
MORPHOLOGICAL SPATIAL PATTERN ANALYSIS: OPEN SOURCE RELEASE

Pierre Soille 1*, Peter Vogt 1

1 European Commission, Joint Research Centre (JRC), Ispra, Italy - (Pierre.Soille, Peter.Vogt)@ec.europa.eu

Commission IV, WG IV/4

KEY WORDS: spatial pattern analysis, connectivity, mathematical morphology, morphological image analysis, landscape analysis,

MSPA, open source, open science.

ABSTRACT:

The morphological segmentation of binary patterns provides an effective method for characterising spatial patterns with emphasis on

connections between their parts as measured at varying analysis scales. The method is widely used for the analysis of landscape

patterns such as those related to the fragmentation of forests or other natural land cover classes. This can be explained by its

effectiveness at capturing the complexity of binary patterns and their connections by partitioning the foreground pixels of the

corresponding binary images into mutually exclusive classes. While the principles of the method are conceptually simple, the

definition of the classes relies on a series of advanced mathematical morphology operations whose actual implementation is not

straightforward. In this paper, we propose an open source code for MSPA and detail its main components in the form of pseudo-

code. We demonstrate its effectiveness for asynchronous processing of tera-pixel images and the synchronous exploratory analysis

and rendering with Jupyter notebooks.

* Corresponding author

1. INTRODUCTION

The morphological segmentation of binary patterns (Soille and

Vogt, 2009) provides an effective method for characterising

spatial patterns with emphasis on connections between their

parts as measured at varying analysis scales. The method is now

widely used for the analysis of landscape patterns such as those

related to the fragmentation of forests or other natural land

cover classes, e.g., (Ossola et al., 2019; Carlier et al., 2020;

Rincón et al., 2021; Modica et al., 2021). This can be explained

by its effectiveness at capturing the complexity of binary

patterns and their connections by partitioning the foreground

and background pixels of the corresponding binary images into

mutually exclusive classes with a clear semantic meaning.

While the principles of the method are conceptually simple, the

formal definition of the classes relies on a series of advanced

mathematical morphology operations whose actual

implementation is not straightforward. This issue was originally

addressed by the authors by offering a compiled, standalone

version named Morphological Spatial Pattern Analysis

(MSPA), which is distributed within the applications

GuidosToolbox (GTB) (Vogt and Riitters, 2017),

GuidosToolbox Workbench (GWB) (Vogt et al., 2022), and

various GIS-extensions, see the MSPA home page1 for

additional details and application examples.

In this paper, we propose an open source code for MSPA and

describe its components for the extraction of all pixel classes

(Sec. 2). We then demonstrate its effectiveness for

asynchronous processing of tera-pixel images and the

synchronous exploratory analysis and rendering with Jupyter

notebooks (Sec. 3). Concluding remarks are presented in Sec. 4.

2. MSPA CODE DESCRIPTION

In this section, we describe the main routines of the MSPA code

with reference to the morphological image analysis operations

they rely on with links to their implementation in the open

source Morphological Image Analysis Library (miallib) recently

released on GitHub2. Note that numerous functions of miallib

support muti-threading based on OpenMP3. Unless a specific

reference is provided, all morphological image analysis

operators that are referred to hereafter are described in (Soille,

2004).

A synthetic input binary image with foreground (grey shaded)

and background (white) pixels together with its corresponding 7

foreground and 3 background MSPA classes is displayed in

Figure 1. The 7 MSPA foreground classes and 3 background

classes with reference to the source code of the main

morphological image analysis function used to compute them

are presented hereafter. The underlying MSPA code in the C

programming language is available at GitHub4.

2.1 Input and output

The miallib function implementing the morphological

segmentation of binary patterns (Soille and Vogt, 2009) is

named segmentBinaryPatterns5:

IMAGE *segmentBinaryPatterns (IMAGE *imin, float size, int

graphfg, int transition, int internal)

The function segmentBinaryPatterns requires five input pa-

rameters defined as follows:

1. imin: an input raster image with pixels of type unsigned char

and with foreground pixels set to 2, background pixels set to 1,

and no data pixels set to 0;

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-427-2022 | © Author(s) 2022. CC BY 4.0 License.

427

mailto:Peter.Vogt@ec.europa.eu

2. size: a float number greater or equal to 1 indicating the width

of the edges;

3. graphfg: an integer with value 4 or 8 indicating the

connectivity rule between adjacent foreground pixels. Note that

the connectivity rule for background pixels (defined as graphbg

in mspa.c) is dual to that considered for foreground pixels. That

is, if graphfg is set to 8, then graphbg will be set to 4 and vice-

versa;

4. transition: a Boolean value indicating how transition pixels

should be displayed;

5. internal: a Boolean value indicating how embedded

components should be processed (0 for no special treatment, 1

for assigning special values to pixels belonging to embedded

components (like core components fully surrounded by a larger

core component).

Figure 1. Morphological segmentation of binary patterns

including the detection of connecting pathways leading to 7

classes for the foreground pixels and 3 classes for the

background pixels.

The function segmentBinaryPatterns returns an output raster

image with pixels of type unsigned char and pixel values

matching the class of the foreground and background pixels of

the input image and given the values of the additional 4 input

parameters.

The input and output raster images of the function

segmentBinaryPatterns is of type IMAGE, i.e., a miallib raster

image. It is defined as C structure containing basic image raster

information such as dimensions as well as pointer to a one-

dimensional array holding the pixel values of the image. For

binding the function to any other image processing library

written in C or C++, it is sufficient to (i) link (statically or

dynamically) the miallib library and (ii) write a wrapper

function to convert the original raster type to a miallib IMAGE,

call segmentBinaryPatterns, and convert the returned miallib

IMAGE back to the original raster type.

The effect of the 4 numerical input parameters on the resulting

MSPA classification of a sample image are illustrated in Fig. 2.

Upon calling segmentBinaryPatterns with the desired input

parameters, a raster image containing the desired MSPA

classification is returned.

2.2 Pre-processing

There are two pre-processing steps to handle no data and border

effects respectively. No data values are handled by the function

fm_preproc by creating a binary image with foreground pixels

extended in the no data regions through a buffering proportional

to the input size parameter. The buffering is efficiently

computed by the miallib fast Euclidean distance transform6

following the algorithm proposed in (Meijster et al., 2000). The

function fm_preproc returns a binary image with foreground

pixels set to 1 and all other pixels set to 0.

Border effects are mitigated by extending the image definition

domain with the addition of an image frame of width

proportional to the input size parameter. The value of the pixels

in the extended frame are set by propagating the values of the

image border pixels of the input image in the direction matching

their position. For example, left border pixels values are

propagated in the extended left border along the right to left

direction. This is achieved by the function fm_preproc2 that

calls four times (one for each direction) the fast directional

propagation algorithm7.

Note that in case the internal input parameter is equal to 1, all

holes of the binary image obtained by applying fm_preproc to

the input image are extracted by filling its holes and performing

the set difference between the latter and former images.

(a) effect of the parameter size

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-427-2022 | © Author(s) 2022. CC BY 4.0 License.

428

(b) effect of the parameter graphfg (i.e., connectivity rule)

(c) effect of the parameter transition

(d) effect of the parameter internal

Figure 2. The 4 MSPA input numerical parameters and their

impact on the resulting segmentation.

2.3 Core

Core pixels are those pixels of the foreground connected

components of the image that are lying far enough from their

boundaries. They are obtained by considering all foreground

pixels whose Euclidean distance transform lies beyond a

threshold defined as the input size parameter. This is all

implemented within the function getcore that returns a binary

image with core pixels set to 1 and all other pixels set to 0.

2.4 Boundaries

Boundaries are defined as those foreground pixels that separate

the core pixels from the background pixels. They are obtained

by computing the external morphological gradient (Rivest et al.,

1993) of the core pixels, that is, as the set difference between

morphological dilation of the core pixels and the core pixels

themselves. Boundary pixels are themselves divided into 2

categories called perforations and edges:

1. Perforations: they are defined as the inner boundary pixels.

They are efficiently extracted thanks to the morphological

fillhole operation (Soille and Ansoult, 1990) relying on the

morphological reconstruction by erosion with a fast algorithm

based on FIFO queues8.

2. Edges: they are defined as the outer boundary pixels. They

are obtained by subtracting the perforations from the

boundaries. A float number greater or equal to 1 indicating the

width of the edges.

Perforations and edges are computed thanks to the function

setedges that returns an array of two binary images, the first

holding the edges and the second the perforations with

foreground pixels (edges and perforations respectively) set to 1

and background pixels set to 0.

2.5 Islets

Islets (also called patches) are defined as those connected

components of foreground pixels that do not contain any core

pixels. They are obtained by subtracting the reconstruction by

dilation9 of the foreground components using the core pixels as

markers (seeds). The extraction of the islets is implemented

within the function getpatch that returns a binary image with

islet pixels set to 1 and all other pixels set to 0.

2.6 Connectors

Connectors link core-connected components. This is the more

advanced feature of the morphological spatial pattern analysis

because they cannot be extracted from local neighbourhood

operations since connectors can be of any shape and length so

that the full image extent needs to be considered at once. The

key operation for the detection of connectors relies on

morphological skeletonisation with anchor points using a fast

implementation based on FIFO queues (Iwanowski and Soille,

2005)10. The function getconnector2core details all necessary

steps for the extraction of connectors. This function requires 3

input binary images: the first contains the image of core pixels,

the second contains the morphological opening of the

foreground pixels of the pre-processed input image, and the

third image contains the residues defined as the foreground

pixels of the pre-processed input image with the core, patch,

perforations, and edges pixels set to 0 (obtained by successive

subtraction operations):

IMAGE *getconnector2core (IMAGE *core, IMAGE * opening,

IMAGE *residues, float size, int oitype, int graphfg, float edu)

Within the function getconnector2core, the skeletonisation with

anchor points is computed on the union of the opening and

residues images using the core pixels as anchor points. This

operation generates a thinned (skeletonised) version of the

target connectors. The latter are then obtained by performing a

geodesic dilation of the skeleton using as geodesic mask the

opening image to which the core image is subtracted and then

the residues image added. This step is achieved within the

function getexternalboundarygeodesic using the constrained

(geodesic) Euclidean distance transform ced11 based on the

algorithm described in (Soille, 1991). The function

getconnector2core returns a binary image with all connectors

set to 1 and all other pixels set to 0.

The connectors are categorised into two subclasses:

1. Bridges (also referred to as corridors): connector pixels

emanating from two or more individual core-connected

components;

2. Loops (also referred to as shortcuts): connector pixels

emanating from the same core-connected component.

Bridges are obtained thanks to a combination of connected

component labelling and a watershed algorithm from labelled

markers12. They are obtained by calling the function getcorridor

that requires the connector, core and, opening as input images:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-427-2022 | © Author(s) 2022. CC BY 4.0 License.

429

IMAGE *getcorridor (IMAGE *connector, IMAGE *core,

IMAGE *opening, float size, int oitype, int graph)

The watershed function from markers wsfah (based on the

algorithm described in Meyer and Beucher, 1990) is applied to

the union of the opening and connectors with all pixels set to

255 and using the labelling of the core image as marker image.

Those connectors that have all the same label in the output of

the watershed from markers are defining the corridors since they

connect core pixels having different labels. The function

getcorridor returns a binary image with all bridges set to 1 and

all other pixels set to 0. Loops are defined by performing the set

difference between connectors and bridges.

2.7 Branches

Pixels that do not belong to any of the previously defined

categories are called branch pixels. They emanate from

boundary pixels but do not provide any connections between

core regions.

2.8 Background classes

The connected components of the background pixels of the

input image are partitioned into 3 classes depending on their

embedding relationship with the foreground pixel classes:

1. Background: refers to the connected components of

background pixels of the input image that are connected to the

image border. That is, they correspond to background pixels

that can be reached from the image border by following a

connected path of background pixels (i.e., without crossing any

foreground pixels). They are obtained by considering the

negation (i.e., complement) of the fillhole operation (see sec.

2.4) applied to the foreground pixels.

2. Border-opening: refers to the connected components of

background pixels that cannot be reached from the image border

without crossing one or more foreground pixels but that can be

reached without crossing any core pixel. They are obtained by

performing the intersection between the holes of the foreground

and negation of the holes of the core pixels. Note that the holes

of an image are simply obtained by filling its holes with the

fillhole operation and then subtract the input image from the

filled image. Border-opening are detected if and only if the

input parameter internal is set to true (i.e., 1) and in this case the

border-opening pixels are set to 220 in the output image.

3. Core-opening: refers to the connected components of

background pixels that cannot be reached from the image border

without crossing at least one core pixel. They are always

associated to a perforation. In practice, all holes of image of

core pixels are extracted and set to the value 100. In case the

parameter internal is set to true (i.e., 1), the image with core

holes set to 100 is added to the output image. This means that

pixels belonging to core holes get their base label value plus an

offset of 100. Accordingly, pixels in the output image with

value 100 correspond to the core-opening pixels that are

matching background pixels of the input image.

2.9 Output

The output image is defined with bit encoding, using bit shifting

operations on each binary image containing the foreground

classes described above and performing bitwise logical

operations (or) between all the bit-shifted images. Note that in

case the input parameter internal is equal to 1, embedded

structures get a special code by adding an offset of 100 to the

corresponding pixels while setting to 220 those holes of the

input image that are not completely surrounded by perforation

pixels (see details in Sec. 2.8). Finally, colours are assigned to

each integer value of the output image using Red-Green-Blue

colour coding stored in a look-up-table attached to the output

raster image (the miallib raster image structure contains a field

that can be used to store a look-up-table).

Table 1 indicates all possible MSPA classes for both foreground

and background pixels as well as their respective byte value and

corresponding colour coding (RGB value stored in the colour

look-up-table referred to in the output miallib image of type

IMAGE. Further information is available in the MSPA-Guide13

and applications to forest spatial patterns are outlined in (Vogt,

2022).

Table 1. Class names, colour codes, and byte values featuring

the MSPA classes stored in the image returned by

segmentBinaryPatterns.

2.10 Library considerations

To minimise library dependencies, the Makefile of the miallib

library contains a miallib_mspa target that can be used to build

a minimal set of the miallib C files required for

segmentBinaryPatterns. The target name is miallib_mspa.a. It is

defined as a static library so that it can be statically linked to the

target environment. This strategy is used for the distribution of

MSPA in the GuidosToolbox (GTB) (Vogt and Riitters, 2017)

and GuidosToolbox Workbench (GWB) (Vogt et al., 2022) that

also contains an adaptation of mspa.c called fsp.c14 to

accommodate two additional features, namely a dynamic timer

(called loadBar15) indicating the percentage of the overall

execution and a Boolean parameter called disk16 indicating

whether intermediate results should be written on disk to

minimise the random access memory footprint so that large

images can be processed.

3. PERFORMANCE

The performance of the algorithm is evaluated on images of

increasing size as well as for on-the-fly computation for

interactive analysis and exploratory visualisation. We

demonstrate experimentally that the complexity of the proposed

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-427-2022 | © Author(s) 2022. CC BY 4.0 License.

430

implementation is in O(n). That is, the computational time

increases linearly with the number of pixels n of the input

image. This is illustrated in Fig. 3. The input image is a

GeoTIFF file at 100 m resolution with a bounding box matching

that of the conterminous USA and Alaska and forest pixels with

value 2, non-forest pixels with value 1, and no data pixels with

value 0. This image has been resampled with GDAL to

multiples of 100 m up to 1000 m using mode sampling with the

rasterio package17 providing GDAL python bindings. CPU time

for each resolution was measured using the function

process_time of the Python time package. The CPU time for all

images with resolution that are multiple of 100 m was estimated

as measured CPU time for the 100 m resolution image divided

by x2 where x > 1 is the multiple of 100, i.e., x = 2, 3, ..., 10, as

one would expect for a computational complexity that is linear

with the number of image pixels. The excellent match between

the measured and estimated CPU time demonstrates

experimentally that the complexity of the proposed open source

release of MSPA is indeed linear. Note that in this experiment,

the input parameters are 8 for connectivity (graphfg) and 1 for

the parameters size, internal, and transition. All calculations

were conducted on an Intel(R) Xeon(R) CPU E7-8870 v4 at

2.10GHz and the environment variable OMP_NUM_THREADS

was set to 1 for the experiment so that no multi-threading was

considered.

Figure 3. Top: The CPU time of MSPA of a map of the United

States of America at different resolutions shows a linear relation

with respect to the number of image pixels: measured values

and estimations based on measured value at 100 m divided by x2

where x > 1 is the multiple of 100, i.e., x = 2, 3, ..., 10.

Bottom: MSPA output on the USA map resampled at 10,000 m

resolution using mode resampling.

The proposed implementation handles images up to 264 pixels.

For example, a Global MSPA map of forest cover in equal area

projection and with a pixel resolution of 100 meter (400,748 x

147,306 pixels, i.e. a 0.6 terapixel image) was processed on the

JRC Big Data Analytics Platform18 (BDAP aka JEODPP)

(Soille et al., 2018) in just 12 hours. Earlier examples of MSPA

at European and Global extent can be browsed interactively as

Google Earth image overlays19. Processing large images is very

much needed to mitigate dependencies with regards to the

image definition domain. Indeed, pixel classes requiring the

analysis of connectivity relations cannot be determined in a

fixed local neighbourhood and may therefore depend on the

observation domain in case some foreground connected

components are extending beyond this domain.

Regarding the memory footprint of segmentBinaryPatterns, the

peak RAM usage in bytes correspond to about 20 times the

number of pixels of the input image (exact peak usage depends

on image content for some of the underlying morphological

image analysis algorithms). All these additional images are used

to store the intermediate results as well as for temporary image

buffers needed during the computations. When using the GTB

adaptation that allows for writing intermediate results to disk

(disk option in Sec. 2.10) and read them back during processing

when needed rather than having them permanently in memory,

the peak memory usage in bytes is reduced to 17 times the

number of pixels of the input image.

Regarding the on-the-fly computation for interactive analysis

and exploratory visualisation based on Jupyter notebooks (De

Marchi and Soille, 2019), the proposed implementation is fast

enough for integration in JupyterLab with on-the-fly

computation in an area corresponding to the map view area and

at resolution matching its zoom level. A Voilà20 dashboard

based on a JupyterLab21 notebook is in preparation and will be

referred to in the list of BDAP Voilà dashboards22.

4. CONCLUSIONS

Morphological spatial pattern analysis has gained traction since

its inception (Soille and Vogt, 2009) thanks to the

accompanying MSPA website with extensive documentation,

various GIS extensions, and a user-friendly provision of MSPA

within the desktop application GTB and the server application

GWB. With the provision of the MSPA source code under a

free open source software license, we add yet another feature of

software provisioning (Vogt and Rambaud, 2022) to increase

the outreach of MSPA into the user community interested in

pattern analysis. Since MSPA is available through a C library, it

can be easily integrated in other data science environments. For

instance, the MSPA function segmentBinaryPatterns is directly

callable from the pyjeo Python package (Kempeneers et al.,

2019) available at GitHub23 (see segmentBinaryPatterns

method in ccops module24) as well as from the morphological

image analysis library wrapped to the XLISP-Plus Lisp

interpreter25 (mialisp26). We therefore expect the release of the

MSPA code under an open source license to further boost its

use for the analysis of geospatial patterns and indeed any other

types of spatial patterns occurring in other scientific domains.

REFERENCES

Carlier, J., Davis, E., Ruas, S., Byrne, D., Caffrey, J. M.,

Coughlan, N. E., Dick, J. T., Lucy, F. E., 2020. Using open-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-427-2022 | © Author(s) 2022. CC BY 4.0 License.

431

source software and digital imagery to efficiently and

objectively quantify cover density of an invasive alien plant

species. Journal of Environmental Management, 266, 110519.

doi.org/10.1016/j.jenvman.2020.110519.

De Marchi, D., Soille, P., 2019. Advances in interactive

processing and visualisation with JupyterLab on the JRC Big

Data Platform (JEODPP). Proc. of the 2019 conference on Big

Data from Space (BiDS’19), Publications Office of the

European Union, Luxembourg, 45–48.

doi.org/10.5281/zenodo.3239239.

Iwanowski, M., Soille, P., 2005. A queue based algorithm for

order independent anchored skeletonisation. Lecture Notes in

Computer Science, 3691, 530-537.

doi.org/10.1007/11556121_65.

Kempeneers, P., Pesek, O., De Marchi, D., Soille, P., 2019. A

Python Package For The Analysis of Geospatial Data.

International Journal of Geo-Information, 8(10).

doi.org/10.3390/ijgi8100461.

Meijster, A., Roerdink, J., Hesselink, W., 2000. A general

algorithm for computing distance transforms in linear time. J.

Goutsias, L. Vincent, D. Bloomberg (eds), Mathematical

Morphology and its Applications to Image and Signal

Processing, Computational Imaging and Vision, 18, Kluwer

Academic Publishers, Boston, 331–340. Proc. of ISMM’2000,

Palo Alto, June 26–29. doi.org/10.1007/0-306-47025-X_36.

Meyer, F., Beucher, S., 1990. Morphological segmentation.

Journal of Visual Communication and Image Representation,

1(1), 21-46. doi.org/10.1016/1047-3203(90)90014-M.

Modica, G., Praticò, S., Laudari, L., Ledda, A., Di Fazio, S., De

Montis, A., 2021. Implementation of multispecies ecological

networks at the regional scale: analysis and multi-temporal

assessment. Journal of Environmental Management, 289,

112494. doi.org/10.1016/j.jenvman.2021.112494.

Ossola, A., Locke, D., Lin, B., Minor, E., 2019. Yards increase

forest connectivity in urban landscapes. Landscape Ecology,

34(12). doi.org/10.1007/s10980-019-00923-7.

Rincón, V., Velázquez, J., Gutiérrez, J., Hernando, A.,

Khoroshev, A., Gómez, I., Herráez, F., Sánchez, B., Pablo

Luque, J., García-abril, A., Santamaría, T., Sánchez, D.-M.,

2021. Proposal of new Natura 2000 network boundaries in

Spain based on the value of importance for biodiversity and

connectivity analysis for its improvement. Ecological

Indicators, 129, 108024.

doi.org/10.1016/j.ecolind.2021.108024.

Rivest, J.-F., Soille, P., Beucher, S., 1993. Morphological

gradients. Journal of Electronic Imaging, 2(4), 326-336.

doi.org/10.1117/12.159642.

Soille, P., 1991. Spatial distributions from contour lines: an

efficient methodology based on distance transformations.

Journal of Visual Communication and Image Representation,

2(2), 138-150. doi.org/10.1016/1047-3203(91)90004-Y.

Soille, P., 2004. Morphological Image Analysis: Principles and

Applications. corrected 2nd printing of the 2nd edn, Springer-

Verlag, Berlin and New York. doi.org/10.1007/978-3-662-

05088-0.

Soille, P., Ansoult, M., 1990. Automated basin delineation from

Digital Elevation Models using mathematical morphology.

Signal Processing, 20, 171-182. doi.org/10.1007/11556121_65.

Soille, P., Burger, A., De Marchi, D., Kempeneers, P.,

Rodriguez, D., Syrris, V., Vasilev, V., 2018. A versatile data-

intensive computing platform for information retrieval from big

geospatial data. Future Generation Computer Systems. 81: 30–

40, doi.org/10.1016/j.future.2017.11.007.

Soille, P., Vogt, P., 2009. Morphological segmentation of

binary patterns. Pattern Recognition Letters, 30(4), 456-459.

doi.org/10.1016/j.patrec.2008.10.015.

Vogt, P., 2022. Measuring forest spatial pattern with

mathematical morphology. Online. https://ies-

ows.jrc.ec.europa.eu/gtb/GTB/psheets/GTB-Pattern-

Morphology.pdf

Vogt, P., Rambaud, P., 2022. Tackling the challenges of soft-

ware provision. The International Archives of the Pho-

togrammetry, Remote Sensing and Spatial Information Sci-

ences, FOSS4G 2022 — Academic Track, This volume.

Vogt, P., Riitters K., 2017. GuidosToolbox: universal digital

image object analysis. European Journal of Remote Sensing,

50, 1, pp. 352-361, doi.org/10.1080/22797254.2017.1330650.

Vogt, P., Riitters, K., Rambaud, P., d’Annunzio, R., Lindquist,

E., Pekkarinen, A., 2022. GuidosToolbox Workbench: spatial

analysis of raster maps for ecological applications. Ecography,

doi.org/10.1111/ecog.05864.

1 https://forest.jrc.ec.europa.eu/en/activities/lpa/mspa/
2 https://github.com/ec-jrc/jeolib-miallib
3 https://www.openmp.org/
4 https://github.com/ec-jrc/jeolib-

miallib/blob/master/core/c/mspa.c
5 https://github.com/ec-jrc/jeolib-

miallib/blob/071859cd3c78491e1928a0f746852f3724d4f84f/

core/c/mspa.c#L433
6 https://github.com/ec-jrc/jeolib-

miallib/blob/master/core/c/efedt.c
7 https://github.com/ec-jrc/jeolib-

miallib/blob/57316294c73b190393347dc83a8371132c24fc5

0/core/c/imstat.c#L2047
8 https://github.com/ec-jrc/jeolib-

miallib/blob/1f8b3df4a04d4018f70b2bfaaeb6e1f755476acb/

core/c/recons.c#L878
9 https://github.com/ec-jrc/jeolib-

miallib/blob/1f8b3df4a04d4018f70b2bfaaeb6e1f755476acb/

core/c/recons.c#L483
10 https://github.com/ec-jrc/jeolib-

miallib/blob/1f8b3df4a04d4018f70b2bfaaeb6e1f755476acb/

core/c/skel.c#L587
11 https://github.com/ec-jrc/jeolib-

miallib/blob/57316294c73b190393347dc83a8371132c24fc5

0/core/c/ced.c#L94
12 https://github.com/ec-jrc/jeolib-

miallib/blob/1f8b3df4a04d4018f70b2bfaaeb6e1f755476acb/

core/c/wsfah.c#L669
13 https://ies-ows.jrc.ec.europa.eu/gtb/GTB/MSPA_Guide.pdf
14 https://github.com/ec-

jrc/GTB/blob/main/external_sources/fsp/fsp.c

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-427-2022 | © Author(s) 2022. CC BY 4.0 License.

432

15 https://github.com/ec-

jrc/GTB/blob/b24d0f3404bbc113380fa599fe4b912f0bcb3f9

3/external_sources/fsp/fsp.c#L40
16 https://github.com/ec-

jrc/GTB/blob/b24d0f3404bbc113380fa599fe4b912f0bcb3f9

3/external_sources/fsp/fsp.c#L563
17 https://rasterio.readthedocs.io
18 https://jeodpp.jrc.ec.europa.eu/
19https://forest.jrc.ec.europa.eu/en/activities/lpa/gtb/#GEoverlay

s
20 https://github.com/voila-dashboards/voila
21 https://jupyter.org/
22 https://jeodpp.jrc.ec.europa.eu/bdap/voila/
23 https://github.com/ec-jrc/jeolib-pyjeo
24 https://github.com/ec-jrc/jeolib-

pyjeo/blob/573d919d07ae2af5bd20c8c744fb6cfacc0a1e29/p

yjeo/modules/ccops.py#L924
25 https://almy.us/xlisp.html
26 https://github.com/ec-jrc/jeolib-

miallib/blob/071859cd3c78491e1928a0f746852f3724d4f84f/

xlisp/c/xlglue1.c#L7798

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-427-2022 | © Author(s) 2022. CC BY 4.0 License.

433

