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ABSTRACT:

Geospatial data comes in various forms, including multi and hyperspectral images but also rasters of local composition, local time
series, local patterns, etc. Thus, we generalize the SLIC algorithm to work with a library of different data distance measures that
are pertinent to geospatial rasters. This contribution includes a description of the generalized SLIC algorithm and a demonstration
of its application to the regionalization of the raster of local compositions (of land cover classes). Two workflows were tested,
both starting with SLIC preprocessing. In the first, superpixels are subject to regionalization using the graph-partitioning algorithm.
In the second, superpixels are first clustered using the K-means algorithm, followed by regions delineation using the connected
components labeling. These two workflows are compared visually and quantitatively. Based on these comparisons, coupling of
superpixels with a graph-partitioning algorithm is the preferred choice. Finally, we propose using the SLIC superpixel preprocessing
algorithm for the task of regionalization of various geospatial data in the same way as it is used for the task of image segmentation
in computer vision.

1. INTRODUCTION

Generalization is one of the fundamentals of scientific research.
In the context of spatial information, generalization needs to
allow for finding common properties but also for spatial con-
tiguity. Therefore, such generalization is often made through
regionalization - partitioning of space into spatial clusters or
regions. This process is vital for environmental studies, such
as geography, ecology, biology, and landscape analyses, where
many patterns and processes are autocorrelated spatially. Ex-
amples of regionalizations include delineation of ecoregions,
detection of homogeneous zones for precision agriculture, the
definition of climate regions, and so on.

Traditionally spatial generalization was performed manually
(Bailey et al., 1985), often based on a compilation of pre-
existing, independently conducted studies (e.g., Omernik
(1987); Olson and Dinerstein (2002)). This approach lacks a
quantitative framework, and thus no systematic checks, modifi-
cations or objective updates are possible. Currently, the abun-
dance of remote sensing spatial data, such as satellite imagery,
gridded climate data, or land cover maps, allows for fast ex-
traction of relevant spatial information on regional and global
scales, making possible studies rooted in a clear quantitative
framework.

Such data, however, still requires spatially-aware generaliza-
tion to formulate general concepts or claims. Remote sensing
data stores information as a set of raster cells, where a single
cell is unaware of its spatial context. This is often not enough
to understand underlying objects or processes. (Geographic)
object-based image analysis (OBIA) (Blaschke, 2010) is fre-
quently applied to resolve this issue. It is an approach to par-
tition space consisting of raster cells into homogeneous objects
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and thus making spatial regionalization possible. Several gen-
eralization techniques were developed for OBIA, including a
superpixels approach that proved to perform best for image pro-
cessing and remote sensing data analysis (Csillik, 2017).

The main idea of superpixels is to create connected groupings
of cells with similar values (Ren and Malik, 2003; Achanta et
al., 2012). Each superpixel represents a desired level of homo-
geneity while at the same time maintaining spatial structures.
Superpixels also carry more information than each cell alone,
and thus they can speed up the subsequent processing efforts
(Ren and Malik, 2003; Achanta et al., 2012).

The Simple Linear Iterative Clustering (SLIC) superpixels algo-
rithm (Achanta et al., 2012) proved to perform well for image
processing (Stutz et al., 2018) and remote sensing data analy-
sis (Subudhi et al., 2021). However, recall that SLIC is only
a preprocessing algorithm and has to be coupled to a cluster-
ing/segmentation algorithm for the ultimate goal of regionaliza-
tion. Also, SLIC uses the Euclidean metric to calculate the data
component of the distance between cells. This is not adequate
for multi-dimensional data (Aggarwal et al., 2001), as well as
for non-vector data. Non-vector data are common in geospa-
tial applications; for example, histograms represent the local
composition data (Buchhorn et al., 2020), time-series represent
climate data (Netzel and Stepinski, 2016), and co-occurrence
matrices represent pattern data (Jasiewicz et al., 2018).

The results presented during the GIScience 2021 conference
(Nowosad and Stepinski, 2021) provide a basis for addressing
the Euclidean metric issue. The proposed extension to the SLIC
algorithm has a library of different metrics to calculate the data
component of the distance between cells. A user selects a met-
ric most appropriate for the type of data at hand. This extension
is already available as open-source software in the form of an R
package supercells.
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The issue of regionalization – how to best couple superpixels
to a clustering/segmentation algorithm in a geospatial context
– remains open. This contribution aims to present the work
in progress related to developing a robust workflow for the re-
gionalization of geospatial data utilizing supercells in the pre-
processing step. Our focus is on the universality of the pro-
vided solution, i.e., to develop a workflow that works well with
different types of geospatial data (multi and hyperspectral im-
ages, compositions, time series, patterns, etc.). To start, here we
test two regionalization workflows of compositional data. Both
workflows use SLIC preprocessing, but one clusters superpix-
els, whereas the other performs graph-based segmentation on
superpixels. We tested the two workflows for feasibility, qual-
ity, and visual coherence.

2. METHODS

2.1 Extended SLIC

In the rest of this paper, we will use the terms cell and super-
cell instead of pixel and superpixel to underscore that we do not
necessarily work with image data. The Simple Linear Iterative
Clustering (SLIC, Achanta et al. (2012)) starts with regularly
located cluster centers spaced by the interval of S. By con-
struction, these initial cluster centers coincide with underlying
cells and inherit from their positions and values. To avoid being
on an abnormal cell, the initial centers’ locations are perturbed
in a 3× 3 neighborhood to the lowest gradient position – a cell
the least different from its neighbors. Next, the distance D be-
tween a cluster center and every cell in its 2S × 2S region is
calculated.

D =

√(
dc
m

)2

+
(
ds
S

)2

(1)

where dc is the distance between cell objects, m is the compact-
ness parameter, ds is the spatial (Euclidean) distance between
the cells, and S is the interval between the initial cluster centers.
Since the original SLIC was designed for natural images, dc is
often referred to as the color (spectral) distance, but we are us-
ing a more general description of dc as a data distance between
objects carried by cells.

The spatial (Euclidean) distance between cells represents their
spatial proximity:

ds =
√

(xj − xi)2 + (yj − yi)2 (2)

A metric used to calculate a distance between two data ob-
jects, dc, depends on the form of these objects. For example,
if objects are B-dimensional vectors, the metric may be the B-
dimensional Euclidean distance.

The distance between B-dimensional value vectors
I(xi, yi, si,p, p = 1 . . . , B) and I(xj , yj , sj,p), p = 1 . . . , B)
is:

dc =

√∑
p∈B

(I(xi, yi, si,p)− I(xj , yj , sj,p))2 (3)

but different metrics must be used with different data in dif-
ferent forms. The distance between objects controls the ho-
mogeneity of supercells, while the spatial distance is related to
spatial contiguity.

Supercells are created by assigning each cell to the cluster cen-
ter with the smallest overall distance. Afterward, cluster cen-
ters (centroids) are updated to values equal to the average of all
the cells belonging to their respective clusters. Note that cluster
centers do not necessarily coincide with any particular cell after
such an update.

The SLIC algorithm works iteratively, repeating the above pro-
cess until it reaches the expected number of iterations. The last,
optional, step enforces the 4-connectivity of the cell belonging
to the same supercells by reassigning disjoint cells. SLIC has
two main parameters - S and m. The first one controls the ini-
tial interval between cluster centers of each supercell, which is
directly related to the number and the size of output supercells.
The m parameter, compactness, controls the relative influence
of ds versus dc on the results. Its large values result in more
regularly shaped (squarer) supercells, while lower values create
more spatially adapted, irregularly shaped supercells. In other
words, the m parameter oversees the balance between the data
distance and spatial distance.

Extension of SLIC proposed by Nowosad and Stepinski (2021)
allows for the use of any distance measure (not just the Eu-
clidean distance) to calculate dc. It also allows for any function
(not just the arithmetic mean) to be used for averaging values
of cluster centers, and specify custom initial custom of cluster
centers.

For example, for the compositional data, where the state of a
cell is given by a normalized histogram, any of possible dis-
tances between histograms (Cha, 2007) could be used as dc.
When testing workflows for regionalization of compositional
data (section 3) we calculate dc using the Jenson-Shannon di-
vergence (Lin, 1991) as a “distance” between histograms,

dc = H(
A+B

2
)− 1

2
[H(A) +H(B)] (4)

where A and B are normalized histograms of two cells, and
H(A) and H(B) indicates values of Shannon’s entropy (Shan-
non, 1948) of these histograms (recall that normalized his-
tograms are discrete probability distribution functions):

H(A) = −
∑
p∈A

Aplog2Ap (5)

Ap is the pth value of the first of the compared histograms.

2.2 Clustering and regionalization methods

In this contribution, we tested two distinctive regionalization
workflows. Each will start from performing the SLIC prepro-
cessing, but one utilizes k-means clustering on supercells to
achieve regionalization while the other performs graph-based
segmentation.

K-means is a clustering method that partitions observations
(values of raster cells or supercells, in our case) into k clus-
ters. Each observation is assigned to a cluster with the nearest
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cluster center (nearest mean) (Hartigan and Wong, 1979). The
k-means method does not use information about spatial rela-
tionships between cells/supercells, and thus its result is a set of
non-adjacent areas. Therefore, we needed to split each cluster
into many regions consisting of linked cells using the connected
component labeling method to create final regions. We refer to
this regionalization workflow as KM- CCL (k-means followed
by connected components labeling). Importantly, this approach
does not allow for directly specifying the expected number of
regions.

Graph-based segmentation starts from constructing a weighted
graph with nodes located at supercells. The edges of the
graph are weighted by the distance measured between linked
supercells. We use the SKATER (Spatial ‘K’luster Analysis
by Tree Edge Removal) graph-based segmentation algorithm
(AssunÇão et al., 2006). SKATER prunes the graph to its min-
imum spanning tree (MST) (Grygorash et al., 2006) and then
iteratively partitions the graph by identifying edges whose re-
moval increases the objective function (between-group dissim-
ilarity) the most. The iterative process stops when a specified
number of regions is obtained.

2.3 Quality assesment

The resulting regions, in theory, can be evaluated using internal
and external validation techniques. External validation metrics
are possible to calculate when the “ground truth” data is avail-
able that we can compare the results with. However, such data
does not exist in this case, and thus internal validation can only
be performed.

Two internal validation metrics used in this study are inhomo-
geneity and isolation. These measures are applied to both su-
percells and regions. Recall that supercells are small regions
resulting from oversegmentation, they should be very homoge-
neous but not necessarily distinct from their neighbors. Regions
(collections of supercells) should still be as homogeneous as
possible and practical, but they will be less homogeneous than
supercells. On the other hand, regions are expected to be dis-
tinct from their neighbors.

The inhomogeneity metric measures a degree of mutual dis-
similarity between all cells in a supercell/region (Jasiewicz et
al., 2018). It is derived by calculating an average distance be-
tween all cells in a supercell/region using a given distance met-
ric (Jensen-Shannon distance, in our evaluation in section 3).
The larger the value, the more inhomogeneous (worse) the su-
percells/regions are. Isolation is an average distance between
the focus supercell/region and all of its neighbors (Haralick and
Shapiro, 1985; Jasiewicz et al., 2018). For the regions, larger
values of isolation are better; for supercells, values of isolation
are less important. Both inhomogeneity and isolation have val-
ues between 0 and 1.

2.4 Software

Extended SLIC algorithm is implemented in the R program-
ming language (R Core Team, 2021) as an open-source pack-
age called supercells (Nowosad and Stepinski, 2021). This
package works on spatial data with one variable (e.g., contin-
uous raster), many variables (e.g., RGB rasters or time-series),
and spatial patterns (e.g., areas in categorical rasters). The cal-
culations in the supercells package are customizable, provid-
ing about 50 built-in distances and similarity measures while

Figure 1. Fractional cover (0-1) of the 8 base land cover classes
in the eastern Netherlands

also allowing any user-defined R function to be used as a dis-
tance measure. This extension also makes it possible to apply
other averaging functions than the arithmetic mean when updat-
ing values of supercells’ centers. It also has some experimental
features, such as the possibility to provide user-defined initial
cluster centers.

The k-means method was applied using the built-in R kmeans()

function (R Core Team, 2021), while the terra and sf pack-
ages were used for connected-component labeling and general
spatial data handling (Hijmans, 2021; Pebesma, 2018). For
graph-based regionalization, the skater() function from the
rgeoda package was used (Li and Anselin, 2022). Its current
version allows providing a distance matrix, which enables re-
gionalizations based on various dissimilarity measures.

Quality assesment was possible with the regional package
(Nowosad, 2022). Its functions, reg inhomogeneity() and
reg isolation(), take a spatial vector object containing re-
gions and a raster object with the values of interest. Next, they
compute values of inhomogeneity and isolation for each region
based on a given distance measure and specified sample size.

Addtionally, visualizations in this paper were created using
the tmap and ggplot2 packages (Tennekes, 2018; Wickham,
2016).

2.5 Materials

The presented work is based on the Copernicus Global Land
Service: Land Cover 100m data (Buchhorn et al., 2020) for the
year 2019. Cover fractions (%) of the eight base classes (forest,
shrubland, grassland, bare/sparse vegetation, cropland, built-
up, seasonal inland water, and permanent inland water) were
derived from https://lcviewer.vito.be/ and cropped to an
area of about 4200 km2 located in the eastern Netherlands (Fig-
ure 1). The input raster file had 507 rows, 1105 columns, and
eight layers.

3. WORKFLOWS COMPARISON

We tested two different regionalization workflows to delineate
areas with similar land cover fractions. This is an example in
which the input data is in the form of histograms (or discrete
probability distributions). The composition of land cover types
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Figure 2. Possible approaches for regionalization of geospatial
raster data

within a 100m×100m area is stored in each cell. Cells are sim-
ilar if they have similar compositions of land cover types. The
magnitude of this similarity is measured by 1− dc, where dc is
given by the Jensen-Shannon dissimilarity (eq. 4).

In principle, regionalization of the compositional raster can
be achieved with or without supercells preprocessing by using
clustering or segmentation directly on cells. Thus, theoretically,
we should consider four workflows.

1. The k-means clustering based on cells’ values followed by
the connected components labeling.

2. The SKATER regionalization of cells’ values.

3. The k-means clustering based on supercells’ values fol-
lowed by the connected components labeling (KM-CCL).

4. The SKATER regionalization of supercells’ values
(SKATER).

Figure 2 summarizes the tested workflows and highlights some
initial findings. The first workflow proved to be unsuitable for
regionalization. Even small values of k produced a large num-
ber of regions, many of which were very small, resulting in a
salt and paper map. For example, k = 2 returned 6,000 regions
and k = 3 10,000 regions. Thus, this workflow was insufficient
for our purpose without any additional pre- or postprocessing of
the results.

Similarly, the second workflow seemed to be infeasible for
the stated problem. Most of the currently used regionaliza-

tion methods, such as SKATER, and their software implemen-
tations are suitable for problems with hundreds or even thou-
sands of observations. However, they do not work for data
with hundreds of thousands of observations. In our case with
about 500,000 cells, regionalization functions from the rgeoda
R package were unable to return any results.

Therefore, the only viable workflows are the ones with super-
cells preprocessing. First, supercells based on the composi-
tional raster input are created using the extended SLIC algo-
rithm with the Jensen-Shannon distance as a dissimilarity met-
ric, and parameters S = 15 and m = 0, 1. These calculations
resulted in 3,505 supercells (an about 0.6% of the original cells’
number). Area-weighted inhomogeneity of the obtained super-
cells was 0.09, while its average isolation equaled to 0.26.

The KM-CCL workflow requires specifying the number of clus-
ters (k), which are then split into adjoining regions. For the val-
ues of k of 2, 3, 4, 15, and 100, we have obtained 468, 690,
1034, 1947, and 2986 regions, respectively. We then regional-
ized the same supercells using the SKATER to the same number
of regions as was produced by the KM-CCL workflow.

Figure 3 shows a comparison between the two regionalizations
of the data into 468 regions. In the two maps in the upper row,
the regions are shown by their boundaries (in white) superim-
posed on the background that visually represents the similar-
ity of cells’ objects. The background maps are constructed as
false-colors images where the green color was assigned to PC1
(the first principal component calculated from the entire com-
positional raster; it positively relates to the forest fraction), the
color red was assigned to PC2 (it positively relates to the built-
up areas), and the color blue was assigned to PC3 (it positively
relates to inland water areas). Together, these three principal
components account for 93% of variation in the data. The two
maps in the bottom row of Figure 3 indicate different regions
by random colors.

The qualitative difference between the two regionalizations is
best observed in the random color maps. The KM-CCL map
shows two large regions, a few medium-size regions, and a large
number of small regions. The largest region covers 2,235 km2

or 53% of the entire area. The area distribution is highly right-
skewed. The SKATER map has the area distribution closer to
the normal distribution, and its largest region has an area of only
501 km2.

Yellow numbers in Figure 3 highlight some specific differences
between the KM-CCL and the SKATER regionalizations. The
first three numbers show areas undersegmented by the KM-
CCL regionalization. Locations 1 and 2 are part of the large
region (shown in light purple color on the random colors KM-
CCL map), but the PCA-based background clearly shows that
these locations should not be in this region. The region is
predominately forested, but a portion of location 1 is water-
dominated and another portion is build-up-dominated. Location
2 is build-up-dominated. Similarly, according to the PCA-based
map, the single region in location 3 is actually inhomogeneous
and should be broken up into several sub-regions. The SKATER
regionalization was able to isolate these sub-regions.

In location 4 the PCA-map suggests that SKATER overseg-
ments the raster, there is not much visual difference between
this segment and large neighboring segments located to its west
and south. However, a closer look at all of the eight input vari-
ables suggests that this region has a larger share of croplands
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Figure 3. Comparison of the regionalization borders between the KM-CCL approach (left) and the SKATER approach (right) for 468
regions. Yellow numbers highlight areas with different regions between the two regionalizations. Top panels: the white borders of

both regionalizations are superimposed on the RGB image created based on the principal component analysis on the input raster with
the fractional cover of the eight land cover classes. Bottom panels: random colors represent all of the obtained regions. More

explanation about the base map and the yellow numbers can be found in the text
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Figure 4. Comparison of area-weighted inhomogeneity (the
lower the better) and unweighted isolation (the larger the better)

beteen various number of regions created using the KM-CCL
and the SKATER approach

and grasslands and a smaller share of forested areas compared
to its neighbors. Location 5 highlights one of the few areas for
which the KM-CCL regionalization created several small re-
gions compared to a few larger ones created by the SKATER
regionalization.

To quantitatively compare the two regionalizations we used in-
homogeneity and isolation metrics. The resulting values allow
determining the quality of each region independently, with in-
homogeneity showing how internally inconsistent the region is
while isolation expresses how much different the region is from
its neighbors. To compare different regionalizations (sets of
regions) an average value of each metric needs to be derived.
However, regions have various sizes, and thus is necessary to
calculate an average of inhomogeneity weighted by the region
area. For isolation, an unweighted (arithmetic) average can be
calculated. Values of both metrics for both regionalizations are
shown in Figure 4.

The area-weighted inhomogeneity shows an expected decrease
with the increased granularity (decreased size of regions due to
their higher numbers); smaller regions are more homogeneous
due to surface autocorrelation. At the same time, there is a vis-
ible difference between the KM-CCL and the SKATER with
regard to how metrics change with granularity. For the three
largest granularities (468, 690, and 1034), values of inhomo-
geneity for SKATER regionalizations are significantly smaller
(better) and the values of isolation are larger (better) than the
respective values for KM-CCL regionalizations. Values of met-
rics converge when granularity approaches the size of super-
cells.

Figure 5 provides additional insight into the differences in iso-
lations between the KM-CCL and SKATER regionalizations.
All of the KM-CCL regionalizations have visibly right-skewed
distributions of the isolation values. This means that most of
the regions have low isolation values while few regions have
high (good) isolation values. On the other hand, values of isola-
tion in SKATER regionalizations, especially those for the larger
granularity, are more evenly distributed, meaning that a larger
number of regions are standing apart from their neighbors (as
should be the case).

4. CONCLUSIONS

The goal of this contribution was to test the regionalization
of non-imagery geospatial data using supercells preprocessing.

The ultimate goal is to divide the scene into contiguous inter-
nally homogeneous regions that stand apart from their immedi-
ate neighbors. It is important to differentiate between a region-
alization map and a thematic map. The thematic map shows the
spatial distribution of land types, whereas the regionalization
map delineates all unique zones of similar land.

Of the two workflows tested, the SKATER regionalization is a
natural choice, whereas KM-CCL is not. Thus, we expected
that SKATER should outperform KM-CCL. We first checked
that regionalization without supercells preprocessing is techni-
cally impractical for the raster with ∼500,000 cells, so super-
cells have to be used. Then we calculated regionalization maps
using two competing workflows (Figure 3) and compared their
quality metrics (Figures 4 and 5).

Visual comparison of regionalization maps produced by two
workflows reveals qualitatively different area distributions of
regions. SKATER workflow results in an approximately nor-
mal distribution of region areas, whereas KM-CCL workflow
has power-law-like distribution with more than half of the area
concentrated in a single, largest region, and a large number of
very small regions. These maps also reveal undersegmentation
errors of the KM-CCL workflow.

Figure 4. provides quantitative support for the higher quality of
the SKATER regionalization. For relatively coarse granulari-
ties (but still rather fine by geographical standards), the regions
produced by SKATER are of higher quality, with both inhomo-
geneity and isolation metrics having more desirable values than
in the KM-CCl case. For granularity equal to 486, the inhomo-
geneity of SKATER regionalization is 0.135 compared to 0.09
for supercells despite regions having, on average, an order of
magnitude larger areas than supercells. The average isolation
of regions has improved to 0.5 from 0.26 for supercells. For the
same value of granulation, Figure 5 shows a rather flat distribu-
tion of isolation values between 0.2 and 0.7. This is in contrast
to the distribution of isolation values for regions in the KM-
CCL regionalization where most of the regions have isolation
values between 0.2 and 0.4. Overall, the SKATER regionaliza-
tion is successful.

Surprisingly, the KM-CCL regionalization, although worse
than the SKATER one, is better than we initially expected. Re-
call, that it was obtained by first clustering all supercells into
just two clusters (for the coarsest granularity). Thus, based on
the non-spatial component of the data, only two groups have
been identified. Disaggregation of these two groups based on
spatial contiguity (by the CCL) results in a map that shows re-
gions of more than two types. We attribute this result to the
following. The original two data groups are inhomogeneous,
but part of this inhomogeneity is removed by spatial separation.
That is, a non-spatial group included data from different, inter-
nally more homogeneous, spatial locations. However, we don’t
expect this kind of improvement to happen with all scenes and
all data types. Therefore, we do not recommend using KM-
CCL workflow for regionalization purposes.

The complete analysis presented in this paper was possible
by using free and open-source software, mainly R packages
supercells and rgeoda. The code allowing to reproduce
this work is available at https://github.com/Nowosad/

foss4g2022_reg.

Future work on the regionalization of geospatial data (both,
more conventional, like multi and hyperspectral images, as
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Figure 5. Distributions of the isolation metric values (the larger the better) for various number of regions created using the KM-CCL
(top row), and the SKATER approach (bottom row)

well as less conventional, like the data presented in this contri-
bution), will examine different regionalization algorithms and
other data types. There are numerous algorithms for graph-
based regionalization (Aydin et al., 2021). For example, our
preliminary tests suggested that the REDCAP algorithm (Wang
et al., 2018) provides results with values of average inhomo-
geneity and isolation very similar to those presented here for
the SKATER algorithm, but with different delineation of re-
gions. This is not surprising since regionalization is an opti-
mization task, and thus it is NP-hard. All available algorithms
employ heuristics to obtain a useful but suboptimal solution,
since the differences in regions delineation. We also plan to test
the presented workflow on a variety of geospatial datasets, in-
cluding categorical rasters, spatial time-series, spatial patterns,
etc. These datasets will require the use of different distance
functions.
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