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ABSTRACT: 

 

The morphological segmentation of binary patterns provides an effective method for characterising spatial patterns with emphasis on 

connections between their parts as measured at varying analysis scales. The method is widely used for the analysis of landscape 

patterns such as those related to the fragmentation of forests or other natural land cover classes. This can be explained by its 

effectiveness at capturing the complexity of binary patterns and their connections by partitioning the foreground pixels of the 

corresponding binary images into mutually exclusive classes. While the principles of the method are conceptually simple, the 

definition of the classes relies on a series of advanced mathematical morphology operations whose actual implementation is not 

straightforward. In this paper, we propose an open source code for MSPA and detail its main components in the form of pseudo- 

code. We demonstrate its effectiveness for asynchronous processing of tera-pixel images and the synchronous exploratory analysis 

and rendering with Jupyter notebooks.  
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1. INTRODUCTION 

The morphological segmentation of binary patterns (Soille and 

Vogt, 2009) provides an effective method for characterising 

spatial patterns with emphasis on connections between their 

parts as measured at varying analysis scales. The method is now 

widely used for the analysis of landscape patterns such as those 

related to the fragmentation of forests or other natural land 

cover classes, e.g., (Ossola et al., 2019; Carlier et al., 2020; 

Rincón et al., 2021; Modica et al., 2021). This can be explained 

by its effectiveness at capturing the complexity of binary 

patterns and their connections by partitioning the foreground 

and background pixels of the corresponding binary images into 

mutually exclusive classes with a clear semantic meaning. 

While the principles of the method are conceptually simple, the 

formal definition of the classes relies on a series of advanced 

mathematical morphology operations whose actual 

implementation is not straightforward. This issue was originally 

addressed by the authors by offering a compiled, standalone 

version named Morphological Spatial Pattern Analysis 

(MSPA), which is distributed within the applications 

GuidosToolbox (GTB) (Vogt and Riitters, 2017), 

GuidosToolbox Workbench (GWB) (Vogt et al., 2022), and 

various GIS-extensions, see the MSPA home page1 for 

additional details and application examples. 

 

In this paper, we propose an open source code for MSPA and 

describe its components for the extraction of all pixel classes 

(Sec. 2). We then demonstrate its effectiveness for 

asynchronous processing of tera-pixel images and the 

synchronous exploratory analysis and rendering with Jupyter 

notebooks (Sec. 3). Concluding remarks are presented in Sec. 4. 

 

 

2. MSPA CODE DESCRIPTION 

In this section, we describe the main routines of the MSPA code 

with reference to the morphological image analysis operations 

they rely on with links to their implementation in the open 

source Morphological Image Analysis Library (miallib) recently 

released on GitHub2. Note that numerous functions of miallib 

support muti-threading based on OpenMP3. Unless a specific 

reference is provided, all morphological image analysis 

operators that are referred to hereafter are described in (Soille, 

2004). 

 

A synthetic input binary image with foreground (grey shaded) 

and background (white) pixels together with its corresponding 7 

foreground and 3 background MSPA classes is displayed in 

Figure 1. The 7 MSPA foreground classes and 3 background 

classes with reference to the source code of the main 

morphological image analysis function used to compute them 

are presented hereafter. The underlying MSPA code in the C 

programming language is available at GitHub4. 

 

2.1 Input and output 

The miallib function implementing the morphological 

segmentation of binary patterns (Soille and Vogt, 2009) is 

named segmentBinaryPatterns5: 

 

IMAGE *segmentBinaryPatterns (IMAGE *imin, float size, int 

graphfg, int transition, int internal) 

 

The function segmentBinaryPatterns requires five input pa- 

rameters defined as follows: 

 

1. imin: an input raster image with pixels of type unsigned char 

and with foreground pixels set to 2, background pixels set to 1, 

and no data pixels set to 0; 
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2. size: a float number greater or equal to 1 indicating the width 

of the edges; 

 

3. graphfg: an integer with value 4 or 8 indicating the 

connectivity rule between adjacent foreground pixels. Note that 

the connectivity rule for background pixels (defined as graphbg 

in mspa.c) is dual to that considered for foreground pixels. That 

is, if graphfg is set to 8, then graphbg will be set to 4 and vice-

versa; 

 

4. transition: a Boolean value indicating how transition pixels 

should be displayed; 

 

5. internal: a Boolean value indicating how embedded 

components should be processed (0 for no special treatment, 1 

for assigning special values to pixels belonging to embedded 

components (like core components fully surrounded by a larger 

core component). 

 

 
Figure 1. Morphological segmentation of binary patterns 

including the detection of connecting pathways leading to 7 

classes for the foreground pixels and 3 classes for the 

background pixels. 

 
The function segmentBinaryPatterns returns an output raster 

image with pixels of type unsigned char and pixel values 

matching the class of the foreground and background pixels of 

the input image and given the values of the additional 4 input 

parameters. 

 

The input and output raster images of the function 

segmentBinaryPatterns is of type IMAGE, i.e., a miallib raster 

image. It is defined as C structure containing basic image raster 

information such as dimensions as well as pointer to a one-

dimensional array holding the pixel values of the image. For 

binding the function to any other image processing library 

written in C or C++, it is sufficient to (i) link (statically or 

dynamically) the miallib library and (ii) write a wrapper 

function to convert the original raster type to a miallib IMAGE, 

call segmentBinaryPatterns, and convert the returned miallib 

IMAGE back to the original raster type. 

 

The effect of the 4 numerical input parameters on the resulting 

MSPA classification of a sample image are illustrated in Fig. 2. 

Upon calling segmentBinaryPatterns with the desired input 

parameters, a raster image containing the desired MSPA 

classification is returned. 

 

2.2 Pre-processing 

There are two pre-processing steps to handle no data and border 

effects respectively. No data values are handled by the function 

fm_preproc by creating a binary image with foreground pixels 

extended in the no data regions through a buffering proportional 

to the input size parameter. The buffering is efficiently 

computed by the miallib fast Euclidean distance transform6 

following the algorithm proposed in (Meijster et al., 2000). The 

function fm_preproc returns a binary image with foreground 

pixels set to 1 and all other pixels set to 0. 

 

Border effects are mitigated by extending the image definition 

domain with the addition of an image frame of width 

proportional to the input size parameter. The value of the pixels 

in the extended frame are set by propagating the values of the 

image border pixels of the input image in the direction matching 

their position. For example, left border pixels values are 

propagated in the extended left border along the right to left 

direction. This is achieved by the function fm_preproc2 that 

calls four times (one for each direction) the fast directional 

propagation algorithm7. 

 

Note that in case the internal input parameter is equal to 1, all 

holes of the binary image obtained by applying fm_preproc to 

the input image are extracted by filling its holes and performing 

the set difference between the latter and former images. 

 

 
(a) effect of the parameter size 
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(b) effect of the parameter graphfg (i.e., connectivity rule) 

 

 
(c) effect of the parameter transition 

 

 
(d) effect of the parameter internal 

 

Figure 2. The 4 MSPA input numerical parameters and their 

impact on the resulting segmentation. 

 

2.3 Core 

Core pixels are those pixels of the foreground connected 

components of the image that are lying far enough from their 

boundaries. They are obtained by considering all foreground 

pixels whose Euclidean distance transform lies beyond a 

threshold defined as the input size parameter. This is all 

implemented within the function getcore that returns a binary 

image with core pixels set to 1 and all other pixels set to 0. 

 

2.4 Boundaries 

Boundaries are defined as those foreground pixels that separate 

the core pixels from the background pixels. They are obtained 

by computing the external morphological gradient (Rivest et al., 

1993) of the core pixels, that is, as the set difference between 

morphological dilation of the core pixels and the core pixels 

themselves. Boundary pixels are themselves divided into 2 

categories called perforations and edges: 

 

1. Perforations: they are defined as the inner boundary pixels. 

They are efficiently extracted thanks to the morphological 

fillhole operation (Soille and Ansoult, 1990) relying on the 

morphological reconstruction by erosion with a fast algorithm 

based on FIFO queues8. 

 

2. Edges: they are defined as the outer boundary pixels. They 

are obtained by subtracting the perforations from the 

boundaries. A float number greater or equal to 1 indicating the 

width of the edges. 

 

Perforations and edges are computed thanks to the function 

setedges that returns an array of two binary images, the first 

holding the edges and the second the perforations with 

foreground pixels (edges and perforations respectively) set to 1 

and background pixels set to 0. 

 

2.5 Islets 

Islets (also called patches) are defined as those connected 

components of foreground pixels that do not contain any core 

pixels. They are obtained by subtracting the reconstruction by 

dilation9 of the foreground components using the core pixels as 

markers (seeds). The extraction of the islets is implemented 

within the function getpatch that returns a binary image with 

islet pixels set to 1 and all other pixels set to 0. 

 

2.6 Connectors 

Connectors link core-connected components. This is the more 

advanced feature of the morphological spatial pattern analysis 

because they cannot be extracted from local neighbourhood 

operations since connectors can be of any shape and length so 

that the full image extent needs to be considered at once. The 

key operation for the detection of connectors relies on 

morphological skeletonisation with anchor points using a fast 

implementation based on FIFO queues (Iwanowski and Soille, 

2005)10. The function getconnector2core details all necessary 

steps for the extraction of connectors. This function requires 3 

input binary images: the first contains the image of core pixels, 

the second contains the morphological opening of the 

foreground pixels of the pre-processed input image, and the 

third image contains the residues defined as the foreground 

pixels of the pre-processed input image with the core, patch, 

perforations, and edges pixels set to 0 (obtained by successive 

subtraction operations): 

 

IMAGE *getconnector2core (IMAGE *core, IMAGE * opening, 

IMAGE *residues, float size, int oitype, int graphfg, float edu) 

 

Within the function getconnector2core, the skeletonisation with 

anchor points is computed on the union of the opening and 

residues images using the core pixels as anchor points. This 

operation generates a thinned (skeletonised) version of the 

target connectors. The latter are then obtained by performing a 

geodesic dilation of the skeleton using as geodesic mask the 

opening image to which the core image is subtracted and then 

the residues image added. This step is achieved within the 

function getexternalboundarygeodesic using the constrained 

(geodesic) Euclidean distance transform ced11 based on the 

algorithm described in (Soille, 1991). The function 

getconnector2core returns a binary image with all connectors 

set to 1 and all other pixels set to 0. 

 

The connectors are categorised into two subclasses: 

 

1. Bridges (also referred to as corridors): connector pixels 

emanating from two or more individual core-connected 

components; 

2. Loops (also referred to as shortcuts): connector pixels 

emanating from the same core-connected component. 

Bridges are obtained thanks to a combination of connected 

component labelling and a watershed algorithm from labelled 

markers12. They are obtained by calling the function getcorridor 

that requires the connector, core and, opening as input images: 
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IMAGE *getcorridor (IMAGE *connector, IMAGE *core, 

IMAGE *opening, float size, int oitype, int graph) 

 

The watershed function from markers wsfah (based on the 

algorithm described in Meyer and Beucher, 1990) is applied to 

the union of the opening and connectors with all pixels set to 

255 and using the labelling of the core image as marker image. 

Those connectors that have all the same label in the output of 

the watershed from markers are defining the corridors since they 

connect core pixels having different labels. The function 

getcorridor returns a binary image with all bridges set to 1 and 

all other pixels set to 0. Loops are defined by performing the set 

difference between connectors and bridges. 

 

2.7 Branches 

Pixels that do not belong to any of the previously defined 

categories are called branch pixels. They emanate from 

boundary pixels but do not provide any connections between 

core regions. 

 

2.8 Background classes 

The connected components of the background pixels of the 

input image are partitioned into 3 classes depending on their 

embedding relationship with the foreground pixel classes: 

 

1. Background: refers to the connected components of 

background pixels of the input image that are connected to the 

image border. That is, they correspond to background pixels 

that can be reached from the image border by following a 

connected path of background pixels (i.e., without crossing any 

foreground pixels). They are obtained by considering the 

negation (i.e., complement) of the fillhole operation (see sec. 

2.4) applied to the foreground pixels. 

 

2. Border-opening: refers to the connected components of 

background pixels that cannot be reached from the image border 

without crossing one or more foreground pixels but that can be 

reached without crossing any core pixel. They are obtained by 

performing the intersection between the holes of the foreground 

and negation of the holes of the core pixels. Note that the holes 

of an image are simply obtained by filling its holes with the 

fillhole operation and then subtract the input image from the 

filled image. Border-opening are detected if and only if the 

input parameter internal is set to true (i.e., 1) and in this case the 

border-opening pixels are set to 220 in the output image. 

 

3. Core-opening: refers to the connected components of 

background pixels that cannot be reached from the image border 

without crossing at least one core pixel. They are always 

associated to a perforation. In practice, all holes of image of 

core pixels are extracted and set to the value 100. In case the 

parameter internal is set to true (i.e., 1), the image with core 

holes set to 100 is added to the output image. This means that 

pixels belonging to core holes get their base label value plus an 

offset of 100. Accordingly, pixels in the output image with 

value 100 correspond to the core-opening pixels that are 

matching background pixels of the input image. 

 

2.9 Output 

The output image is defined with bit encoding, using bit shifting 

operations on each binary image containing the foreground 

classes described above and performing bitwise logical 

operations (or) between all the bit-shifted images. Note that in 

case the input parameter internal is equal to 1, embedded 

structures get a special code by adding an offset of 100 to the 

corresponding pixels while setting to 220 those holes of the 

input image that are not completely surrounded by perforation 

pixels (see details in Sec. 2.8). Finally, colours are assigned to 

each integer value of the output image using Red-Green-Blue 

colour coding stored in a look-up-table attached to the output 

raster image (the miallib raster image structure contains a field 

that can be used to store a look-up-table). 

 

Table 1 indicates all possible MSPA classes for both foreground 

and background pixels as well as their respective byte value and 

corresponding colour coding (RGB value stored in the colour 

look-up-table referred to in the output miallib image of type 

IMAGE. Further information is available in the MSPA-Guide13 

and applications to forest spatial patterns are outlined in (Vogt, 

2022). 

 

 

 
 

Table 1. Class names, colour codes, and byte values featuring 

the MSPA classes stored in the image returned by 

segmentBinaryPatterns. 

 

2.10 Library considerations 

To minimise library dependencies, the Makefile of the miallib 

library contains a miallib_mspa target that can be used to build 

a minimal set of the miallib C files required for 

segmentBinaryPatterns. The target name is miallib_mspa.a. It is 

defined as a static library so that it can be statically linked to the 

target environment. This strategy is used for the distribution of 

MSPA in the GuidosToolbox (GTB) (Vogt and Riitters, 2017) 

and GuidosToolbox Workbench (GWB) (Vogt et al., 2022) that 

also contains an adaptation of mspa.c called fsp.c14 to 

accommodate two additional features, namely a dynamic timer 

(called loadBar15) indicating the percentage of the overall 

execution and a Boolean parameter called disk16 indicating 

whether intermediate results should be written on disk to 

minimise the random access memory footprint so that large 

images can be processed. 

 

 

3. PERFORMANCE 

The performance of the algorithm is evaluated on images of 

increasing size as well as for on-the-fly computation for 

interactive analysis and exploratory visualisation. We 

demonstrate experimentally that the complexity of the proposed 
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implementation is in O(n). That is, the computational time 

increases linearly with the number of pixels n of the input 

image. This is illustrated in Fig. 3. The input image is a 

GeoTIFF file at 100 m resolution with a bounding box matching 

that of the conterminous USA and Alaska and forest pixels with 

value 2, non-forest pixels with value 1, and no data pixels with 

value 0. This image has been resampled with GDAL to 

multiples of 100 m up to 1000 m using mode sampling with the 

rasterio package17 providing GDAL python bindings. CPU time 

for each resolution was measured using the function 

process_time of the Python time package. The CPU time for all 

images with resolution that are multiple of 100 m was estimated 

as measured CPU time for the 100 m resolution image divided 

by x2 where x > 1 is the multiple of 100, i.e., x = 2, 3, ..., 10, as 

one would expect for a computational complexity that is linear 

with the number of image pixels. The excellent match between 

the measured and estimated CPU time demonstrates 

experimentally that the complexity of the proposed open source 

release of MSPA is indeed linear. Note that in this experiment, 

the input parameters are 8 for connectivity (graphfg) and 1 for 

the parameters size, internal, and transition. All calculations 

were conducted on an Intel(R) Xeon(R) CPU E7-8870 v4 at 

2.10GHz and the environment variable OMP_NUM_THREADS 

was set to 1 for the experiment so that no multi-threading was 

considered. 

 

 

 

Figure 3. Top: The CPU time of MSPA of a map of the United 

States of America at different resolutions shows a linear relation 

with respect to the number of image pixels: measured values 

and estimations based on measured value at 100 m divided by x2 

where x > 1 is the multiple of 100, i.e., x = 2, 3, ..., 10.  

Bottom: MSPA output on the USA map resampled at 10,000 m 

resolution using mode resampling. 

The proposed implementation handles images up to 264 pixels. 

For example, a Global MSPA map of forest cover in equal area 

projection and with a pixel resolution of 100 meter (400,748 x 

147,306 pixels, i.e. a 0.6 terapixel image) was processed on the 

JRC Big Data Analytics Platform18 (BDAP aka JEODPP) 

(Soille et al., 2018) in just 12 hours. Earlier examples of MSPA 

at European and Global extent can be browsed interactively as 

Google Earth image overlays19. Processing large images is very 

much needed to mitigate dependencies with regards to the 

image definition domain. Indeed, pixel classes requiring the 

analysis of connectivity relations cannot be determined in a 

fixed local neighbourhood and may therefore depend on the 

observation domain in case some foreground connected 

components are extending beyond this domain. 

 

Regarding the memory footprint of segmentBinaryPatterns, the 

peak RAM usage in bytes correspond to about 20 times the 

number of pixels of the input image (exact peak usage depends 

on image content for some of the underlying morphological 

image analysis algorithms). All these additional images are used 

to store the intermediate results as well as for temporary image 

buffers needed during the computations. When using the GTB 

adaptation that allows for writing intermediate results to disk 

(disk option in Sec. 2.10) and read them back during processing 

when needed rather than having them permanently in memory, 

the peak memory usage in bytes is reduced to 17 times the 

number of pixels of the input image. 

 

Regarding the on-the-fly computation for interactive analysis 

and exploratory visualisation based on Jupyter notebooks (De 

Marchi and Soille, 2019), the proposed implementation is fast 

enough for integration in JupyterLab with on-the-fly 

computation in an area corresponding to the map view area and 

at resolution matching its zoom level. A Voilà20 dashboard 

based on a JupyterLab21 notebook is in preparation and will be 

referred to in the list of BDAP Voilà dashboards22. 

 

 

4. CONCLUSIONS 

Morphological spatial pattern analysis has gained traction since 

its inception (Soille and Vogt, 2009) thanks to the 

accompanying MSPA website with extensive documentation, 

various GIS extensions, and a user-friendly provision of MSPA 

within the desktop application GTB and the server application 

GWB. With the provision of the MSPA source code under a 

free open source software license, we add yet another feature of 

software provisioning (Vogt and Rambaud, 2022) to increase 

the outreach of MSPA into the user community interested in 

pattern analysis. Since MSPA is available through a C library, it 

can be easily integrated in other data science environments. For 

instance, the MSPA function segmentBinaryPatterns is directly 

callable from the pyjeo Python package (Kempeneers et al., 

2019) available at GitHub23 (see segmentBinaryPatterns 

method in ccops module24) as well as from the morphological 

image analysis library wrapped to the XLISP-Plus Lisp 

interpreter25 (mialisp26). We therefore expect the release of the 

MSPA code under an open source license to further boost its 

use for the analysis of geospatial patterns and indeed any other 

types of spatial patterns occurring in other scientific domains. 
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