1-4842-2199-0
https://doi.org/10.1002/met.1345

	Introduction and motivation
	Related Work
	Experimental Analysis
	Experiment 1: Static point-based data
	Experiment 2: Dynamic point-based data
	Experiment 3: Static polygon-based data
	Overall discussion
	Reproducibility information

	Conclusions and future work



