
MAKING SENSE OF THE NOISE: INTEGRATING MULTIPLE ANALYSES FOR STOP
AND TRIP CLASSIFICATION

R. P. Spang1∗, K. Pieper1, B. Oesterle1, M. Brauer1, C. Haeger2, S. Mümken2, P. Gellert2, J.-N. Voigt-Antons3,4

1 Quality and Usability Lab, Berlin Institute of Technology, Berlin, Germany -
(spang, kerstin.pieper)@tu-berlin.de, (max.brauer, benjamin.oesterle)@campus.tu-berlin.de

2 Institute of Medical Sociology and Rehabilitation Science, Charité - Universitätsmedizin Berlin, Berlin, Germany -
(christine.haeger, sandra.muemken, paul.gellert)@charite.de

3 University of Applied Sciences Hamm-Lippstadt, Germany - jan-niklas.voigt-antons@hshl.de
4 German Research Center for Artificial Intelligence (DFKI), Berlin, Germany

Commission IV, WG IV/4

KEY WORDS: GNSS, Analysis, Algorithm, Processing, Stop Trip Classification, Geometry.

ABSTRACT:

Mobility research is mainly concerned with understanding mobility on a higher level, including environmental factors, e.g., meas-
uring the time out of home or tracking revisited places. This requires preprocessing the raw data obtained from GPS sensors, like
clustering significant locations and distinguishing these from periods on the go. We introduce a new stop and trip detection al-
gorithm to transform a list of position records into intervals of dwelling and transit. The system is based on geometrical analyses of
the signal noise: Imperfect GPS data tends to scatter around an actual dwell position in a star-like pattern, and this imperfection is
what we leverage for our classification. The system contains four independent classification methods, comparing different aspects
of the geometrical properties of a given trajectory. If available, accelerometer readings can be used to improve the system’s accur-
acy further. To evaluate the classifier’s performance, we recorded a large dataset containing gold-standard labels and compared the
classification results of our system with the results of Scikit Mobility and Moving Pandas. Our Stop Go Classifier outperforms the
traditional distance/time-threshold-based systems. The described system is available as free software.

1. INTRODUCTION

Mobility researchers using GPS generally obtain raw coordin-
ates and timestamps from their recorders. However, they are
often far more interested in aggregated data, like significant
locations, time spent out of home, or the number of revisited
places. All of these rely on the ability to precisely distinguish
stop from trip intervals and extract these from the raw coordin-
ates and timestamps. Therefore, the conversion between these
variables is fundamental in mobility research.

Spaccapietra and colleagues suggested the following concept
for stops and trips: A temporal sequence of GPS coordin-
ates where alternatively, the recorder position stays fixed and
changes. A trajectory is a sequence of trips going from one
stop to the next one (Spaccapietra et al., 2008). A stop hereby
is defined as no movement larger than a distance d throughout
a period t. The commonly adopted strategy to computationally
identify stops and trips still involves this very combination of
d and t; a distance and a time threshold to identify significant
places (Ashbrook and Starner, 2002, Ye et al., 2009). Here,
GPS records are grouped if they lie within a predefined radius
and time.

Nurmi (Nurmi et al., 2009) defined multiple classes of al-
gorithms for this task, differentiating radius-based, density-
based, probabilistic clustering, and grid-based clustering al-
gorithms. They further suggested a Dirichlet process clustering
algorithm, based on Dirichlet process mixture models, a par-
ticular case of finite mixture models (Nurmi and Bhattacharya,

∗ Corresponding author

2008). Moving Pandas (Graser, 2019) and Scikit Mobility (Pap-
palardo et al., 2019) are probably the most widely adopted lib-
raries for general mobility research and especially for mobility
data preprocessing, and both provide modules for stop/trip de-
tection.

When we planned the technical basis for a mobility interven-
tion study, we tested several existing systems based on the
time/distance-threshold approach. We chose simple and af-
fordable smartphones as recording devices and tested existing
solutions in the field. Using algorithms based on this prin-
ciple, we observed, on the one hand, significant fragmentation
of the identified stops due to the relatively large amount of sig-
nal noise. Fragmentation here is a single, actual stop detected as
a set of multiple more minor, adjacent stops. On the other hand,
we could only identify stops having a duration greater than a
predefined time threshold, usually five minutes. Reducing this
threshold lead to an increased number of falsely identified stops
(false positives) and further fragmentation. Hence, the temporal
resolution of this analysis was less than what we were looking
for. This motivated us to develop a modern stop and trip classi-
fication algorithm.

Identifying stops in a GPS record is usually pretty easy for a
human annotator: the GPS records scatter around the actual po-
sition when dwelling on a spot because of its imperfect signal.
Records obtained from a trajectory through an environment are
distinguishable - although the imperfect signal diverges from
the actual position similarly (See Figure 1). This observation
inspired us to create a new algorithm around the idea of invest-
igating the signal patterns and, therefore, the geometric proper-
ties of the signal noise.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

 
435



Figure 1. Example trajectory with stops and trips. Detected
stops are highlighted in colour, and they show distinct shapes

scattered around the actual dwelling position. Trips, in contrast,
show clear paths between stops.

The goal of this manuscript is fourfold: Besides introducing
a new classification system to the geo-FOSS community, we
discuss the design decision of combining multiple independent
analyses to form a majority-based decision on how to classify
each GPS sample. This is a first in this context to the best of
our knowledge. Further, we present ideas on how to geometric-
ally analyze a GPS trajectory’s shape by using the signal’s noise
and incorporating its properties into the classification decision.
We demonstrate how each method is at least on par with other
commonly used algorithms. Lastly, this manuscript provides
benchmarks of the whole system using real-world GPS traces
spanning an extended period to showcase the system’s perform-
ance that we call the Stop & Go Classifier.

2. ARCHITECTURE

The Stop & Go Classifier is a Python class expecting a list of
coordinates and corresponding timestamps to work on. Ideally,
these coordinates are projected into a planar space. The classi-
fier then scores each GPS sample as either a stop or trip, aggreg-
ates these labels to form stop intervals (consisting of a begin and
an end time), and filters or merges outliers. The whole process
is visualized in Figure 2.

Fundamentally, the algorithm is based on four different geomet-
ric analyses. We developed multiple approaches because any
single analysis method was not robust enough in all of our test
cases. We implemented them so they can overrule each other:
a method with high confidence for its result can overrule an es-
timation of another method with lower confidence for a given
case. Each analysis method is applied to a rolling window of
subsequent GPS samples. This way, the shape of a small subset
of the trajectory is evaluated independently. Each of the four
analyses returns a score in the interval [−1, 1], with −1 being
most confident that the evaluated subset belongs to a trip and
+1 being most confident that the subset belongs to a stop. Con-
sequently, a score of 0 is inconclusive.

This score design allows for an easy combination through a
simple average of all four scores. It allows overruling less con-
fident scores from a few analysis methods through high confid-
ence scores from others. Together, they form a classification
decision for each GPS sample (Figure 2, section 3).

2.1 Four independent scoring methods

The following analysis approaches take a subset of a few con-
secutive samples to work on. Each method returns a score
within the interval [−1, 1] to express decision and confidence.
Since each approach is different and internally arrives at differ-
ent number spaces, each internal result is mapped to the target
score interval to obtain comparable results. This mapping in-
volves thresholds that we experimentally derived; more on this
is explained in Section 3.2. The classification performance of
each method is described in Section 3.4.

2.1.1 Width distance ratio This analysis compares two
metrics of the given subset through a ratio. First, the cumulated
euclidean distance between each subsequent pair of samples in
the subset is computed. Second, out of all the points of the
subset, the euclidean distance of the two points being furthest
apart from each other is calculated (see Figure 3). The ratio of
the path distance and the most exhaustive distance is the critical
metric of this approach. In the last step, it is then translated to
the target score interval [−1, 1].

Figure 3. Sketch of the width-distance-ratio method: a)
describes a stop; the solid green line is the distance between the
two furthest points. This is compared against the path distance

between all records of the stop (green, dashed line). b) shows the
same comparison but for a trip segment.

Example: While on an ideal trip, e.g. walking along a straight
line, the two values (path distance and longest distance between
two points) are almost identical. Hence, the ratio between these
is close to 1. However, when dwelling on one spot, the samples
show a star-like pattern around that spot. The total path dis-
tance is approximately the number of samples times the aver-
age signal accuracy. For example, when the subset contains ten
records and the accuracy is 15m on average, the path distance is
150m (although this is actually a stop, and the recording device
did not move). Now, let us assume the distance between the
two points being furthest apart is 30m (if the noise would cause
two points to be precisely opposite each other). Then, the ratio
between these values is 150m/30m = 5. This value is much
larger than the value we obtained from the trip example; hence
this metric helps discriminate stop intervals from trip intervals.

2.1.2 Bearing This method splits the given subset into
groups of consecutive triples. It spans a vector between the first
and second point of any such triple and a second vector between
the second and the third. It then computes the angle between the
two resulting vectors, see Figure 4. This is repeated for all sub-
sequent three samples. The critical metric of this approach is
the average of all the angles. This way, it measures path con-
tinuity within the given subset.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

 
436



GPS
0,1 Hz

EPSG

score0,1 Hz Acceleration

1 Hz

st

ops

clean

stops

1 score
4 scores

1 score

Labels

1

Stop & Go Classifier

2

4

3

Coordinate
Projection

Motion
Score

Alignment

Interpretation

F. missing data
G. motion score

A. rectangle - edge - distance
B. bearing analysis
C. start - end - distance
D. intersecting path segments

Scoring

Aggregation

ro
lli

n
g

 w
in

d
ow

p
er

A. stop duration
B. independence DELETE / MERGE / KEEP

add context 
(average stop position)

clean
stop & go
intervals

FIND BEST 
NEIGHBOUR

sc
or

e

sa
m

p
le

Filter and merge

re
pe

at u
ntil no change

1 score

Figure 2. Flow-chart of the Stop & Go Classifier. The four stages represent (1) a simple preprocessing, (2) scoring a rolling window of
subsequent samples using different geometric analyses, (3) classification of each GPS sample, and (4) filtering the obtained stop and

trip intervals.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

 
437



Figure 4. Sketch of bearing analysis method: a) describes a stop;
changes in direction are measured as angles; drawn in green. b)
shows the same procedure for a trip segment. The average angle

of the subset is significantly larger for a stop than the average
angle for a trip.

In an ideal trip, each point would follow the same direction as
the previous points. Here, the average angle of such a set is
close to zero. In comparison, a stop with its chaotic structure
would have mostly large angles between its vectors. Thus, the
average angle is quite large. Hence, this can be used to distin-
guish stops from trips.

2.1.3 Start-point end-point This method measures the dis-
tance between a given subset’s first and last point. The position
of the first and the last two samples is averaged to reduce the
influence of outliers. Then, the distance between these two av-
erages is computed. Within an ideal stop, this distance is close
to zero (see Figure 5). However, when applied to a strait trip
interval, this distance is almost as long as the cumulative euc-
lidean distance of the trip itself.

Figure 5. Sketch of the start-point end-point method: a)
describes a stop; the solid, green line is the distance between the
stop’s first two and last two points. b) shows the same procedure

for a trip segment; the distance between start and end is
significantly shorter for a stop than for a trip.

Note that this approach is structurally similar to the tradition-
ally used approach introduced by (Ashbrook and Starner, 2002).
The critical variable time t is given through the window size
(the number of samples over a specific interval). The distance
between start and end is then comparable to the diameter of the
classic algorithm.

2.1.4 Path segment intersections This last method counts
the intersections between all path segments within the given

subset. A path segment is a line between two subsequent po-
sition samples. It is unlikely to have multiple segments inter-
secting each other within a trip. However, samples of a stop
scatter around the actual position because of the signal noise.
This jitter of the recorded samples causes frequent intersections
(see Figure 6).

Figure 6. Sketch of the path segment intersections method: a)
describes a stop; green circles highlight intersecting path

segments. b) shows a trip segment. Here, no intersection occurs.

It is possible to have intersecting elements within large win-
dows of trip data. For example, crossing the same street mul-
tiple times would cause intersections too. Therefore, using a
relatively small window size is essential for this method.

2.2 Device motion

Apart from coordinates and timestamps, the system can pro-
cess a list of motion score values. These quantify the recording
device’s physical movement at any given time. While we sug-
gest how to compute and incorporate such measures into the
analysis, interpreting such a measure can be reconfigured. Dur-
ing sample acquisition, recording devices such as smartphones
can also easily record three-dimensional accelerometer data.
For our demonstration and benchmark, we acquired accelero-
meter readings at 1Hz. In a preprocessing step, we computed a
motion score (MS) that expresses the amount of physical move-
ment. We propose Formula 1 to transform 3D accelerometer
readings of a given subset into a single scalar. Applying this
as a rolling window to all acceleration data allows quantifying
the device’s motion at any given time. This can then be used to
distinguish intervals of the device being in a fixed position (e.g.
on a table or in a jacket) from the device being moved (e.g. in a
pocket while walking or in a driving car).

motion scorei =
{x,y,z}∑
dim

σ(dimi−t ... dimi+t)

with t = 60s

(1)

Formula 1 describes the simple sum of the three standard de-
viations of the accelerometer values on all three axes. In this
example, we consider a two-minute interval around the point
in time of interest. For example, the motion score at 10 am on
a given day considers all accelerometer readings between 9.59
am and 10.01 am. It computes each axis’s standard deviation σ
and adds all three values together. This procedure is agnostic
of the device’s position, whether lying flat on a table or upside
down in a backpack. If the device is not moved, the σ of all

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

 
438



three axes will be close to zero (only capturing sensor noise).
However, the motion score would be significantly larger if it
was constantly moved on any or multiple of the axis.

We use this motion score to determine periods of no movement
for our stop and trip detection. Fundamentally, if we know that
the device (and hence its environment) was not moved, we as-
sume a stop. Because any significant movement will involve
a motion to the device, this analysis significantly reduces false
trips and fragmentation. However, the Stop & Go Classifier
does not rely on the availability of a motion score and falls back
on the described methods if none is available.

2.3 Missing data

The last classification support of the system is concerned with
interpreting missing data. Since the GPS signal is easily lost
underground or in buildings, gaps in the data are a common is-
sue (especially when the sample accuracy is capped at recording
time). For example, when analyzing the trajectory of an indi-
vidual working at a large office building, one might follow their
path sample by sample from home to work, then observe a nine-
hour gap in the data, and finally a similar but reversing path
from the office back home. As our described approach only in-
spects the geometrical properties of the samples, we would miss
a significant stop. In this example, the geometrical shape of the
samples would look like going back and forth, without any dis-
tinct pattern to recognize. Because of this, we include a miss-
ing data analysis. This considers two aspects: the time between
two subsequent samples and their spatial distance. The latter
is essential not to mistake a travel period for a stop. The ratio
of these two dimensions equals their velocity (distance/time).
Hence, we inspect the velocity between all consecutive sample
pairs. For the described example of a prolonged stay in a build-
ing without records, the velocity between the last sample re-
corded before entering the building and the first after leaving
it would be close to zero. In a different scenario, e.g. a flight,
we would also observe gaps in the recorded data. However, the
distance per time unit would be significantly more prominent,
hence the velocity between the two samples around the data
gap. Thus evaluating the velocity between the samples helps
interpret missing data periods.

2.4 Aggregation, filter & merge

With all these described scores in place, the system classifies
each sample as either stop or trip. Subsequently, this sample-
by-sample information is transformed into a list of stops by de-
tecting changes between labels. As a result, a list of stop inter-
vals is obtained. Attributes include begin and end timestamps
and a stop position. Each position is the average of all sample
positions within the interval between begin and end time.

The system’s last step is cleaning this aggregated result list up.
Therefore, each stop interval is inspected regarding duration
and is compared against its neighbours regarding the temporal
and spatial distance between them. There are three options to
choose from: Either a stop can be kept as it is, it can be merged
with another stop-interval nearby, or it can be discarded as irrel-
evant (Figure 2, section 4). This analysis reduces fragmentation
and caters to a cohesive, clean result set.

3. BENCHMARKING

To test the accuracy of our analysis approach, we benchmarked
the system against the built-in methods for stop and trip detec-

tion of Moving Pandas (Graser, 2019) and Scikit Mobility (Pap-
palardo et al., 2019). We investigate sample-by-sample clas-
sification metrics (accuracy, precision, recall/sensitivity, spe-
cificity, and F1) and stop/trip interval-specific metrics (num-
ber of stops and trips, number of missed stops and trips, and
quantify fragmentation).

3.1 Dataset

To evaluate the performance of our classification system, we
needed an accurately labelled dataset containing real GPS
traces and annotations about the stops and trips of the per-
son recording the data. The STAGA-Dataset was created to
evaluate the classification performance of stop/trip detection al-
gorithms (Spang et al., 2022). This dataset provides smartphone
recorded GPS data (0.1Hz), including accelerometer readings
(1Hz). The recorded trajectories span over 126 days of every-
day life. The dataset contains 122,808 GPS samples (78,900
labelled as stops and 43,908 labelled as trips). A detailed move-
ment diary contains 692 annotated stops.

This movement diary acts as the ground truth for comparing
different classification algorithms. Using the provided accel-
erometer data of the recording device, we computed a motion
score as described in Section 2.2 to investigate its performance
implications. However, since our two reference libraries do not
include options to interpret acceleration data for stop/trip detec-
tion, we report results with and without using the motion score.

3.2 Parameters

As in most optimization problems, there is a wide variety of
parameters to optimize for. Popular metrics like the F1 score,
specificity, and sensitivity are sample-level metrics. In our con-
text, this means testing if a GPS record is correctly labelled as a
stop or a trip. However, other priorities might be considered de-
pending on the use case. For example, fragmentation becomes
a significant problem quickly when investigating the number
of stops one has made in a given time. Since many classifiers
struggle with fragmentation, the raw number of stops is often
overestimated. Hence, sample-based metrics will not capture
all important aspects when tuning a classifier. Instead, optimiz-
ing for a minimum fragmentation or as close to a perfect num-
ber of stops could be more desirable.

Since most systems have multiple settings to adjust for a given
dataset, we employed a grid-search approach to determine the
best classification performance parameters. For a fair compar-
ison against the other systems, we employed the same proced-
ure to optimize the parameters of Scikit Mobility (version 1.2.3)
and Moving Pandas (version 0.9rc3). Scikit Mobility yielded
best results with 2.175 minutes for a stop and .048 spatial ra-
dius km; Moving Pandas with a min duration of 175 sec and a
max diameter of 104 m. Similarly, we tuned the parameters of
the Stop & Go Classifier to yield optimal results.

When tuning the parameters of the three systems, we focused
on improving the balanced accuracy score. This captures the
average between the true positive rate (ratio between stops that
were correctly classified as a stop and all classified stops) and
the true negative rate (ratio between trips that were correctly
classified as a trip and all classified trips).

3.3 Results

Table 1 summarizes all results. For a fair comparison, we re-
port the classification performance of the Stop & Go Classifier

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

 
439



without considering the motion score since our two reference
systems do not incorporate accelerometer data. However, to
showcase its influence, we report the performance of our clas-
sifier with and without the motion score.

Sc
ik

it
M

ob
ili

ty

M
ov

in
g

Pa
nd

as

St
op

&
G

o
C

l.
w

/o
M

ot
io

n
Sc

or
e

St
op

&
G

o
C

l.
w

/
M

ot
io

n
Sc

or
e

Correct 93.4% 91.65% 96.37% 96.84%
Bal. accuracy .931 .922 .966 .968
F1 score .948 .933 .971 .975
Correct stops 94.06% 90.25% 95.76% 96.96%
True stops 74,208 71,204 75,550 76,495
False stops 3,421 2,558 1,112 1,477
Correct trips 92.21% 94.17% 97.47% 96.64%
True trips 40,486 41,349 42,795 42,430
False trips 4,686 7,690 3,347 2,399
Stop count 1,071 1,575 753 670
Missed stops 27 81 17 17
Fragmented s. 145 255 67 25
Trip count 1071 1575 753 670
Missed trips 27 17 28 33
Runtime 2.71s 47.17s 36.79s 26.69s

Table 1. Sample- and cluster-based classification performances
of the two reference systems and the Stop & Go Classifier. Best

performances per metric are highlighted in green. Balanced
accuracy is abbreviated as Bal. accuracy. Fragmented s. refers
to the number of stops including multiple fragments instead of

one cohesive stop.

3.4 Individual algorithms

Although the Stop & Go Classifier consists of several differ-
ent analysis methods, we measured the performance of each
method independently. Table 2 lists the balanced accuracy and
F1 score for each of the four scoring algorithms independently.
It also shows the performance change when all algorithms’ res-
ults are combined and showcases the influence of the Motion
Score and the missing data analysis.

Method
Balanced
Accuracy F1 Score

Width distance ratio .943 .947
Bearing analysis .938 .948
Start-end-distance .941 .943
Path segment intersections .941 .943
All 4 .96 .963
All 4 + motion score .965 .97
All 4 + missing data .966 .971
All 4 + missing + motion .968 .975

Table 2. Sample-based performance analysis of the individual
scoring methods and their combinations. The combination of the

four analysis methods performs better than the four individual
methods because the strategies can compensate for each other in

cases of uncertainty.

4. DISCUSSION

As discussed in Section 3.2, there are many different metrics to
quantify classification performance. We distinguish two main
categories: sample-based and cluster-based. Sample-based

metrics compare the classification of each GPS sample to the
ground truth label provided by the dataset. These metrics are
listed in the first part of Table 1. As indicated by the highlight,
the Stop & Go Classifier outperforms the reference implement-
ations in all these metrics.

The improvement over the second-best system ranges from
1.7% (true stops) to 3.5% (balanced accuracy). However, the
absolute number of falsely classified stop samples is reduced
remarkably (56,5%) without compromising the number of false
trips (28,6% better). So judged by traditional sample-by-sample
metrics, the Stop & Go Classifier provides the best classifica-
tion performance of the three systems.

The second category of analysis metrics is cluster-based, i.e. it
compares the resulting stop and trip clusters (a set of subsequent
samples belonging to the same stop or trip) against the intervals
of the ground-truth diary. This allows quantifying how well the
duration of a stop or trip is represented in the classifiers’ out-
puts. Additionally, we investigated the frequency of stop frag-
mentation, where one stop in the dataset is recognized as mul-
tiple, more minor stops. This is an important aspect to consider
when evaluating classifiers: even strong fragmentation might
not influence the sample-by-sample based performance metrics
drastically, but it obviously would affect, e.g. the number of
important places, as fragmentation would increase the number
of stops potentially drastically. In our comparison, the Stop
& Go Classifier comes closest to the actual number of stops
(753/692) and trips (753/691) and has the least number of frag-
mented stops. While a good result was to be expected, given the
good sample-by-sample results, it is worth noting that the sub-
stantially reduced amount of fragmented stops (about one-third
of the second-best system) is most probably earned through our
sophisticated merging mechanism. This component could also
be applied to other classifier systems. However, our implement-
ation missed more trips than Moving Pandas’ stop detection al-
gorithm. Further analyses are needed to understand the exact
mechanics causing this difference. Lastly, it is worth mention-
ing that Scikit Mobility’s implementation outperforms the other
systems by order of magnitude regarding runtime.

Our results show that integrating multiple analyses helps
strengthen the classification and make it robust against scen-
arios in which a single method might fail. Combining the four
metrics further improves the balanced accuracy of about 1.7%
over the best of the four individual results (see Table 2). Each
of the four individual methods is based on geometrical analyses
that are all on par or even more robust than the second-best
reference system (regarding balanced accuracy). This makes
a strong case for geometrical trajectory analyses in the given
context.

The comparison is based on a collection of metrics we deem
most interesting for choosing algorithms to detect stops and
trips from raw GPS data. While this benchmark is not com-
plete, it should motivate considering the Stop & Go Classifier
for stop and trip identification tasks. It might be worth invest-
igating additional ones for particular use-cases. Other metrics
might conclude that different software is relevant for a given
task.

4.1 Limitations

We tested our system against two popular and readily available
Python libraries, although the academic literature knows other
algorithms for similar purposes. For example, (Joo et al., 2020)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

 
440



lists several segmentation methods available for the R language.
Further comparisons against different algorithms should be car-
ried out to get a more meaningful impression of how well our
system performs.

Furthermore, while we tuned all systems to perform best on our
dataset, more benchmarks are needed, including different data-
sets recorded under different conditions and a variety of sample
parameters (e.g. much higher or lower sample frequencies and
sensor accuracies).

Lastly, the comparison against Scikit Mobility highlights how
time-efficient stop/trip classification can be performed. While
our code is production-ready in principle, it might be worth-
while to redesign core components focusing on performance
and keeping the same level of expressiveness.

4.2 Future work

While the dataset we used to benchmark the systems is large
enough to provide evidence of effectiveness, it only contains
data from one specific recording device (captured at 0.1Hz GPS
sample frequency with a maximum accuracy of 25m). More di-
versity would be desirable to showcase the algorithm’s gener-
alizability. During the system’s development, we tested various
synthetic datasets but focused on the real-world data for this
benchmark. However, using synthetic data and systematically
investigating different trace parameters (like frequency, accur-
acy, or gaps) would help identify current weaknesses.

4.3 Conclusions

We demonstrate a new algorithmic approach to transforming
raw spatio-temporal coordinates into intervals of stops and
trips. Two aspects are most relevant: we employ four differ-
ent algorithm approaches to independently score each sample
as either stop or trip. These methods’ results are then combined
to form a single result. This allows to compensate for uncon-
fident estimations and strengthens the overall classification per-
formance. Second, all these algorithms work on geometrical
analyses of the shape of the trajectories. Since the position data
suffers from signal noise, we base our classification around the
geometrical analyses of the properties of the signal. This re-
quires little to no preprocessing and renders the need for signal
filtering or smoothing obsolete. To evaluate the classification
performance, we classified stops and trips in a dataset contain-
ing trajectories of over four months, including annotations of
over 650 stops. Our Stop & Go Classifier is at least on par
with traditional methods and outperforms the two comparison
systems in most aspects.

5. CODE AVAILABILITY & RESULT
REPRODUCIBILITY

The Stop & Go Classifier is free software under a BSD 3-Clause
license. The repository includes a reference implementation of
the algorithm and small usage examples1. We provide a second
repository containing all scripts used to generate the results of
this manuscript2. The software of this second repository was
also used to estimate optimal parameters for all three systems
to yield the best performances on the given dataset.

1 github.com/rgreinacher/stop-go-classifier
2 github.com/njamster/stop-trip-evaluation-framework

6. ACKNOWLEDGEMENTS

We thank Bartholomeus Tümmler for his background advice
on coordinate reference systems. We thank Purna Dutta for her
help preparing the STAGA dataset to be applied in this bench-
mark. We further thank Sonia Sobol for her artwork visualizing
the flow chart of the algorithm.

REFERENCES

Ashbrook, D., Starner, T., 2002. Learning significant locations
and predicting user movement with gps. Proceedings. Sixth In-
ternational Symposium on Wearable Computers,, IEEE, 101–
108.

Graser, A., 2019. MovingPandas: efficient structures for move-
ment data in Python. GIForum, 1, 54–68.

Joo, R., Boone, M. E., Clay, T. A., Patrick, S. C., Clusella-
Trullas, S., Basille, M., 2020. Navigating through the r pack-
ages for movement. Journal of Animal Ecology, 89(1), 248–
267.

Nurmi, P., Bhattacharya, S., 2008. Identifying meaningful
places: The non-parametric way. International Conference on
Pervasive Computing, Springer, 111–127.

Nurmi, P. et al., 2009. Identifying meaningful places.

Pappalardo, L., Simini, F., Barlacchi, G., Pellungrini, R.,
2019. scikit-mobility: A Python library for the analysis, gen-
eration and risk assessment of mobility data. arXiv preprint
arXiv:1907.07062.

Spaccapietra, S., Parent, C., Damiani, M. L., de Macedo, J. A.,
Porto, F., Vangenot, C., 2008. A conceptual view on trajector-
ies. Data & knowledge engineering, 65(1), 126–146.

Spang, R. P., Pieper, K., Oesterle, B., Brauer, M., Haeger,
C., Mümken, S., Gellert, P., Voigt-Antons, J.-N., 2022. The
STAGA-Dataset: Stop and Trip Annotated GPS and Accel-
erometer Data of Everyday Life. Proceedings of FOSS4G,
Florence, Italy.

Ye, Y., Zheng, Y., Chen, Y., Feng, J., Xie, X., 2009. Mining
individual life pattern based on location history. 2009 tenth in-
ternational conference on mobile data management: Systems,
services and middleware, IEEE, 1–10.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

 
441

https://github.com/RGreinacher/Stop-Go-Classifier
https://github.com/njamster/stop-trip-evaluation-framework

	Introduction
	Architecture
	Four independent scoring methods
	Width distance ratio
	Bearing
	Start-point end-point
	Path segment intersections

	Device motion
	Missing data
	Aggregation, filter & merge

	Benchmarking
	Dataset
	Parameters
	Results
	Individual algorithms

	Discussion
	Limitations
	Future work
	Conclusions

	Code availability & result reproducibility
	Acknowledgements



