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ABSTRACT:

Too much information often kills information. With the increasing number of satellites and their ever-increasing performance, new
tools must be made available to deal with this data onslaught. We noticed that a number of computer graphics tools were largely
under-exploited to help scientists better interpret and find relevant information in large datasets. A modern approach to run large
processes efficiently is the use of GPUs, but nowadays the emphasis is often put on the parallel processing of geospatial datasets
rather than focusing on their visualization. Considering geospatial data using GPU resources for intermediate computation and
visualization is this paper main contribution. Given the increasing interest in interacting directly with this data using Web pages
or Notebooks, this article presents tools allowing a program to run on the GPU and display, using the WebGL API, these matrices
of data, also called datacubes. This paper shows a range of models applicable to datacubes deployed in the context of terrestrial
observation. The end goal is to display on a PC very large (i.e. 10243) datacubes rendered on the fly and in real time. Furthermore,
results show our models can process large amounts of data and render them in real time. All these innovative rendering models are
assembled in a toolbox dedicated to datacube visualization. Finally, we give several examples of how to use this toolbox which
enables the retrieval of raw data from an external server to real-time rendering on a local Web page.

1. INTRODUCTION

Data visualization is at least as important as the data itself. As
the amount of data generated nowadays is getting bigger and
bigger, we need more efficient tools. Earth observation (EO)
generates multidimensional large-sized data, called datacubes.
Datacubes can have different formats combining spatial and
temporal dimensions such as (x, y), (x, y, z), (x, y, t) or even
(x, y, z, t). A representation of these datacubes is shown in Fig-
ure 1. Data scientists need adequate and efficient tools not only
to display these datacubes, but also to highlight pertinent data
intuitively.

With more and more EO data becoming available, especially
from satellites programs like Copernicus (Jutz and Milagro-
Pérez, 2020), there is a need for an easier access. Efforts to ease
the use of such data have led to the development of the Rasda-
man server concept (Baumann, 1993, Baumann et al., 1998)
and nowadays open source solutions like OpenEO are becom-
ing more prevalent (Pebesma et al., 2018).

Datacubes are a reference to handle EO data (Liang et al., 2014,
Baumann et al., 2018) and several works have already detailed
techniques to visualize them (Kruger and Westermann, 2003,
Gobron et al., 2011, Hassan et al., 2012). NASA has also de-
veloped Web WorldWind, an open-source interface to visualize
satellite data on a virtual globe (Bell et al., 2007). It provides
interactive features and is meant to be integrated in web pages.

In more recent works we find a focus on the preparation of large
scale geospatial data (Mazroob Semnani et al., 2020), which
is a highly technical subject and could benefit from some op-
timizations. Specifically for airborne LiDAR data, researchers
∗ Corresponding author

developed a structure using a 3rd-party application (CesiumJS)
to handle and display this 3D data in a web application (Vo et
al., 2020). QGIS is another tool frequently used in EO, it can be
enhanced by developing new plugins (Rufin et al., 2021), for ex-
ample to plot timeseries of data from the Google Earth Engine
cloud processing platform, thus interacting directly with data on
the web. There are also several developments made in the web
and mobile application fields (Lühr Sierra et al., 2021), which
tackle the problem of waste management in a city by develop-
ing a web and mobile application to track the route of waste
collection trucks via GPS satellites, with a focus on the user ex-
perience. The emphasis on the user is central when developing
with Jupyter notebooks too as they can be used to query, ma-
nipulate, assemble and visualize spatial data in an educational
context (Camara et al., 2021).

The efficiency issue is ever so present in geospatial data, due to
the large scales that have to be dealt with. A more modern way
to tackle it is to use GPUs instead of standard CPU processing.
When reviewing the use of GPUs to process geospatial data,
the emphasis is often put on the parallel processing of big geo-
spatial datasets but not on their visualization (Saupi Teri et al.,
2022). The next necessary step is the visualization of geospatial
data using GPU resources.

As overall there is more and more data being put online, we
observe an increasing interest in interacting directly with this
data using web pages. This article will present tools enabling a
program to run on the GPU and display the desired datacubes
in an HTML canvas that uses the WebGL API. This can result
in high performance visualizations thanks to its low level con-
trol and possibility of using GPGPU programs. With WebGL,
running natively on most web browsers, another benefit will be
the end-user ease of use since no additional software has to be
installed.
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Figure 1. Actual representation of possible datacubes: (a) 3D Cartesian (x, y, z) datacube; (b) spherical (ϕ, θ, ρ) datacube with ρ
constant; (c) partial multi-layer spherical (ϕ, θ, ρ) datacube with ρ as a variable; (d) time-related partial spherical (ϕ, θ, t) datacube;

(e) time-related partial multi-layer spherical (ϕ, θ, ρ, t) datacube.

To oversee the project an advisory group of international ex-
perts was formed to represent the interests of actors in the EO
industry and academic research. They are mainly associated
with the European Space Agency (Europe), EURAC (Italy),
GISAT (Czech Republic), Terrasigna (Romania), TU Wien (Aus-
tria), VITO (Belgium) as well as a former NASA (USA) ana-
lyst. They have been regularly interviewed to get constant feed-
back on our developed application suitability.

The end goal of our project is to build a toolbox – we titled
CubeViz4EO – of models to efficiently visualize large datacubes
of different formats on the fly and in real time. This will be done
by fetching data directly from a rasdaman server as described
in Figure 2 and processing it directly on the GPU to render the
result locally in a web page.

Figure 2. Relationship between data servers, Rasdaman server
and our demonstrator toolbox providing the end user with data

visualizations.

This paper is organized as follows: first of all, there is no state
of the art section dedicated to the presented rendering mod-
els, because two full papers of co-authors (accepted in paral-
lel) describe them in depth (Lestrade et al., 2022, Marty et al.,
2022). The section 2 presents a set of innovative approaches
to visualize Earth observation data: (1) discrete and spline-
based implicit curves models; (2) massive 3D volume raycast:
x-ray, implicit-surface simulation, and derived raycasting mod-
els. Corresponding results are illustrated in the section 3 and
discussed in section 4. Finally, the section 5 concludes the pa-
per by including a set of potential perspectives.

2. EARTH OBSERVATION DATA VISUALIZATION
MODELS

The models presented in this paper include several visualiza-
tions: the level lines of 2D (x, y) datacubes with two render-
ing methods called implicit curves in 2D or 3D, the derived
raycasting for (x, y, t) data to show differences between a base
layer and a given time range. Other models were initially de-
veloped to handle (x, y, z) datacubes, but observations from
the advisors panel mentioned that relevant EO data mostly con-
sisted of 2D and 2D with time dimension formats. So the main

goal is to display 2D and 3D data, (x, y) and (x, y, t), in real-
time and in the most intuitive way for the user. In our ap-
proach to reduce the complexity of processing these large data-
sets,reducing the amount of to-be-displayed data is a basic but
efficient method. When rendering 3D datacubes our tools only
process the fraction of the data the user is interested in, whether
it is a time range or a spatial region depending on the selected
datacube format.

2.1 Implicit curves: discrete and math-based models

Curves are extracted from a gray scale two-step image illus-
trated in Figure 3. First, we use an iso value as a threshold to
binarize the image. The obtained binary image is composed of
zeros and ones. The border of the regions containing ones are
the curves we are interested in and we extract them by using a
convolution product with two kernels for edge detection. All
these steps are done in shaders, so they can be executed par-
allel for each pixel on the GPU. Once this processing is done,
the curves are rendered and stored in another 2D texture to be
accessed directly.

Figure 3. 2D curves concept: a desired iso and δ values are
selected and corresponding levels from a scalar heightmap (left)
are extracted and processed as curves (right). The iso reference

level is in red.

Rendering of 3D surfaces with curves uses the displacement
map algorithm, which is parallelized for each pixel in the shader.
This shader then tests if each pixel lies inside a curve. This is
equivalent to projecting the curve onto the surface. If it does,
it colors itself with a different color so that we distinguish the
curve of the surface. This enables surface rendering while also
displaying the curves. By clicking on the surface, the user can
get that point’s (x, y, z) values, which is done by creating a
G-Buffer using a deferred rendering technique. It is created
with the displacement map algorithm in a first render pass, and
then the final render is performed in a second render pass us-
ing the information contained in this G-Buffer. The G-Buffer
is a framebuffer texture and stores information such as depth,
texture coordinates of the base binary image and other values
needed for the final render in the second pass. These values
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differ according to the camera point of view, because they are
related to the screen space. This should be understood as an
intermediate view of the final render containing only the neces-
sary information for the second render pass, which applies the
true colors on the surface, the illumination model and any ad-
ditional effects on the screen. When a click is detected on the
screen, it is possible to sample the G-Buffer for that position
and obtain specific information encoded within this buffer.

The surface color is computed from another texture represent-
ing this same region data. The user can use real colors (with
a set or customized color palette) or colors representing some
other information, thus cumulating the visualization of two dif-
ferent types of data.

(a) 2D curves (b) 3D level curves equivalent to Figure 4a.

Figure 4. Renderings of heightmap from Figure 3 with iso level
120 and δ = 15. Iso lines are red, lines above iso level are in

shades of green, lines below in blue.

Although level curves can be displayed on the surface, their
width is not constant since they are projected into the surface.
To solve this problem, we can use a more advanced method
described in (Marty et al., 2022). The latter proposed a way
of storing and rendering these curves using WebGL primitives,
thus enabling constant width of the curve. A comparison of
the two methods is shown in the results, in Figure 10. This is
achieved by first computing the curves as sequence of points,
then storing only a small subset of points to finally reconstruct
a curve approximation using this list of points. On the whole
reference gray scale image, a compression ratio of 3% can be
achieved with this method.

Using a surface would be another way of displaying a desired
level on a 3D map; having a horizontal plane cutting through
the topography makes it easier to see what areas are above or
below the level. Representing a desired iso with a surface is
particularly useful in the context of water levels. The simu-
lation of water surfaces is especially pertinent in the case of
natural disasters like floods, global rising water levels, or infra-
structure failures (dyke or dam break). Displaying water levels
gives us the opportunity of using the light refraction optical ef-
fect described by Snell-Descartes law, which can be directly
implemented on the GPU. As we reproduce the natural optical
effect we experience in real life, this visual effect applied to the
render gives a more intuitive way of displaying a water surface.

Each cast ray progresses in 3D space by steps of minimum dis-
tance in order to sample all discrete values encountered on the
path. This raycast operation can be more or less intensive in
terms of performance depending on the size of the 3D space.
To help smaller hardware configurations achieve a smooth and
stable rendering, we implemented a dynamic precision system
on the raycast algorithm. The method consists of increasing
or decreasing the cast rays step size according to the frame
number per second in order to obtain an average performance
level around 30 frames per second. If the number of frames per
second is higher than 30, the algorithm tries to increase accur-
acy, thus decreasing the step size, and inversely if the number of

frames per second is lower than 30. This feature is optional but
allows a performance gain at the expense of the final rendering
quality.

2.2 3D volumes raycasting

We have developed three rendering models for the visualiza-
tion of 3D datacubes of dimension (x, y, z) and (x, y, t) using
a raycasting algorithm. As WebGL version 1.0 has no 3D tex-
tures support, we must represent these 3D data in a 2D space
as a standard image. The datacube is decomposed into layers
along one of its dimensions and, following a special arrange-
ment and indexing, we can find any point in the datacube space
on a 2D texture (see Fig. 5). These algorithms can currently
support datacubes of dimensions 163, 643, 2563 and 10243.
However, a 10243 datacube is represented by a texture of di-
mension 32′7682, which exceeds the maximum dimension sup-
ported for 2D textures in WebGL. Our solution to reduce the
dimension by half is to compress the base image using RGBA
color channels of a smaller texture. In our case, a datacube con-
tains only one discrete value per voxel, so its representation in
2D space is a grayscale image and the RGBA values are redund-
ant. The idea is to separate the datacube image into four equal
parts and combine each into a smaller image color channel (il-
lustrated in Fig. 6). Thanks to this method, the pixel number
and the space occupied in memory are reduced by a factor of 4,
enabling us to load datacubes of dimensions 10243 in our ren-
dering models. More details on these optimization methods can
be found in the twin paper ”Real-time Renderings of Multidi-
mensional Massive DataCubes on Jupyter Notebook” (Lestrade
et al., 2022).

Figure 5. Sorting a 3D dataset into a 2D texture to improve
performance.

2.2.1 X-Ray rendering We designed two models that are
specifically adapted for the visualization of 3D datacubes with
(x, y, z) dimensions. The first is an X-Ray-like rendering model,
which allows the visualization of 3D spatial data in the form of
a volume with gray level transparency in the scene. The raycast-
ing algorithm, as shown in Figure 7, accumulates the values en-
countered for each ray until it reaches the limits of the explored
volume. This model gives an appearance similar to an X-Ray
image, hence its name.

2.2.2 Implicit surface simulation This rendering model for
(x, y, z) datacubes is a simulation of implicit surfaces for 3D
data. This model is a simulation because the surfaces are com-
puted and only exist in the screen space context and not in an al-
gebraically correct context. Here, the rays do not need to accu-
mulate values but must stop as soon as a surface is encountered
in the volume (as shown in Figure 8). The boundary of this sur-
face is defined by a threshold iso value and a color is applied
according to a color matching table. In addition, a normal vec-
tor is computed by sampling and averaging the 26 neighboring
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Figure 6. From left to right : (1) Slicing the image into 4 parts,
each corresponding to a color channel, (2) Combining each part

into one smaller RGBA image, (3) The resulting image is 4
times smaller in size than the original.

(a1)

(a2)

(a3)

(a)

Figure 7. Representation of how the voxels are sampled by the
raycast algorithm using the X-Ray model: voxel values are

accumulated along the rays.

voxels. Then a Phong illumination model is applied on it to
highlight these surfaces.

2.2.3 Derived raycasting The Derived model is one of our
three rendering models specially designed for 3D datacubes
of dimension (x, y, t) where t is a time dimension. With this
model, the aim is to visualize the evolution in time of a geo-
graphical area by highlighting the temporal differences within
a volume. By choosing a reference layer representing the state
of an area at a defined time and a time interval, the differences
between the reference and this time range are visible in color
in the sub-volume defined by the interval (see Fig. 9). Posit-
ive differences are shaded in red and negative differences are
shaded in blue while the reference layer is colored in gray. In
order to add more contextual information in the visualized geo-
graphical area, we added the possibility to display an additional
map at the reference layer level within the volume. In our case,
thanks to the API of the Mapbox service, we could display a
topographic map corresponding to the geographical area of the
visualized data.

(b)
(b1)

(b2)

(b3)

Figure 8. Representation of how the voxels are sampled by the
raycast algorithm using the implicit surface model: samples the

first voxel value at a given threshold is sampled.

Figure 9. Representation of the rendering model with
derivatives: (left) stack of images, the selected range is in red

and the reference layer in yellow; (right) illustration of a
potential view.

3. RESULTS

In this section, we present different examples of our rendering
models in specific use case contexts as well as their integration
in our Web visualization toolbox. The data shown here were
rendered with the highest precision possible for the raycast al-
gorithm to ensure maximum fidelity to the original data. All the
visuals below were captured using a modern high-end hardware
configuration (in 2022). The hardware and software configura-
tion of the test machine is the following :

• OS : Windows 11 v21h2 64-bit;
• CPU : Intel Core i9-10850K @ 3.60GHz;
• RAM : 16GB DDR4;
• GPU : NVIDIA GeForce RTX 3070 8GB;
• Storage : SSD NVme 500GB;
• Web browser : Google Chrome 64-bit (with no v-sync).

The Table 1 is here to remind us which model we can find in
what figure.

Table 1. List of figures representing each feature and rendering
model described in this section.

Model / Feature Figures
Implicit curves (IC) 10, 11
IC with 3D surface (3DS) 12, 13, 14
IC 3DS and water level 16
Custom colormap 15
X-Ray & implicit surface simulation 17
3D derived rendering 18, 21
Toolbox usecase 19, 20, 21
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3.1 Implicit curves

Here are some application examples for the two models based
on implicit curves. The scalar heightmaps used in this section
have all a size of 2048× 2048.

Firstly, using the implicit curves model without rendering the
3D surface allows the compression of level curves as illustrated
in Figure 10. Here we compare the reconstruction method em-
ploying vectorized reconstructed curves with the naive discrete
approach that only uses a raycasting algorithm.

Figure 10. Implicit surface model with a real data set: (a)
Kaho’olawe, Hawaii’s island Google maps; (b) input depth map;
(c) and (d) top views and (e) and (f) side views; discreet output
are shown in (c)+[A] and (e)+[B]; and implicit curve output in

(d)+[A’] and (f)+[B’].

Figure 11 illustrates the 2D implicit curves model applied to a
high resolution scalar-map of Iceland. A set iso level is rep-
resented by red lines, whereas the green and blue lines repres-
ent levels above and below the iso value separated by the set
δ value. The result is a semi-perspective view of the discrete
contour simulation (Fig. 11b is a close-up view due to the large
amount of details).

The same data (Fig. 11a) is used in Figure 12. Here the implicit
curves are displayed in 3D on a simulated surface. In addition
to the curves information, a colormap is applied to render the
image values as a range of colors and an illumination model us-
ing diffuse reflection simulation gives a feeling of topography.

To add more context or combine the render with additional data
of the same area, a second image can be used to replace the dis-
played colormap. Figure 13 illustrates this concept by using the
same render as Figure 12, but coloring the surface with a map

(a) Iceland heightmap (b) 2D curves on Iceland map with small δ

Figure 11. Input test heightmap of Iceland (a) and close-up view
of resulting 2D curves visualization (b).

Figure 12. Implicit curves render with 3D surface simulation
performed on the Fig. 11a scalar heightmap.

of rainfall data. This last result provides an interesting obser-
vation: indeed, as this simulation allows to navigate inside the
information of relief and humidity, correlations between precip-
itations and the mountain range appear clearly.

Figure 13. Render identical to Fig. 12 using rainfall data to
change the surface colormap.

Figure 14 shows the 3D surface as initially rendered in Fig-
ure 12 with seven steps corresponding to the iso and δ levels
instead of the usual more regular surface. This is convenient to
bring together specified ranges of values. This render answers
the needs of information specialists who had expressed their
desire to easily visualize information in increments. Indeed, in
this article we mostly used elevation maps, but specialists will
often deal with data that do not only represent elevation, but also
terrain categories, moisture rates, agricultural or urban areas.
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Figure 14. Rendering with steps: a first plateau is defined by the
iso, the others are ±kδ away.

The 3D implicit curves tool also includes the ability to define
custom colormaps, another feature that the expert group sug-
gested we add. This option is a simple and on the fly way to
visually identify data with specific values. Figure 15 illustrates
the versatility of this option on another synthetic heightmap.

Figure 15. Illustration of creating a custom colormap to render a
virtual heightmap (left) ; It is worth noting the paradigm shift in

the interpretation of information.

The water surface simulation is illustrated in Figure 16, which
shows the use of a synthetic heightmap rendered with the 3D
curves model and fills the terrain up to a given iso with water.
In this example, with a surface size of 2048× 2048, this model
can achieve real-time rendering with an average of 360 FPS (or
450 FPS without the water surface simulation).

3.2 3D X-Ray & implicit surfaces

Figure 17 shows the renderings for 3D datacubes using the X-
Ray and implicit surface simulation. In this case, we display a
datacube of size 2563 representing a CT scan of a foot. In fact,
these two types of rendering are well suited for 3D (x, y, z)
datacube visualization and this kind of data is common in med-
ical imaging, e.g. CT scans. That is why we use them in our
results to provide the optimal visual representation of these ren-
dering models. After testing these models with a 2563 datacube
on our test machine, we get an average of 170 FPS for the X-
Ray model and an average of 160 FPS for the surface simulation
model. We also obtained real-time renderings for datacubes
of size 10243, but with a reduced number of samples for the
raycast algorithm. Further details on our performance results
with these models are described in (Lestrade et al., 2022).

3.3 3D derived rendering

Figure 18 shows an example of 3D derived rendering, with a
datacube of size 2563. From a selected reference layer and a
given time range within the (x, y, t) datacube, the variations
at a given location are rendered as shades of red and blue. The
option to display more geographical context is displayed in Fig-
ure 18b where the base layer is replaced by a topographic map

(a)

(d)

(e)

(c)

(b)

Figure 16. Example of the water level simulation in a 3D surface
render on a virtual terrain: (a) synthetic heightmap; (b) standard
3D render with low water level and (c) and (d) simulations with
rising water levels; (e) illustrates a close-up view with another

ground color palette.

of the current location. In terms of rendering performance on
our test machine, we can reach an average of 130 FPS for a data-
cube of size 2563 and a full sampling of voxels along the rays
with this model. For a billion cell datacube, we have measured
real-time performance around 100 FPS, but with a number of
samplings reduced to 1% of the total number of voxels. (Lestrade
et al., 2022) describe in more detail the comparison of our per-
formance metrics according to the datacube size and the number
of samples for this particular model.

3.4 Toolbox integration

All the results presented so far in section 3 have been implemen-
ted in the CubeViz4EO visualization toolbox. The following fig-
ures (19, 20, 21) show the implementation of a web application
used to run the toolbox models and designed for the end-user.
This toolbox can retrieve a list of coverages from WCS servers
as mentioned earlier in Figure 2, the user is then able to load
a coverage from the server into a visualization. Before using
a rendering model, a map shows a satellite view of the selec-
ted region, which can be modified on the fly as illustrated in
Figure 19.

Figure 20 shows the basic render for a selected coverage corres-
ponding to a 3D (x, y, t) datacube. As detailed in section 2.2
and illustrated in Figure 5 the data has been converted to a 2D
GPU texture. In Figure 21 we show the resulting render using
the 3D derived model visualization, where the user can freely
select the desired base layer and range to display.

This toolbox includes all our render models and the user can
display each one of them depending on their use case and the
data he has access to. The Angular based web application integ-
rates the rendering models by using a custom TypeScript library
which can be extended to include other rendering models in the
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(a)

A

(b)

A: X-Ray simulation
Emphasizes the change in density

B

B: Implicit surface sim.
Identi�es relief details

Figure 17. Two volume rendering on a (x, y, z) medical
datacube: (a) X-Ray-like rendering model and (b) simulation of

implicit surfaces.

(a) Standard derived render (b) Topographic data replaces base
layer

Figure 18. Derived rendering illustration: red/blue areas show
positive/negative differences with the selected base layer. In (b)

the gray base layer is replaced by a topographic map.

future and can also be employed in other tools to facilitate the
rendering capabilities reuse.

Figure 19. Toolbox process: accessing raw data server (left);
setting up specific data set (middle); selecting regions (right).

4. DISCUSSION

Results show our models can process large amounts of data
and render them in real time. Where large 3D datasets would
normally become problematic to handle for any GPU, we de-

Lorem Ipsum

(a)          (b)         (c)

Figure 20. Result after selection from Figure 19: automatic
accelerated 2D texture generation in toolbox. As shown with the

red and blue samples –zoomed in (a) and (b)–, the direct
derivation (c) to detect differences over time does not result into

obvious interpretation.

Figure 21. 3D Derived rendering corresponding to the texture
generated in Figure 20.

veloped specialized tools to overcome software and hardware
limitations. For instance, a 3D datacube can be sorted into
a 2D texture to be directly loaded into GPU memory and im-
prove performance. When the textures become too big to work
with WebGL, their data can be split in the RGBA channels of
standard 2D textures for a four-fold decrease in memory use.
Furthermore, when displaying our rendering models, and in the
case of machines without sufficiently powerful graphics cards,
we propose to display only the data fraction that interests the
user. The developed toolbox runs in any web browser sup-
porting JavaScript since Jupyter notebooks are also widely used
among data scientists; an implementation of our models focus-
ing on large datacube rendering with Jupyter is described in
another twin publication (Lestrade et al., 2022).

Figures 13 and 18b showcase examples of additional context
added to the render from external data. This data could also be
another geographical context like borders or various weather
data. The water level simulation for the 3D implicit curves
render is also a first step towards more realistic floods or wa-
tershed simulations, with our deferred rendering technique ad-
apted to quickly generate water sources. Concerning the de-
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veloped models mentioned for 3D datacubes in section 2.2, only
the derived rendering for (x, y, t) data was presented with geo-
spatial data, because this sort of data in (x, y, z) and (x, y, z, t)
datacubes format is much less frequent.

5. CONCLUSION

In this paper we demonstrated an example application retriev-
ing raw data from a server, formatting it for local use with GP-
GPU, and rendering it using several original models. The mod-
els produced innovative results for different datacube formats
and sizes. Thanks to a web application and Jupyter Notebook
integration developed alongside our models, the visualizations
are usable even on modest computer configurations. The devel-
opment does not rely on commercial third-party software and
the rendering models presented do not build on specialised geo-
spatial analysis software: they build directly on WebGL itself.
The code for the models and integrated Web application will be
freely available under the Apache 2.0 license from the GitHub
repository of the CubeViz4EO project.
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